JPH0367288B2 - - Google Patents

Info

Publication number
JPH0367288B2
JPH0367288B2 JP19844182A JP19844182A JPH0367288B2 JP H0367288 B2 JPH0367288 B2 JP H0367288B2 JP 19844182 A JP19844182 A JP 19844182A JP 19844182 A JP19844182 A JP 19844182A JP H0367288 B2 JPH0367288 B2 JP H0367288B2
Authority
JP
Japan
Prior art keywords
weight
parts
polyethylene glycol
amount
polyolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19844182A
Other languages
Japanese (ja)
Other versions
JPS5987706A (en
Inventor
Kenji Igarashi
Satoru Hashimoto
Kyomine Taniguchi
Hiromasa Fukagawa
Yoshitaka Nitsuta
Sadao Suzuki
Tatsuki Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NUC Corp
Denryoku Chuo Kenkyusho
Original Assignee
Denryoku Chuo Kenkyusho
Nippon Unicar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denryoku Chuo Kenkyusho, Nippon Unicar Co Ltd filed Critical Denryoku Chuo Kenkyusho
Priority to JP19844182A priority Critical patent/JPS5987706A/en
Publication of JPS5987706A publication Critical patent/JPS5987706A/en
Publication of JPH0367288B2 publication Critical patent/JPH0367288B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 本発明はポリオレフインまたは架橋可能なポリ
オレフインを主とする組成物を電気絶縁材として
使用した場合、特に浸水課電時に発生する樹枝状
絶縁劣化部分(以下これを水トリーと称する)の
発生を極力防止するために、電気絶縁用組成物に
特別な添加物を加えることなく、また特別な工程
を追加することもなく、ただその電気絶縁用組成
物層が接する内側および外側の半導電層用の組成
物、およびこれを用いた電力ケーブルに関し、詳
しくは当該半導電層用組成物がポリオレフインま
たは架橋可能なポリオレフインと所要量の特許請
求範囲第1項記載の高動電性カーボンブラツクと
少量のポリエチレングリコールをポリオレフイン
に対し0.1〜20重量部、さらに好ましくは0.2〜5
重量部含有することを特色とするのである。而し
てケーブルについては各層を形成する素材を新規
とするものであり、特許請求範囲に示した層の配
列や製法は公知であり、従つてケーブルの各層の
構成とその製法については以下格別の説明を省略
する。 従来より半導電層用組成物は、ポリオレフイン
又は架橋可能なポリオレフイン100重量部と、導
電性カーボンブラツクとしてアセチレンブラツク
やフアーネスブラツクを50〜100重量部とから主
として成るものであるが、このものは大量のカー
ボンブラツクを含むため溶融時の粘度が高く、そ
のため押出成形が容易ではなく、又電気絶縁層と
の間の接着力が小さく、かつ、ヒートサイクルに
より両層間に間隙が生じ、これが電界不整を招い
て部分放電を起し、電気絶縁層の劣化の原因とな
る。 これらの欠点を改善するため、JISK6221−
1970によるDBP吸油量250ml/100g以上で表面
積BET式(N2)500m2/g以上である高導電性
カーボンブラツク8〜30重量部を、ポリオレフイ
ン又は架橋可能なポリオレフイン100重量部に配
合するという半導電性組成物が特公昭55−15056
号として提案された。この組成物は、商品名ケツ
ツエンブラツクECと称する高導電性カーボンブ
ラツクを使用し、アセチレンブラツクやフアーネ
スブラツクを用いた従来の半導電性組成物と比
べ、カーボンブラツクの配合量が少なくて済む。
このため、溶融時の粘度が引く、押出成形が容易
である。しかしながら、高導電性カーボンブラツ
クは押出しの際、押出時間の経過に従い、ダイス
開口部にかす状物質が生成蓄積し内側半導電層の
押出表面に傷をつけ、さらに本質的に5〜10ミク
ロン程度の微粒子が多数存在することから半導電
層の電気絶縁層と接触する界面に突起を生成する
ため、これが電界不整部となつて水トリー劣化
(樹枝状劣化)を生起させることになり、このた
め高導電性カーボンブラツクを採用した半導電性
材料の性能は信頼性に乏しいという重大な欠陥が
ある。 電気絶縁体中に発生する水トリーを防止するた
めに、電気絶縁組成物中に少量の比較的高分子量
のポリエチレングリコールを添加して著効を有す
ることは特願昭54−104699号において既に開示し
たが、また従来の半導電性組成物にポリエチレン
グリコールを添加すれば絶縁層にポリエチレング
リコールを添加しなくてもかなりの効果を挙げう
る事は特願昭56−12605号に開示した。その後検
討を続けた結果、驚くべきことには高導電性カー
ボンブラツクを添加した半導電性組成物中に少量
の比較的高分子量のポリエチレングリコールを添
加混合することによつて、以下に列記するような
予期せざる性能の向上が得られた。 (イ) 高導電性カーボンブラツクを添加した半導電
性材料の重大な欠陥とされるダイス開口部のカ
ス状物質の生成、蓄積を激減し得ることを明出
した。 (ロ) 押出温度を従来より低く設定する事が可能で
ある。 (ハ) この結果としてスコーチング(早期架橋)に
よるトラブルは絶無となる。 (ニ) 押出加工性良好のためケーブルの生産速度が
向上する。 (ホ) 絶縁層と半導電層との接着性は半導電層が多
量のカーボンを含む場合に較べれば著しく向上
し、ケーブルとして使用中に両層間に空隙を生
じる事は全くないが、特公昭55−15056号の場
合のように、過剰な接着性による剥離の困難さ
を生じる事はなく、必要により界面で剥離させ
る事は可能である。 (ヘ) 押出機内に300メツシユ以上の目の細かいス
クリーンを設置して、粗大カーボン粒子の除去
が容易に可能となる。 (ト) 半導電層との絶縁層の界面が極めて平滑とな
るため水トリーのみならず電気トリーの発生も
著しく抑制される。 (チ) さらにこの技術の特色として、半導電層であ
るため少量の添加物の存在が、電気的にも機械
的にも全く問題を生じない点にあり、しかも添
加するポリエチレングリコールは安価でかつ常
時入手容易である。 (リ) ポリエチレングリコールの添加によつて押出
機の押出能力が増加する。従つて同一押出量を
得るためには押出機の回転数を低下させること
ができる事は既に特開昭56−28231号および特
開昭57−126004号において開示したがカーボン
ブラツクの添加量の著減によつてその効果はさ
らに増大した。このことは樹脂組成物による発
熱を著しく低下させることになり、押出機の温
度上昇によつて生ずる運転休止の回数を減少さ
せ、生産性の向上、省エネルギー等の副次的効
果をも生じる。 本発明において、ポリオレフインとはポリエチ
レン、ポリプロピレン、エチレン−α−オレフイ
ン共重合体、ポリブデン、ポリイソブチレン、ポ
リ−4−メチルペンテンおよびこれらの基本単位
を主要成分とする共重合体、例えば、エチレン・
酢酸ビニル共重合体、エチレン・アルキルアクリ
レート共重合体、およびこれらのポリマーを架橋
して得られたポリマーを包合する。また高分子量
ポリエチレングリコールとは炭素数30以上のもの
を指し、好ましくは炭素数80以上のものである。
またその添加量はポリオレフインまたは架橋ポリ
オレフインに対して重量比で0.1重量部以上20重
量部以下であり、好ましくは0.2〜5重量部であ
る。0.1重量部以下では特に分子量の低下と共に
効果の減少が見られる。ポリエチレングリコール
は安価であるから多量添加してもコストに影響は
少ないが、20重量部以上の添加では均一混合の困
