JPH0368118A - Laminated ceramic capacitor - Google Patents

Laminated ceramic capacitor

Info

Publication number
JPH0368118A
JPH0368118A JP20339489A JP20339489A JPH0368118A JP H0368118 A JPH0368118 A JP H0368118A JP 20339489 A JP20339489 A JP 20339489A JP 20339489 A JP20339489 A JP 20339489A JP H0368118 A JPH0368118 A JP H0368118A
Authority
JP
Japan
Prior art keywords
dielectric
material layer
oxide conductor
oxide
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20339489A
Other languages
Japanese (ja)
Inventor
Yoshio Watanabe
由雄 渡辺
Toshiharu Hoshi
星 敏春
Soji Tsuchiya
土屋 宗次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20339489A priority Critical patent/JPH0368118A/en
Publication of JPH0368118A publication Critical patent/JPH0368118A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)

Abstract

PURPOSE:To obtain a highly economical capacitor in which the diffusion of constitution element is suppressed by a method wherein an oxide conductive material layer made of specific material for internal electrode, having specific sintering temperature characteristics, and a ceramic material layer are laminated and sintered. CONSTITUTION:A laminated ceramic capacitor is formed by laminating and sintering an oxide conductive material layer for internal electrode formed by adding CuO to an oxide having a probskite type crystal structure shown by (La, M1)CoO3-delta, and a ceramic material layer for a dielectric, in which CuO is added to a barium titanate dielectric material, having the sintering temperature lower than that of the above-mentioned conductive material layer. As a result, the element diffusion between the dielectric and the internal electrode can be suppressed effectively, sufficient characteristics are maintained, and as specific material is not used, a laminated ceramic capacitor having high economical efficiency can be formed. In the formula, M1 indicates Sr or Ba, and delta indicates 0<delta<0.5.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、電子機器の回路部品として広く使われてい
る積層セラミックコンデンサに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a multilayer ceramic capacitor widely used as a circuit component of electronic equipment.

従来の技術 積層セラミックコンデンサは、セラミック誘電体の薄層
と内部電極の導電層が交互に積層された多層構造体を基
本構造とするため、単板型セラミックコンデンサに比べ
小型でありながら大容量化が実現できるという特徴があ
る。この積層セラミックコンデンサは、内部電極用導電
体材料層と誘電体用セラミック材料層が積層焼結されて
なるものであるが、従来、焼結忌度が高いので、導電体
材料として、融点が高く、高層焼結の際、酸化による電
気抵抗上昇を伴わない材料を選ぶ必要がある。通常、導
電体材料として、高価な白金(Pt)やパラジウム(P
d)が用いられてきた。しかし、大容量のコンデンサで
は高価な導電体材料の量が増えるため、コストが高くな
るという問題がある。
Conventional technology Multilayer ceramic capacitors have a basic structure of a multilayer structure in which thin layers of ceramic dielectric and conductive layers of internal electrodes are alternately laminated, so they are smaller than single-plate ceramic capacitors but have larger capacitance. It has the characteristic that it can be realized. This multilayer ceramic capacitor is made by laminating and sintering a conductive material layer for internal electrodes and a ceramic material layer for a dielectric, but conventionally, because it has a high sinterability, it has been used as a conductive material with a high melting point. When performing high-rise sintering, it is necessary to select materials that do not cause an increase in electrical resistance due to oxidation. Usually, expensive platinum (Pt) and palladium (P) are used as conductor materials.
d) has been used. However, large-capacity capacitors require an increased amount of expensive conductive material, resulting in higher costs.

白金やパラジウムに代えて、安価な材料として、Ag−
Pd合金やNi、Fe、Co、Cu等の卑金属を用いる
ことも検討されている。しかし、これら卑金属等を用い
る場合には、酸化されないように焼成雰囲気を厳密に制
御しなければならないが、この制御は実際のところ非常
に難しく、そのため、実用性にかける。
Ag-
The use of Pd alloys and base metals such as Ni, Fe, Co, and Cu is also being considered. However, when these base metals are used, the firing atmosphere must be strictly controlled to prevent oxidation, but this control is actually very difficult and therefore impractical.

