JPH0368738A - Hard sintered alloy - Google Patents

Hard sintered alloy

Info

Publication number
JPH0368738A
JPH0368738A JP1204264A JP20426489A JPH0368738A JP H0368738 A JPH0368738 A JP H0368738A JP 1204264 A JP1204264 A JP 1204264A JP 20426489 A JP20426489 A JP 20426489A JP H0368738 A JPH0368738 A JP H0368738A
Authority
JP
Japan
Prior art keywords
sintered alloy
hard
sintering
rare earth
hard sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1204264A
Other languages
Japanese (ja)
Inventor
Shigeo Nagato
永戸 栄男
Katsura Hayashi
桂 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP1204264A priority Critical patent/JPH0368738A/en
Publication of JPH0368738A publication Critical patent/JPH0368738A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a hard sintered alloy capable of low-temp. sintering and excellent in strength and corrosion resistance by using Y2O3 or an oxide of rare earth element as a sintering auxiliary at the time of producing a hard sintered alloy composed principally of hard grains of TiC, TiN, TiCN, etc. CONSTITUTION:A mixture prepared by using a powder of at least one kind among hard TiC, TiCN, and TiN as principal component and adding Y2O3 or an oxide of rare earth element, such as Ce2O3, Nd2O3, Sm2O3, Yb2O3, and Dy2O3, as a sintering auxiliary to the above by 0.05-20wt.% is subjected to wet crushing and to drying, and paraffin is added as a binder, e.g., by 4% to the above. The resulting mixture is compacted and the above paraffin is subjected to removal of binder, and the resulting green compact is successively held in vacuum for 1-5hr at 1600-1800 deg.C and sintered. By this method, the hard sintered alloy capable of sintering at relatively low temp. and excellent in strength without causing deterioration in hardness can be produced.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は、低温での焼成が可能で、高い強度を有する硬
質焼結合金に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application of the Invention) The present invention relates to a hard sintered alloy that can be fired at low temperatures and has high strength.

(従来技術) 炭化チタン(TiC) 、炭窒化チタン(TiCN)、
窒化チタン(TfN)等のTi化合物を主成分とする硬
質焼結合金は、硬度、抗折強度等の機械的特性に優れる
ことから、工具をはじめとする産業機械用部品として、
また、一方では、TiNは金色、TiCは銀色の色調を
呈することから、装飾用材料として広い分野で汎用され
ている。
(Prior art) Titanium carbide (TiC), titanium carbonitride (TiCN),
Hard sintered alloys mainly composed of Ti compounds such as titanium nitride (TfN) have excellent mechanical properties such as hardness and bending strength, so they are used as parts for industrial machinery such as tools.
On the other hand, since TiN has a golden color and TiC has a silver color, they are widely used as decorative materials in a wide range of fields.

一般に、上記硬質焼結合金は、単体では難焼結性であり
、ホットプレス法等の手法によっても理論密度の90乃
至95%の密度しか得られず、焼結温度も1800乃至
2200″Cと非常に高い温度に設定する必要があり、
焼成炉等の設備が大がかりとなり、コスト的にも実用的
ではない。
In general, the above-mentioned hard sintered alloys are difficult to sinter when used alone, and even with methods such as hot pressing, a density of only 90 to 95% of the theoretical density can be obtained, and the sintering temperature is 1800 to 2200''C. Must be set to a very high temperature,
Equipment such as a kiln is large-scale, and it is not practical in terms of cost.

そこで、従来よりこれらの主成分に対し、Fe、Co、
 Ni等の鉄族金属を低融点物質として添加し、さらに
はWC,Mo□C等の第68族炭化物をぬれ性改善の目
的で添加することにより、焼結性を改善しようとする試
みがなされている。
Therefore, conventionally, for these main components, Fe, Co,
Attempts have been made to improve sinterability by adding iron group metals such as Ni as low melting point substances and further adding group 68 carbides such as WC and Mo□C for the purpose of improving wettability. ing.

(発明が解決しようとする問題点) ところが、上記のように鉄族金属を添加することにより
、焼結性は改善され、強度も上昇するという効果はある
ものの、逆に硬度が低下するという欠点を有しており、
さらには焼結合金の金属部分で腐食が進行し易いため、
酸性や塩基性雰囲気での使用が出来ず11例えば装飾用
材料として用いた場合には汗等により表面に変色が生じ
るという欠点を有していた。
(Problems to be Solved by the Invention) However, although the addition of iron group metals as described above has the effect of improving sinterability and increasing strength, it has the disadvantage of decreasing hardness. It has
Furthermore, since corrosion easily progresses in the metal parts of the sintered alloy,
It cannot be used in acidic or basic atmospheres11, and when used, for example, as a decorative material, it has the disadvantage that the surface discolors due to sweat and the like.