難さと、絶縁層と半導電層との接着性の低下の点
で好ましくない。 本発明は架橋、非架橋の別ではないので架橋剤
の使用、不使用を限定することはなく、他の安定
剤、無機充填物、その他の添加剤の使用を妨げる
ものではない。 以下にかす状物質の発生と定量の実験方法につ
いて説明すれば、直径25mm、L/D20のスクリユ
ーを備えたブラベンダー社製押出機(Type PL
−2000)を用いて、縦0.7mm、横25mmの開口部を
持つダイスから125℃の温度で半導電性材料の押
出量との比から単位時間当りの発生量を求める。 実施例と比較例 半導電性組成物は、EEA(エチレン・エチルア
クリレート共重合体)又はEVA(エチレン・酢酸
ビニル共重合体)をベースレジンとし、これにカ
ーボンブラツク、酸化防止剤、架橋剤を所定量加
え、これにポリエチレングリコールを添加する量
を変えて各種の試料を作製した。これらについて
ブラベンダー押出機でテープ押出し試験を行い、
結果のうち代表的なものを実施例として、またポ
リエチレングリコールを添加しない場合、添加量
が微量でカス状物質発生防止効果が十分でないも
のを比較例として表−1に示した。 ポリエチレングリコールの添加量が0.05重量部
の場合(比較例2)にはカス状物質の減少は認め
られるが、発生防止効果は不十分であり、0.20重
量部の添加量(実施例1)では無添加の場合に比
しカス状物質の発生量は半減することから有効性
は十分認められる。2.0重量部およびそれ以上の
添加量ではカス状物質の発生量に変化は認められ
ないが、ポリエチレングリコールによつて生ずる
他の多くの効果は期待できる。ただし、ポリエチ
レングリコールが20重量部を超える添加量では半
導電性樹脂組成物として必要な物理的特性、押出
加工性が低下するのでそれ以上の添加は好ましく
ない。 尚この実施例で使用したポリエチレングリコー
ルは、日本油脂社製PEG20000である。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention is designed to reduce deterioration of dendritic insulation (hereinafter referred to as water tree) that occurs when a polyolefin or a composition mainly composed of a crosslinkable polyolefin is used as an electrical insulation material. In order to prevent as much as possible the occurrence of the electrically insulating composition layer, we do not add any special additives to the electrically insulating composition, nor do we add any special processes. The composition for a semiconducting layer and a power cable using the same, more specifically, the composition for a semiconducting layer contains a polyolefin or a crosslinkable polyolefin and a required amount of a highly electrokinetic polyolefin according to claim 1. Carbon black and a small amount of polyethylene glycol are added to the polyolefin in an amount of 0.1 to 20 parts by weight, more preferably 0.2 to 5 parts by weight.
It is characterized by containing part by weight. Regarding the cable, the material forming each layer is new, and the arrangement and manufacturing method of the layers shown in the claims are well known. The explanation will be omitted. Conventionally, compositions for semiconductive layers have mainly consisted of 100 parts by weight of polyolefin or crosslinkable polyolefin and 50 to 100 parts by weight of acetylene black or furnace black as conductive carbon black. Because it contains a large amount of carbon black, it has a high viscosity when melted, which makes extrusion molding difficult, and the adhesive strength between it and the electrical insulating layer is low, and a gap is created between the two layers due to heat cycles, which causes electric field irregularities. This causes partial discharge, which causes deterioration of the electrical insulation layer. In order to improve these shortcomings, JISK6221−
According to the 1970s, 8 to 30 parts by weight of highly conductive carbon black with a DBP oil absorption of 250 ml/100 g or more and a surface area of BET formula (N 2 ) of 500 m 2 /g or more is blended with 100 parts by weight of polyolefin or crosslinkable polyolefin. The conductive composition was published in 1985-15056.
It was proposed as a number. This composition uses a highly conductive carbon black called Ketsuzen Black EC, and requires less carbon black than conventional semiconductive compositions that use acetylene black or furnace black. .