そこで、最近、このような高温焼結の際にも酸化による
電気抵抗上昇の心配のない酸化物導電体材料を用いるこ
とが提案されている(ワールドコングレンス オン ハ
イテクセラミックス 1986年6月24〜28日 イ
タリー国ミラノ市にて開催)。
Therefore, it has recently been proposed to use oxide conductor materials that do not have to worry about increases in electrical resistance due to oxidation even during such high-temperature sintering (World Congress on High-Tech Ceramics, June 24-28, 1986). (held in Milan, Italy).

発明が解決しようとする課題 しかしながら、内部電極用として、酸化物導電体材料を
用いた場合でも、内部電極の高抵抗化は避けられなかっ
た。焼成の際に、酸化物導電体材料層と誘電体用セラミ
ック材料層の間で構成元素が相互に拡散、特に酸化物導
電体材料の構成元素のセラミック材料への拡散があり、
内部電極の高抵抗化のみならず誘電体の絶縁劣化を招来
するからである。この場合、高周波損失、等価直列抵抗
Problems to be Solved by the Invention However, even when an oxide conductor material is used for the internal electrodes, high resistance of the internal electrodes cannot be avoided. During firing, the constituent elements mutually diffuse between the oxide conductor material layer and the dielectric ceramic material layer, particularly the constituent elements of the oxide conductor material diffuse into the ceramic material.
This is because it not only increases the resistance of the internal electrodes but also deteriorates the insulation of the dielectric. In this case, high frequency losses, equivalent series resistance.

漏れ電流といった重要なコンデンサ特性が十分なものと
ならない。
Important capacitor characteristics such as leakage current are not sufficient.

これに対し、焼成温度を下げ構成元素の拡散を極力少な
くすることが試みられている。焼結助剤の添加や材料の
微粉末化を進め、焼成温度を下げるようにするものであ
る。しかしながら、これでも、1だ拡散を効果的に阻止
するには到っていない。
In response to this, attempts have been made to lower the firing temperature and minimize the diffusion of the constituent elements. The goal is to lower the firing temperature by adding sintering aids and pulverizing the material. However, even this is not enough to effectively stop the spread.

この発明は、上記事情に鑑み、構成元素の拡散が効果的
に抑制源れ優れた特性をもつ安価な積層セラミックコン
デンサを提供することを課題とするO 課題を解決するための手段 前記課題を解決するため、請求項1記載の積層セラミッ
クコンデンサは、内部電極用酸化物導電体材料層と誘電
体用セラミック材料層が積層焼結されてなる構成を有し
ており、重化酸化物導電体材料に焼結温度が前記セラミ
ック材料の焼結温度よりも高いものを用いるようにして
いる。
In view of the above-mentioned circumstances, an object of the present invention is to provide an inexpensive multilayer ceramic capacitor with excellent characteristics in which the diffusion of constituent elements is effectively suppressed. Therefore, the multilayer ceramic capacitor according to claim 1 has a structure in which an oxide conductor material layer for internal electrodes and a ceramic material layer for a dielectric are laminated and sintered, and the layered oxide conductor material is laminated and sintered. In this case, a ceramic material whose sintering temperature is higher than that of the ceramic material is used.

具体的な酸化物導電体材料としては、例えば、請求項2
記載の発明のように、酸化物導電体材料は、下記式で表
されるペロブスカイト型結晶構造をもつ酸化物にCuO
を添加したもの (La、 Ml )Coos−δ が挙げられる。この酸化物に対するCuOの添加量は、
約10wt%以下程度とされる。
As a specific oxide conductor material, for example, claim 2
As described in the invention, the oxide conductor material is an oxide having a perovskite crystal structure represented by the following formula, and CuO
Examples include (La, Ml) Coos-δ. The amount of CuO added to this oxide is
It is said to be about 10 wt% or less.