よって、本発明の目的は、鉄族金属を添加せずとも低温
焼成が可能であり、且つ硬度を低下させることなく、強
度を向上し得る硬質焼結合金を提供するにある。
Therefore, an object of the present invention is to provide a hard sintered alloy that can be fired at low temperatures without adding iron group metals and that can improve strength without reducing hardness.

(問題点を解決するための手段) 本発明者等は、上記問題点に対し研究を重ねた結果、T
ic 、 TiCN5TiNの焼結に際し、Y2O3あ
るいは希土類元素酸化物を適量添加することによって、
上記目的が達成されることを知見した。
(Means for Solving the Problems) As a result of repeated research into the above problems, the inventors found that T.
ic, by adding an appropriate amount of Y2O3 or rare earth element oxide during sintering of TiCN5TiN,
It has been found that the above objectives are achieved.

即ち、本発明は、Tic 、 T1CN、 TiNから
選ばれる少なくとも1種を主成分とする硬質焼結合金に
おいて、T20.あるいは希土類元素酸化物から選ばれ
る少なくとも1種を0.05乃至20重量%の割合で含
有することを特徴とするものであり、それにより、鉄族
金属を用いたのと同等に低温焼成が可能となるとともに
焼結合金の硬度を低下させることなく、強度の向上を図
ることができる。
That is, the present invention provides a hard sintered alloy whose main component is at least one selected from Tic, T1CN, and TiN. Alternatively, it is characterized by containing at least one selected from rare earth element oxides in a proportion of 0.05 to 20% by weight, which allows for low-temperature firing equivalent to that using iron group metals. At the same time, it is possible to improve the strength of the sintered alloy without reducing its hardness.

以下、本発明を詳述する。The present invention will be explained in detail below.

本発明の対象となる焼結合金はTiC,T1CN、 T
iNのチタン化合物から少なくとも1種を主成分とする
もので、具体的にはこれらが焼結合金中に70重量%以
上存在するもので、上記のチタン化合物は炭素あるいは
窒素の一部が酸素で置換される場合もある。
The sintered alloys targeted by the present invention include TiC, T1CN, and T
The main component is at least one type of iN titanium compound, specifically, it is present in the sintered alloy in an amount of 70% by weight or more. May be replaced.

また、T1CNでは炭素と窒素の比率がO:100〜1
00:0の任意の値のものでよい。
In addition, in T1CN, the ratio of carbon to nitrogen is O:100~1
Any value between 00:0 may be used.

本発明によれば、上記主成分に対し、T20.あるいは
Ce、0.、Ndz03 、SmzO= 、Ybz(]
+ 、DyzO=等の希土類元素酸化物を添加すること
を特徴とするもので、この添加量が0.05重量%未満
では、所望の焼結性改善効果が得られず、20重量%を
越えると、逆に焼結不良となることから、全量中0.0
5乃至20重量%、特に1乃至10重量%の割合で配合
することが望ましい。
According to the present invention, T20. Or Ce, 0. , Ndz03 , SmzO= , Ybz(]
It is characterized by the addition of rare earth element oxides such as On the other hand, 0.0% of the total amount will result in poor sintering.
It is desirable that the amount is 5 to 20% by weight, particularly 1 to 10% by weight.

本発明の硬質焼結合金の製造に際しては、TiC1Ti
CNSTiNのTi化合物に対して適量のY2O3ある
いは希土類元素酸化物を添加混合して、公知の成形手段
で底形を行う。
When producing the hard sintered alloy of the present invention, TiC1Ti
An appropriate amount of Y2O3 or rare earth element oxide is added to and mixed with the Ti compound of CNSTiN, and a bottom shape is formed using a known molding method.

次に、得られた成形棒を真空焼成の他、ホットプレス、
真空ホットプレスあるいは熱間静水圧焼成法等の焼成方
法によって焼成する。この時の焼成温度は、従来TiC
、TlCN% TtNの単味での焼成温度が1800〜
2200°Cであったのに対し、本発明に従いYtOi
あるいは希土類元素酸化物を適量添加することにより1
400〜1800″Cの低温での焼成が可能となる。
Next, the obtained formed rod is vacuum fired, hot pressed,
Firing is performed by a firing method such as vacuum hot pressing or hot isostatic pressing. The firing temperature at this time was
, TlCN% The firing temperature for TtN alone is 1800~
2200°C, whereas YtOi according to the present invention
Alternatively, by adding an appropriate amount of rare earth element oxide,
Firing at a low temperature of 400 to 1800''C is possible.