Therefore, the viscosity during melting is low and extrusion molding is easy. However, during extrusion of highly conductive carbon black, as the extrusion time elapses, scum forms and accumulates at the die opening, scratching the extruded surface of the inner semiconductive layer, and furthermore, it essentially scratches the extruded surface of about 5 to 10 microns. Due to the presence of a large number of fine particles, protrusions are generated at the interface of the semiconducting layer where it contacts the electrically insulating layer, which becomes an electric field irregularity and causes water tree deterioration (dendritic deterioration). Therefore, the performance of semiconductive materials using highly conductive carbon black is unreliable, which is a serious drawback. It has already been disclosed in Japanese Patent Application No. 104699/1987 that adding a small amount of relatively high molecular weight polyethylene glycol to an electrical insulating composition is highly effective in preventing water trees from occurring in electrical insulators. However, it was disclosed in Japanese Patent Application No. 12605/1983 that if polyethylene glycol is added to a conventional semiconductive composition, considerable effects can be obtained even without adding polyethylene glycol to the insulating layer. As a result of further investigation, we surprisingly found that by adding and mixing a small amount of relatively high molecular weight polyethylene glycol into a semiconductive composition to which highly conductive carbon black was added, the following results were obtained. An unexpected improvement in performance was obtained. (a) It has been revealed that the generation and accumulation of scum at the die opening, which is considered to be a serious defect in semiconductive materials containing highly conductive carbon black, can be drastically reduced. (b) It is possible to set the extrusion temperature lower than before. (c) As a result, troubles caused by scorching (early crosslinking) are completely eliminated. (d) Good extrusion processability improves cable production speed. (E) The adhesion between the insulating layer and the semiconductive layer is significantly improved compared to when the semiconductive layer contains a large amount of carbon, and no voids are created between the two layers during use as a cable. Unlike the case of No. 55-15056, there is no difficulty in peeling due to excessive adhesiveness, and it is possible to peel off at the interface if necessary. (f) Installing a fine screen with 300 mesh or more in the extruder makes it possible to easily remove coarse carbon particles. (g) Since the interface between the semiconducting layer and the insulating layer becomes extremely smooth, not only water trees but also electrical trees are significantly suppressed. (h) Another feature of this technology is that since it is a semiconductive layer, the presence of small amounts of additives does not cause any electrical or mechanical problems, and the polyethylene glycol added is inexpensive and Always readily available. (li) Addition of polyethylene glycol increases the extrusion capacity of the extruder. Therefore, it has already been disclosed in JP-A-56-28231 and JP-A-57-126004 that the rotation speed of the extruder can be lowered in order to obtain the same amount of extrusion; The effect was further increased by decreasing the amount. This significantly reduces the heat generated by the resin composition, reduces the number of operation stoppages caused by increases in extruder temperature, and also produces secondary effects such as improved productivity and energy savings. In the present invention, polyolefins include polyethylene, polypropylene, ethylene-α-olefin copolymers, polybutene, polyisobutylene, poly-4-methylpentene, and copolymers containing these basic units as main components, such as ethylene,
A vinyl acetate copolymer, an ethylene/alkyl acrylate copolymer, and a polymer obtained by crosslinking these polymers are encapsulated. Furthermore, high molecular weight polyethylene glycol refers to polyethylene glycol having 30 or more carbon atoms, preferably 80 or more carbon atoms.