この酸化物導電体材料に組み合わされる具体的なセラミ
ック材料としては、例えば、請求項3記載の発明のよう
に、チタン酸バリウム系誘電体材料にCuOを添加した
ものが挙げられる。チタン酸バリウム系誘電体材料とし
ては、例えば、粒子サイズが0.2μm程度に揃った水
熱合成法によるZr添加のチタン酸バリウムが挙げられ
る。チタン酸バリウム系誘電体材料に対するCuOの添
加量は、通常、0.1−5wt%程度どされる。
A specific ceramic material to be combined with this oxide conductor material includes, for example, a barium titanate-based dielectric material to which CuO is added, as in the third aspect of the invention. Examples of barium titanate-based dielectric materials include Zr-added barium titanate produced by hydrothermal synthesis and having a particle size of approximately 0.2 μm. The amount of CuO added to the barium titanate dielectric material is usually about 0.1-5 wt%.

上記の組み合わせの場合、両材料間には、50℃程度の
焼結温度差があることが望ましい0この発明で使われる
酸化物導電体材料と誘電体用セラミック材料は上記の組
み合わせに限らない。
In the case of the above combination, it is desirable that there is a sintering temperature difference of about 50° C. between the two materials. The oxide conductor material and dielectric ceramic material used in the present invention are not limited to the above combination.

作    用 この発明の積層セラミソクコンデンサでは、酸化物導電
体材料に焼結温度がセラミック材料の焼結温度よりも高
いものを用いているため、誘電体と内部電極の間の元素
拡散が効果的に抑制されたものとなっている。
Function: In the multilayer ceramic capacitor of the present invention, an oxide conductor material whose sintering temperature is higher than that of the ceramic material is used, so that elemental diffusion between the dielectric material and the internal electrodes is effective. It has been suppressed.

従来は、酸化物導電体材料とセラミック材料の焼結温度
がほぼ同じであり、焼結温度に達した際に、両材料の構
成元素が互いに最も活性で移動し易い状態であるため、
相互拡散が起こり易いのである。画材ネ4の焼結温度が
ほぼ同じであれば、焼結温度が低くても、元素が相互に
拡散しゃすい状態が抜本的に解消されないのである。
Conventionally, the sintering temperature of the oxide conductor material and the ceramic material is almost the same, and when the sintering temperature is reached, the constituent elements of both materials are in a state where they are most active and easily transferable to each other.
Mutual diffusion is likely to occur. If the sintering temperatures of the art materials 4 are approximately the same, even if the sintering temperature is low, the situation in which elements tend to diffuse into each other will not be completely eliminated.

この発明の場合、誘電体用セラミック材料が先に焼結す
るが、この状態では酸化物導電体材料は未だ完全に焼結
しておらず同材料内の元素の活1乙I化の程度は比較的
弱いため、相互拡散、特に問題となる酸化物導電体材料
からセラミック材料側へり拡散は少ない。この状態で誘
電体用セラミック材料の焼結を終え、温度を酸化物導電
体材料を焼結できる1でに高める。そうすると、酸化物
導電体材料の元素も十分な活性状態となるが、誘電体用
セラミック材料は既に焼結され安定な結晶格子を形成し
ているため、酸化物導電体材料の構成元素のセラミック
材料側への拡散が抑制される。
In the case of this invention, the dielectric ceramic material is sintered first, but in this state the oxide conductor material is not yet completely sintered and the degree of activation of the elements in the material is limited. Since it is relatively weak, interdiffusion, especially problematic diffusion from the oxide conductor material to the ceramic material, is small. In this state, the sintering of the dielectric ceramic material is completed, and the temperature is increased to a point at which the oxide conductor material can be sintered. In this case, the elements of the oxide conductor material will also become fully active, but since the dielectric ceramic material has already been sintered to form a stable crystal lattice, the ceramic material of the constituent elements of the oxide conductor material Diffusion to the sides is suppressed.

なお・、両材料間の焼結温度に差があっても、酸化物導
電体材料の焼結温度がセラミック材料の焼結温度よりも
低いと、誘電体と内部電極の間の元素拡散を効果的に抑
制することはできない。この場合、酸化物導電体材料が
先に焼結し、その後、よシ高い温度で誘電体用セラミッ
ク材料が焼結する。酸化物導電体材料の結晶は酸素欠損
タイプが多く、結晶格子の酸素サイトが空孔になってい
るため、先に焼結が完了し結晶格子が構築されても。
Furthermore, even if there is a difference in the sintering temperature between the two materials, if the sintering temperature of the oxide conductor material is lower than the sintering temperature of the ceramic material, the element diffusion between the dielectric material and the internal electrode will be effective. cannot be suppressed. In this case, the oxide conductor material is sintered first, followed by the dielectric ceramic material at a higher temperature. The crystals of oxide conductor materials are often of the oxygen-deficient type, and the oxygen sites in the crystal lattice are vacancies, so even if sintering is completed first and the crystal lattice is constructed.