本発明の硬質焼結合金はTic 、 T1CN、 Ti
Nから選ばれる少なくとも1種とT20.あるいは希土
類元素酸化物の少なくとも1種を必須の要件とするもの
であるが、本発明によれば、前述した効果を維持し得る
範囲内で他の金属化合物を添加することも可能である。
The hard sintered alloy of the present invention is Tic, T1CN, Ti
At least one type selected from N and T20. Alternatively, at least one rare earth element oxide is an essential requirement, but according to the present invention, it is also possible to add other metal compounds within a range that can maintain the above-mentioned effects.

具体的には、第1Va族(Zr、Hf)、第Va族(V
、Nb、Ta) 、第VIa族(Cr、Mo、W)等の
炭化物、窒化物、酸化物を添加することも可能である。
Specifically, the first Va group (Zr, Hf), the Va group (V
, Nb, Ta), group VIa (Cr, Mo, W), etc., carbides, nitrides, and oxides can also be added.

以下、本発明を次の例で説明する。The invention will now be explained with the following examples.

(実施例) 平均粒径がおよそ1μ重のTtC,T1CN、TiNの
各粉末に対し、第1表に示す通りの比率でT20.ある
いは希土類元素酸化物を添加し、樹脂ポットに入れ、ジ
ルコニアボールを用いアセトンとともに42時間混合粉
砕した。次いでこの混合物を乾燥後、パラフィンを4重
量%加え、1.5ton/ ciで加圧成形し、脱バイ
ンダ後、1600〜1800°C,10−’torrの
真空中で1〜5時間焼戒を行った。
(Example) T20. Alternatively, a rare earth element oxide was added, placed in a resin pot, and mixed and pulverized for 42 hours with acetone using zirconia balls. Next, after drying this mixture, 4% by weight of paraffin was added, pressure molded at 1.5 ton/ci, and after removing the binder, it was burned in a vacuum of 1600-1800°C and 10-'torr for 1-5 hours. went.

かくして得られた焼成合金の抗折強度、ビッカース硬度
および耐食性試験を実施した。抗折強度はJISR16
01に従い3点曲げ法により、耐食性試験については人
工汗および塩水噴霧試験(JISZ2371−76)を
行い、変色が認められたものに○、変色がなかったもの
に×を付した。
The sintered alloy thus obtained was tested for flexural strength, Vickers hardness, and corrosion resistance. The bending strength is JISR16
Regarding the corrosion resistance test, artificial sweat and salt water spray tests (JIS Z2371-76) were conducted according to the 3-point bending method according to JIS 01, and those with discoloration were marked with ○, and those with no discoloration were marked with x.

結果は第1表に示す。The results are shown in Table 1.

(以下余白) 第1表の結果によれば、Tic、TiN、の単味の焼成
を行ったkl、2では、いずれも焼成温度は2000〜
2200°Cと高くする必要があり、特性面では硬度は
高いが抗折強度が低いという問題がある。
(Margins below) According to the results in Table 1, in kl, 2, where Tic and TiN were fired, the firing temperature was between 2000 and 2000.
It is necessary to raise the temperature to 2200°C, and there is a problem in that the hardness is high but the bending strength is low.

一方、従来のサーメットの技術に従い、Ni金属を添加
したNQ、il、12では焼成温度が低く、抗折強度も
高いが、金属添加による硬度低下が阻1,2と比較して
も顕著であり、耐食性においても変色が観察された。
On the other hand, NQ, IL, and 12, in which Ni metal is added according to conventional cermet technology, have a low firing temperature and high bending strength, but the decrease in hardness due to metal addition is significant compared to cermets 1 and 2. , Discoloration was also observed in corrosion resistance.

これに対し、Y2O,あるいは希土類元素酸化物を添加
した試料のうちNα3〜9ではいずれも焼成温度を単体
時と比較して200〜400°C低下させるこたができ
るとともに、特性上も1800kg/mm”以上のビッ
カース硬度を維持しながらも65kg/mm”以上に抗
折強度を向上することができた。しかも耐食性において
も何ら変色は見られなかった。
On the other hand, among the samples to which Y2O or rare earth element oxides have been added, for Nα3 to 9, the firing temperature can be lowered by 200 to 400°C compared to when the element is alone, and in terms of characteristics, the firing temperature is 1800 kg/ It was possible to improve the bending strength to 65 kg/mm" or more while maintaining a Vickers hardness of 65 kg/mm" or more. Furthermore, no discoloration was observed in terms of corrosion resistance.

しかし、希土類元素酸化物の添加量が20重量%を越え
るNα10では、抗折強度の改善効果は得られずビッカ
ース硬度は低下した。
However, in Nα10 in which the amount of rare earth element oxide added exceeds 20% by weight, the effect of improving the bending strength was not obtained and the Vickers hardness decreased.