The amount added is from 0.1 parts by weight to 20 parts by weight, preferably from 0.2 to 5 parts by weight, based on the weight of the polyolefin or crosslinked polyolefin. Below 0.1 part by weight, the effect decreases as the molecular weight decreases. Since polyethylene glycol is inexpensive, adding it in large amounts has little effect on cost, but adding more than 20 parts by weight is not preferred in terms of difficulty in uniform mixing and deterioration of adhesion between the insulating layer and the semiconductive layer. Since the present invention does not distinguish between crosslinking and non-crosslinking, it does not limit the use or non-use of crosslinking agents, and does not preclude the use of other stabilizers, inorganic fillers, and other additives. The experimental method for generating and quantifying the dross is described below using a Brabender extruder (Type PL) equipped with a screw of 25 mm in diameter and 20 L/D.
-2000), the amount generated per unit time is determined from the ratio to the amount of semiconductive material extruded at a temperature of 125°C from a die with an opening of 0.7 mm in length and 25 mm in width. Examples and Comparative Examples The semiconductive composition uses EEA (ethylene/ethyl acrylate copolymer) or EVA (ethylene/vinyl acetate copolymer) as a base resin, and contains carbon black, an antioxidant, and a crosslinking agent. A predetermined amount of polyethylene glycol was added, and various samples were prepared by changing the amount of polyethylene glycol added. A tape extrusion test was conducted on these using a Brabender extruder.
Table 1 shows typical results as Examples, and Comparative Examples in which polyethylene glycol was added in a small amount and the effect of preventing generation of scum was insufficient. When the amount of polyethylene glycol added was 0.05 parts by weight (Comparative Example 2), a reduction in scum was observed, but the prevention effect was insufficient, and when the amount added was 0.20 parts by weight (Example 1), there was no effect. The effectiveness is fully recognized as the amount of dregs generated is halved compared to the case of addition. Although no change is observed in the amount of dregs generated when the amount is 2.0 parts by weight or more, many other effects caused by polyethylene glycol can be expected. However, if the amount of polyethylene glycol added exceeds 20 parts by weight, the physical properties and extrusion processability necessary for a semiconductive resin composition will deteriorate, so it is not preferable to add more than that amount. The polyethylene glycol used in this example was PEG20000 manufactured by NOF Corporation. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 導体の周囲に内側半導電層、電気絶縁層、外
側半導電層、シース層の順に構成された電力ケー
ブルであつて、内側および外側またはそのいずれ
かの半導電層がポリオレフインまたは架橋可能な
ポリオレフイン100重量部とポリエチレングリコ
ール0.1〜20重量部と、JIS・K6221−1970による
DBP吸油量250ml/100g以上で表面積BET式
(N2)500m2/g以上である高導電性カーボンブ
ラツク8〜30重量部とから主として成ることを特
徴とする電力ケーブル。
1. A power cable consisting of an inner semiconductive layer, an electrically insulating layer, an outer semiconductive layer, and a sheath layer around a conductor, in which the inner and/or outer semiconductive layers are made of polyolefin or crosslinkable polyolefin. 100 parts by weight and 0.1 to 20 parts by weight of polyethylene glycol according to JIS K6221-1970
A power cable mainly comprising 8 to 30 parts by weight of highly conductive carbon black having a DBP oil absorption of 250 ml/100 g or more and a surface area of BET formula (N 2 ) of 500 m 2 /g or more.
JP19844182A 1982-11-12 1982-11-12 Crosslinked polyethylene insulated power cable Granted JPS5987706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19844182A JPS5987706A (en) 1982-11-12 1982-11-12 Crosslinked polyethylene insulated power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19844182A JPS5987706A (en) 1982-11-12 1982-11-12 Crosslinked polyethylene insulated power cable