さらに高温に曝されると、誘電体用セラミック材料の活
性化された元素は容易に酸化物導電体内に拡散し、抵抗
値が上昇してし1うのである。
When exposed to even higher temperatures, the activated elements of the dielectric ceramic material easily diffuse into the oxide conductor, resulting in an increase in resistance.

このように、この発明の積層セラミックコンデンサは、
誘電体と内部電極の間の元素拡散が抑制されていて、誘
電体の絶縁低下や内部電極の高抵抗化が防がれているた
めに、高周波損失、等個直列抵抗、漏れ電流等において
優れた特性をもっている。
In this way, the multilayer ceramic capacitor of this invention
Elemental diffusion between the dielectric and the internal electrodes is suppressed, preventing deterioration of the insulation of the dielectric and high resistance of the internal electrodes, making it excellent in terms of high frequency loss, equal series resistance, leakage current, etc. It has certain characteristics.

なお・、両材料に添加されるCuOは、焼結促進効果を
有し、焼結温度を引き下げ、元素拡散を一層抑制する働
きをする。
Note that CuO added to both materials has a sintering accelerating effect, lowers the sintering temperature, and functions to further suppress element diffusion.

実施例 続いて、この発明の実施例を詳細に説明する。Example Next, embodiments of the invention will be described in detail.

第1図は、この発明にかかる積層セラミックコンデンサ
の一実施例をあられす。
FIG. 1 shows an embodiment of a multilayer ceramic capacitor according to the present invention.

このコンデンサは、竜ンミック薄層からなる誘電体2と
酸化物導電体薄層の内部電極3が交互に積層された積層
構造体1を基本構成として備えている。積層構造体1の
右左倶1面には接続電極4゜4が設けられていて、各内
部電極はひとつ訃きに左右の接続電極4,4に振り分け
られ接続されている。そして、接続電極4の外側にはさ
らに外面電極5が設けられている。
The basic structure of this capacitor is a laminated structure 1 in which a dielectric material 2 made of a dielectric thin layer and an internal electrode 3 made of a thin oxide conductor layer are alternately laminated. Connecting electrodes 4.4 are provided on the right and left surfaces of the laminated structure 1, and each internal electrode is distributed and connected to the left and right connecting electrodes 4, 4 at a time. Further, an outer surface electrode 5 is provided on the outside of the connection electrode 4.

誘電体2は、チタン酸バリウムを主成分とし誘電体キュ
リー点温度移動用のシフターとしての酸化ジルコニウム
や希土類酸化物を含み、他に焼結補助剤としてのCuO
が添加された材料で形成されている。
The dielectric material 2 is mainly composed of barium titanate and contains zirconium oxide and rare earth oxide as a shifter for shifting the dielectric Curie point temperature, and also contains CuO as a sintering aid.
It is made of a material with added.

内部電極3は、Lao、55r05 Coax系酸化物
にCuOが添加された材料で形成されている。
The internal electrode 3 is formed of a material in which CuO is added to Lao, 55r05 Coax-based oxide.

接続電極4は、Pd、Agtたは内部電極と同様の酸化
物導電体からなり、外面電極5は、Ni。
The connection electrode 4 is made of Pd, Agt, or an oxide conductor similar to the internal electrode, and the outer electrode 5 is made of Ni.

Cr、半田等のメツキ薄膜でできている。It is made of a plating thin film of Cr, solder, etc.

積層構造体1は、内部電極用酸化物導電体材料層と誘電
体用セラミック材料層が積層焼結されてなるものであり
、酸化物導電体材料の焼結温度はセラミック材料の焼結
温度よりも高くなっていることは前述の通りである。
The laminated structure 1 is formed by laminating and sintering an oxide conductor material layer for internal electrodes and a ceramic material layer for dielectric, and the sintering temperature of the oxide conductor material is lower than the sintering temperature of the ceramic material. As mentioned above, prices are also rising.