(発明の効果) 以上詳述した通り、本発明の硬質焼結合金は従来から用
いられていた鉄族金属を用いることなく低温焼成が可能
となるとともに、TiC,TtCN、TiNの有する高
強度、耐食性を維持しつつ強度を向上させることができ
る。それにより、Ti化合物系焼結体の産業機械的用材
料としてその利用分野を、酷第でき、特に装飾用として
優れた耐環境性を発揮することができる。
(Effects of the Invention) As detailed above, the hard sintered alloy of the present invention can be fired at low temperatures without using conventionally used iron group metals, and also has the high strength of TiC, TtCN, and TiN. Strength can be improved while maintaining corrosion resistance. As a result, the field of use of the Ti compound-based sintered body as an industrial and mechanical material can be expanded, and it can exhibit excellent environmental resistance particularly for decorative purposes.

Claims (1)

【特許請求の範囲】[Claims] 炭化チタン、炭窒化チタン、窒化チタンの少なくともい
ずれかを主成分とする硬質合金において、Y_2O_3
あるいは希土類元素酸化物から選ばれる少なくとも1種
を0.05乃至20重量%の割合で含有することを特徴
とする硬質焼結合金。
In a hard alloy containing at least one of titanium carbide, titanium carbonitride, and titanium nitride as a main component, Y_2O_3
Alternatively, a hard sintered alloy containing at least one selected from rare earth element oxides in a proportion of 0.05 to 20% by weight.
JP1204264A 1989-08-07 1989-08-07 Hard sintered alloy Pending JPH0368738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1204264A JPH0368738A (en) 1989-08-07 1989-08-07 Hard sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1204264A JPH0368738A (en) 1989-08-07 1989-08-07 Hard sintered alloy

Publications (1)

Publication Number Publication Date
JPH0368738A true JPH0368738A (en) 1991-03-25

Family

ID=16487587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1204264A Pending JPH0368738A (en) 1989-08-07 1989-08-07 Hard sintered alloy

Country Status (1)

Country Link
JP (1) JPH0368738A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112314A1 (en) * 2013-01-16 2014-07-24 並木精密宝石株式会社 Decorative member
CN110527857A (en) * 2019-09-27 2019-12-03 广西科技大学 A kind of sintering titanium alloy and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215457A (en) * 1983-05-19 1984-12-05 Sumitomo Electric Ind Ltd Sintered hard alloy
JPS61272344A (en) * 1985-05-28 1986-12-02 Sumitomo Electric Ind Ltd Sintered hard alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215457A (en) * 1983-05-19 1984-12-05 Sumitomo Electric Ind Ltd Sintered hard alloy
JPS61272344A (en) * 1985-05-28 1986-12-02 Sumitomo Electric Ind Ltd Sintered hard alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112314A1 (en) * 2013-01-16 2014-07-24 並木精密宝石株式会社 Decorative member
JPWO2014112314A1 (en) * 2013-01-16 2017-01-19 並木精密宝石株式会社 Decorative material
CN110527857A (en) * 2019-09-27 2019-12-03 广西科技大学 A kind of sintering titanium alloy and preparation method thereof
CN110527857B (en) * 2019-09-27 2020-12-22 广西科技大学 Sintered titanium alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
CA1184572A (en) Sintered high density boron carbide
JPH055152A (en) Hard heat resisting sintered alloy
JP2829229B2 (en) Silicon nitride ceramic sintered body
JPH0777986B2 (en) Manufacturing method of silicon carbide sintered body
JPH0225866B2 (en)
JPH0368738A (en) Hard sintered alloy
JP2775298B2 (en) Cermet tool
Suskin et al. Comparison of vacuum and pressure-assisted sintering of TiB 2-Ni
JPH05279121A (en) Sintered compact of tungsten carbide-alumina and its production
EP0142771A2 (en) Novel compositions for oxide ceramics
JPH01115871A (en) Titanium carbo-nitride sintered form and production thereof
JPH08176696A (en) Production of diamond dispersed ceramic composite sintered compact
JPS6245194B2 (en)
JP2564857B2 (en) Nickel-Morbuden compound boride sintered body
JP3735397B2 (en) Titanium nitride sintered body and method for producing the same
JPH0598383A (en) Hard alloy
JPH08225879A (en) Titanium nitrode sintered compact using aluminum as auxiliary and its production
JPH01308874A (en) Sintered compact having excellent conductivity and high hardness and toughness
JPS63143236A (en) Composite boride sintered body
KR100453720B1 (en) Ti(CN)-based cermets containing Zr or Hf components and manufacturing method thereof
JPH0585830A (en) Sintered zirconium boride and its production
JP3002567B2 (en) Manufacturing method of chromium carbide ceramics
JPS5969477A (en) Manufacture of sialon base ceramic sintering material
JPS5928542A (en) Manufacture of sintered hard material for cutting tool
JPS613861A (en) Sintered heat-and wear-resistant hard alloy for hot working tool