JPH036726B2 - - Google Patents
Info
- Publication number
- JPH036726B2 JPH036726B2 JP9042383A JP9042383A JPH036726B2 JP H036726 B2 JPH036726 B2 JP H036726B2 JP 9042383 A JP9042383 A JP 9042383A JP 9042383 A JP9042383 A JP 9042383A JP H036726 B2 JPH036726 B2 JP H036726B2
- Authority
- JP
- Japan
- Prior art keywords
- power transmission
- transmission line
- heat
- heat pipe
- snow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005540 biological transmission Effects 0.000 claims description 57
- 239000000725 suspension Substances 0.000 claims description 29
- 239000000463 material Substances 0.000 claims description 23
- 230000005291 magnetic effect Effects 0.000 claims description 17
- 238000002844 melting Methods 0.000 claims description 12
- 230000008018 melting Effects 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 11
- 239000012530 fluid Substances 0.000 description 21
- 239000012071 phase Substances 0.000 description 10
- 238000001704 evaporation Methods 0.000 description 9
- 239000007791 liquid phase Substances 0.000 description 8
- 230000008020 evaporation Effects 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- 230000032258 transport Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241001481828 Glyptocephalus cynoglossus Species 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0233—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Suspension Of Electric Lines Or Cables (AREA)
- Gas Or Oil Filled Cable Accessories (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
この出願の発明は、発熱機能を備えたヒートパ
イプによつて送電線懸吊支持体の雪を溶かす方法
に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The invention of this application relates to a method of melting snow on a power transmission line suspension support using a heat pipe having a heat generating function.
従来の技術
周知のようにヒートパイプは、適宜に設けた熱
源の熱を一端部から繰返し輸送することによつて
他端部に設けられた適宜の熱媒体等を加熱あるい
は冷却するものであつて、特に発熱したり吸熱し
たりするものではないから、使用目的に応じてヒ
ートパイプ本体とは別個に加熱源あるいは冷却源
を設ける必要がある。例えば鉄塔等の送電線懸吊
支持体に付着たい積した氷雪をヒートパイプを用
いて溶かす場合、加熱源としてエネルギーコスト
のかからない自然エネルギー例えば地熱、地下水
等を利用することが好ましい。すなわち地熱を利
用する場合には、地熱井を相当深く掘るととも
に、その地熱井にヒートパイプの一端部を挿入し
て地下の熱あるいは地熱井に水を送り込んで得た
温水の熱をヒートパイプを介して鉄塔における送
電線懸架部に運んで雪を溶かす。BACKGROUND TECHNOLOGY As is well known, a heat pipe heats or cools an appropriate heat medium provided at the other end by repeatedly transporting heat from an appropriately provided heat source from one end. Since the heat pipe does not particularly generate heat or absorb heat, it is necessary to provide a heating source or a cooling source separately from the heat pipe body depending on the purpose of use. For example, when using a heat pipe to melt ice and snow that has accumulated on a power transmission line suspension support such as a steel tower, it is preferable to use natural energy that does not require energy costs, such as geothermal heat or underground water, as the heating source. In other words, when using geothermal energy, a geothermal well is dug quite deep, and one end of a heat pipe is inserted into the geothermal well, and the heat from the underground heat or the hot water obtained by pumping water into the geothermal well is transferred through the heat pipe. The snow is melted by conveying it to the transmission line suspension section of the steel tower.
発明が解決しようとする問題点
しかしながら地熱を利用して送電線の懸吊支持
体の融雪を行なう場合には、エネルギーコストが
殆んどかからない反面、地熱井を相当深く(7〜
20m)掘らなければならないために、設備コスト
が嵩み、また地熱を利用できる地域が限定される
などの問題があつた。Problems to be Solved by the Invention However, when using geothermal heat to melt snow on suspended supports of power transmission lines, energy costs are almost negligible;
The need to dig 20 m) led to problems such as increased equipment costs and limited areas where geothermal energy could be used.
この発明は上記の事情に鑑みてなされたもの
で、送電線懸吊支持体の融雪を低コストで行なう
ことのできる方法を提供することを目的とするも
のである。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method of melting snow from a power transmission line suspension support at low cost.
問題点を解決するための手段
この出願の各発明は上記の目的を達成すべく以
下のようにして融雪を行なうものである。すなわ
ちこの発明の方法は、ヒートパイプの一端部にお
ける外装体もしくはウイツクを低キユリー材によ
つて構成するとともにその一端部をフレキシブル
に構成しておき、そのヒートパイプの前記一端部
を送電線の周囲に巻付けるとともに、他端部を送
電線懸吊支持体における送電線懸架部に配置し、
前記低キユリー材を送電に伴つて生じる磁界によ
つて発熱させ、その熱をヒートパイプによつて送
電線懸吊支持体における送電線懸架部に輸送して
その送電線懸架部に付着した氷雪を溶かすことを
特徴とするものである。Means for Solving the Problems Each of the inventions of this application melts snow in the following manner in order to achieve the above objects. That is, in the method of the present invention, the outer body or wick at one end of the heat pipe is made of a low-Kyrie material, and the one end is made flexible, and the one end of the heat pipe is connected to the surroundings of the power transmission line. At the same time, the other end is placed on the power transmission line suspension part of the power transmission line suspension support,
The low Kyuri material is made to generate heat by the magnetic field generated by power transmission, and the heat is transferred to the transmission line suspension part of the transmission line suspension support by a heat pipe to remove ice and snow attached to the transmission line suspension part. It is characterized by its ability to melt.