ここで用いられている誘電体用セラミック材料は、低温
焼結するために粒径が0.2μm程度に揃っている水熱
合成法によるZr添加物のチタン酸バリウム粉末にCu
O粉末を1wt%加えたものである。このセラミック材
料を常法によりグリーンシートにする。
The dielectric ceramic material used here is made by adding Cu to barium titanate powder with a Zr additive, which is produced by hydrothermal synthesis and has a uniform particle size of about 0.2 μm for low-temperature sintering.
1 wt% of O powder was added. This ceramic material is made into a green sheet by a conventional method.

一方、酸化物導電体材料は、Laa、5Sro、5Co
05−δ(但し0くδく065)でペロブスカイト構造
をもつ仮焼粉末にCuOを5wt%添加したものである
。この酸化物導電体材料をボールミルにより粉砕ペース
ト化する。
On the other hand, oxide conductor materials include Laa, 5Sro, 5Co
5 wt % of CuO is added to the calcined powder having a perovskite structure with 05-δ (0 x 065). This oxide conductor material is ground into a paste using a ball mill.

なお、ここで用いる仮焼粉末は、La、Sr、Coを所
定割合に調整した共沈法によるシュウ酸塩の化合物を作
成した後、空気雰囲気で13000C12時間焼成し、
完全にペロブスカイトの結晶構造をもつ仮焼物を得て、
粉砕することにより製造したものでちる。
The calcined powder used here is prepared by preparing an oxalate compound by a coprecipitation method in which La, Sr, and Co are adjusted to a predetermined ratio, and then calcining it in an air atmosphere at 13,000C for 12 hours.
Obtaining a calcined product with a completely perovskite crystal structure,
It is made by crushing it and it is dusted.

得られたペーストを用いて、従来のPd内部電極の場合
と同様のスクリーン印刷法を用いてグリーンシート上に
所定の内部電極パターンを印刷する。印刷の済んだグリ
ーンシート所定枚を積層した後、裁断してチップ化し、
ついで、10500C11時間焼成してから、接続電極
ふ・よび外面電極を形成して積層セラミックコンデンサ
を完成した。
Using the obtained paste, a predetermined internal electrode pattern is printed on a green sheet using the same screen printing method as in the case of conventional Pd internal electrodes. After stacking a specified number of printed green sheets, they are cut into chips.
Then, after firing 10500C for 11 hours, connecting electrodes and outer electrodes were formed to complete a multilayer ceramic capacitor.

この焼成では、第2図にみるように、1ず、セラミック
材料が先に焼結収縮し、ついで、少し高い温度で酸化物
導電体材料が焼結収縮している。
In this firing, as shown in FIG. 2, first, the ceramic material undergoes sintering shrinkage, and then the oxide conductive material undergoes sintering shrinkage at a slightly higher temperature.

両材料の収縮率は十分に大きく緻密な焼結体が得られる
。しかも、収縮率が同程度であるから焼結体が歪むよう
なこともない。
The shrinkage rates of both materials are sufficiently large and a dense sintered body can be obtained. Moreover, since the shrinkage rates are about the same, the sintered body will not be distorted.

比較例として、上記実施例に釦いて両材料ともにCuO
を含1ないものを用いた他は、同様にして積層セラミソ
クコンデンサを得た。この場合には、両材料の焼結温度
は1300’Cとほぼ等しい。
As a comparative example, by clicking on the above example, both materials are CuO.
A multilayer ceramic capacitor was obtained in the same manner except that one containing no 1 was used. In this case, the sintering temperatures of both materials are approximately equal to 1300'C.

実施例の積層セラミックコンデンサは、高周波損失ta
nδ(1kHz )が5%、容量達成率85%で、比較
例の損失20%、達成率30%に比べて優れており、誘
電体、内部電極それぞれが十分な性能であることが確認
できた。
The multilayer ceramic capacitor of the example has a high frequency loss ta
The nδ (1kHz) was 5% and the capacity achievement rate was 85%, which was superior to the comparative example's loss of 20% and achievement rate of 30%, confirming that the dielectric and internal electrodes had sufficient performance. .