Publications (2)

Publication Number Publication Date
JPS5987706A JPS5987706A (en) 1984-05-21
JPH0367288B2 true JPH0367288B2 (en) 1991-10-22

Family

ID=16391133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19844182A Granted JPS5987706A (en) 1982-11-12 1982-11-12 Crosslinked polyethylene insulated power cable

Country Status (1)

Country Link
JP (1) JPS5987706A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101878264B (en) * 2007-09-25 2012-11-07 陶氏环球技术有限责任公司 Styrenic polymers as blend components to control adhesion between olefinic substrates

Also Published As

Publication number Publication date
JPS5987706A (en) 1984-05-21

Similar Documents

Publication Publication Date Title
EP0129617B1 (en) Semiconducting compositions and wires and cables using the same
US4909960A (en) Semiconductor resin composition
US3684821A (en) High voltage insulated electric cable having outer semiconductive layer
US4933107A (en) Easily peelable semiconductive resin composition
CA2708295C (en) Electric article comprising at least one element made from a semiconductive polymeric material and semiconductive polymeric composition
KR19990071566A (en) Polymer composition
CN114685883A (en) Ultra-smooth high-voltage cable semi-conductive inner shielding material and preparation method thereof
JPH0367288B2 (en)
JP3989306B2 (en) Water crosslinkable resin composition excellent in tracking resistance and weather resistance, and power cable having an insulating coating layer comprising the same
JP3289424B2 (en) Polyolefin insulated wire
JP2921090B2 (en) Semiconductive resin composition
KR100291668B1 (en) A semiconductive power cable shield
JP2724494B2 (en) Semiconductive composition and peelable outer semiconductive layer of power cable
JPS6245643B2 (en)
GB2033416A (en) Conductive Polymer Composition and its Use in Electric Cables
JPS5956441A (en) Semiconductive composition
JPH09245520A (en) Composition for semiconductive layer of power cable
JPH0145165B2 (en)
JP3414581B2 (en) Composition for semiconductive layer of power cable
JPH03122921A (en) Manufacture of bridged polyethylene insulated cable
JPH10106356A (en) Insulating composition for electric power cable and electric power cable using the composition
JPS63292505A (en) Semiconductive resin composition
JPH11154418A (en) Semiconductive resin composition for power cable
JPH04216838A (en) semiconductive composition
JPS6063813A (en) Semiconductive composition for power cable