なか、上記酸化物導電体材料だけの特性も、別途、以下
のようにして確認した。
Among these, the characteristics of only the above-mentioned oxide conductor material were also separately confirmed as follows.

上記仮焼部粉末に5wt%のCuOを添加した材料をボ
ールミルで12時間混合粉砕したものを用イ、1050
°C12時間の焼成条件で、ペレット形の焼結体を得た
。この焼結体は、18,8%の収縮率、8X10−’Ω
・αの比抵抗であった。したがって、上記コンデンサの
内部電極は低抵抗であることが分かる。なお・、CuO
を添加しなかった他は全く同様にして得たペレットでは
、03%の収縮率、2 X 10−3Ω・(1)の比抵
抗であった。
A material obtained by adding 5 wt% of CuO to the above calcined powder was mixed and pulverized in a ball mill for 12 hours.
A pellet-shaped sintered body was obtained under the firing conditions of 12 hours at °C. This sintered body has a shrinkage rate of 18.8%, 8X10-'Ω
・It was the specific resistance of α. Therefore, it can be seen that the internal electrodes of the capacitor have low resistance. Furthermore, CuO
Pellets obtained in exactly the same manner except that no additive was added had a shrinkage rate of 0.3% and a specific resistance of 2×10 −3 Ω·(1).

な卦、仮焼温度13000Cを10000Cである他は
、全く同様(CuOを5wt%添加)である他は、同様
にして得たベレット状焼結体は、15%の収縮率、9X
10”Ω・αの比抵抗であった。
The pellet-shaped sintered body obtained in the same manner except that the calcination temperature was changed from 13,000C to 10,000C (CuO was added by 5wt%) had a shrinkage rate of 15% and a 9X
The specific resistance was 10”Ω·α.

このことから、仮焼温度を選べば、収縮率や焼結温度の
制御も十分に可能であることが分かる。
This shows that it is possible to fully control the shrinkage rate and sintering temperature by selecting the calcination temperature.

発明の効果 以上述べたように、請求項1〜3記載の積層セラミック
コンデンサは、誘電休転よび内部電極間での元素拡散が
効果的に抑制されているため、十分な特性を有し、しか
も内部電極に高価な材料を使う必要がなく、焼成も通常
使われる電気炉を用い空気雰囲気で行えばよいため、コ
ストも安く、極めて実用性が高いものとなっている。
Effects of the Invention As described above, the multilayer ceramic capacitors according to claims 1 to 3 have sufficient characteristics because dielectric breakdown and elemental diffusion between internal electrodes are effectively suppressed. There is no need to use expensive materials for the internal electrodes, and firing can be carried out in an air atmosphere using a commonly used electric furnace, making it low cost and extremely practical.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の積層セラミックコンデンサの一例
の構成′f:、あられす模式的断面図、第2図は、焼成
温度とこの積層セラミックコンデンサの誘電休転よび内
部電極の焼結収縮の関係を示すグラフである。 1・・・積層構造体、2・・・誘電体、3・・・内部電
極、4・・・接続電極、5・・・外面電極。 渠I図
FIG. 1 is a schematic cross-sectional view of the structure of an example of a multilayer ceramic capacitor according to the present invention, and FIG. It is a graph showing a relationship. DESCRIPTION OF SYMBOLS 1... Laminated structure, 2... Dielectric, 3... Internal electrode, 4... Connection electrode, 5... External electrode. Ditch I diagram

Claims (3)

【特許請求の範囲】[Claims] (1) 内部電極用酸化物導電体材料層と誘電体用セラ
ミック材料層が積層焼結されてなり、前記酸化物導電体
材料は焼結温度が前記セラミック材料の焼結温度よりも
高い積層セラミックコンデンサ。
(1) An oxide conductor material layer for internal electrodes and a ceramic material layer for dielectric are laminated and sintered, and the oxide conductor material is a laminated ceramic whose sintering temperature is higher than that of the ceramic material. capacitor.
(2) 内部電極用酸化物導電体材料が、下記式で表さ
れるペロブスカイト型結晶構造をもつ酸化物にCuOを
添加したものである (La,M1)CoO_3−δ ここで、M1:SrまたはBa 0<δ<0.5 請求項1記載の積層セラミックコンデンサ。
(2) The oxide conductor material for internal electrodes is obtained by adding CuO to an oxide having a perovskite crystal structure represented by the following formula (La, M1)CoO_3-δ, where M1: Sr or The multilayer ceramic capacitor according to claim 1, wherein Ba 0 < δ < 0.5.
(3) 誘電体用セラミック材料が、チタン酸バリウム
系誘電体材料にCuOを添加したものである請求項1ま
たは2記載の積層セラミックコンデンサ。
(3) The multilayer ceramic capacitor according to claim 1 or 2, wherein the dielectric ceramic material is a barium titanate dielectric material to which CuO is added.
JP20339489A 1989-08-05 1989-08-05 Laminated ceramic capacitor Pending JPH0368118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20339489A JPH0368118A (en) 1989-08-05 1989-08-05 Laminated ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20339489A JPH0368118A (en) 1989-08-05 1989-08-05 Laminated ceramic capacitor

Publications (1)

Publication Number Publication Date
JPH0368118A true JPH0368118A (en) 1991-03-25

Family

ID=16473320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20339489A Pending JPH0368118A (en) 1989-08-05 1989-08-05 Laminated ceramic capacitor

Country Status (1)

Country Link
JP (1) JPH0368118A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100398187B1 (en) * 2000-12-14 2003-09-19 현대자동차주식회사 a radiator lower part supporting structure of vehicles
WO2009093375A1 (en) * 2008-01-24 2009-07-30 Murata Manufacturing Co., Ltd. Laminated ceramic capacitor and process for producing the laminated ceramic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100398187B1 (en) * 2000-12-14 2003-09-19 현대자동차주식회사 a radiator lower part supporting structure of vehicles
WO2009093375A1 (en) * 2008-01-24 2009-07-30 Murata Manufacturing Co., Ltd. Laminated ceramic capacitor and process for producing the laminated ceramic capacitor

Similar Documents

Publication Publication Date Title
JPWO2017163845A1 (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
JPWO2017163844A1 (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
JP4552419B2 (en) Dielectric ceramic and multilayer ceramic capacitors
KR20240063847A (en) Multi-layered ceramic capacitor
WO1990010941A1 (en) Laminated and grain boundary insulated type semiconductor ceramic capacitor and method of producing the same
JP2020203824A (en) Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
TWI798412B (en) Dielectric ceramic composition and ceramic electronic part
JPH06302403A (en) Lamination type semiconductor ceramic element
JP2757587B2 (en) Grain boundary insulating semiconductor ceramic capacitor and method of manufacturing the same
JPS62256422A (en) Laminated type porcelain capacitor
US6359327B1 (en) Monolithic electronic element fabricated from semiconducting ceramic
KR20220052768A (en) Dielectric material and device comprising the same
TWI796464B (en) Dielectric ceramic composition and ceramic electronic part
KR100340668B1 (en) Laminated Type Semiconductor Ceramic Element and Production Method for the Laminated Type Semiconductor Ceramic Element
JP2727626B2 (en) Ceramic capacitor and method of manufacturing the same
JPH0368118A (en) Laminated ceramic capacitor
JP2014189443A (en) Dielectric ceramic composition and dielectric element
JP2004210613A (en) Dielectric ceramic, its producing method and laminated ceramic capacitor
JP2705221B2 (en) Ceramic capacitor and method of manufacturing the same
JP2697095B2 (en) Ceramic capacitor and method of manufacturing the same
JP2850355B2 (en) Ceramic capacitor and method of manufacturing the same
JP2004292186A (en) Dielectric ceramic and multilayer ceramic capacitor
JP2707706B2 (en) Grain boundary insulating semiconductor ceramic capacitor and method of manufacturing the same
JP3134430B2 (en) Non-reducing dielectric ceramic composition
JP2725357B2 (en) Ceramic capacitor and method of manufacturing the same