作 用
この発明の融雪方法においては、ヒートパイプ
として、一端部(蒸発部)における外装体もしく
はウチツクが低キユリー材で構成されかつその部
分がフレキシブルに構成されたものを用いる。そ
してそのヒートパイプの低キユリー材でかつフレ
キシブルに構成された部分(一端部;蒸発部)が
送電線に巻付けられ、他端部(凝縮部)が送電線
懸吊支持体における送電線懸架部に配置される。Function: In the snow melting method of the present invention, a heat pipe is used in which the exterior body or cover at one end (evaporation part) is made of a low Curie material and that part is made flexible. Then, the part (one end; evaporation part) of the heat pipe that is made of a low-Kyuri material and is flexible is wrapped around the power transmission line, and the other end (condensation part) is attached to the transmission line suspension part of the transmission line suspension support. will be placed in
したがつてヒートパイプにおける低キユリー材
の部分は、送電に伴つて生じる交流磁界内に位置
することになるから、キユリー点以下の低温の場
合にその低キユリー材が発熱し、その熱によつて
ヒートパイプ内の液相の作動流体が蒸発し、生じ
た気相の作動流体がより温度の低い他端部、すな
わち送電線懸架部に位置する部分に流れ、熱を送
電線懸架部の氷雪に与えてこれを溶かす。すなわ
ち、送電に伴なつて不可避的に生じる磁界を利用
して送電線周囲で低キユリー材を発熱させ、この
ヒートパイプの機能により送電線懸架部まで輸送
して氷雪を溶かすことになる。 Therefore, since the low-Kyrie material part of the heat pipe is located within the alternating current magnetic field generated by power transmission, the low-Kyrie material generates heat when the temperature is below the Kyrie point, and this heat causes The liquid-phase working fluid inside the heat pipe evaporates, and the resulting gas-phase working fluid flows to the other end where the temperature is lower, that is, the part located at the power transmission line suspension section, transferring heat to the ice and snow on the power transmission line suspension section. Give this to dissolve. In other words, the magnetic field that inevitably occurs with power transmission is used to generate heat in the low-Kyrie material around the power transmission line, and the heat pipe functions to transport the material to the suspended part of the power transmission line and melt the ice and snow.
ここで、ヒートパイプにおける低キユリー材の
部分(一端部)はフレキシブルで送電線の周囲に
巻付けられるため、単にヒートパイプの一端部を
送電線に添わせる場合よりも有効に送電線周囲の
磁界を利用することができ、より大きな発熱量を
得て、送電線懸架部の氷雪を確実かつ充分に添か
すことができる。 Here, since the low Curie material part (one end) of the heat pipe is flexible and can be wrapped around the power transmission line, it can effectively reduce the magnetic field around the power transmission line compared to simply attaching one end of the heat pipe to the power transmission line. can be used to generate a larger amount of heat and to reliably and sufficiently remove ice and snow from suspended parts of power transmission lines.
実施例
つぎにこの発明の融雪方法を実施例に基づいて
説明する。Examples Next, the snow melting method of the present invention will be explained based on examples.
先ずこの発明の融雪方法で使用する発熱型のヒ
ートパイプについて説明すると、第1図に示すよ
うに、両端が密閉された円筒状の外装体1と、そ
の外装体1に内蔵されたウイツク2と、さらに外
装体1の内部に封入された作動流体とから構成さ
れたヒートパイプ3であつて、その一端部が作動
流体の蒸発する蒸発部4とされ、また他端部が作
動流体の凝縮する凝縮部5とされ、さらにこれら
両者の間が断熱部6とされている。その蒸発部4
が低いキユリー点(例えば0℃〜20℃)を有する
低キユリー材例えばニツケル35.23%、クロム
10.8%、珪素1.05%、鉄52.92%から構成される四
元合金から成り、さらに凝縮部5および断熱部6
は磁場中に設けてもヒステリシス損等による発熱
が小さい材料から構成されている。またウイツク
2は例えば合金製ネツトからなり、上記外装体1
の凝縮部5および断熱部6と同様に磁気特性の低
い材料から構成されている。そしてまた蒸発部4
の外装体1は、フレキシブルな管、例えばコルゲ
ート管によつて構成されている。 First, to explain the heat generating heat pipe used in the snow melting method of the present invention, as shown in FIG. , and a working fluid sealed inside the exterior body 1, one end of which serves as an evaporator 4 where the working fluid evaporates, and the other end where the working fluid condenses. A condensing section 5 is provided, and a heat insulating section 6 is provided between the two. The evaporation section 4
Low Curie material with low Curie point (e.g. 0℃~20℃) e.g. nickel 35.23%, chromium
10.8% silicon, 1.05% silicon, and 52.92% iron.
is made of a material that generates little heat due to hysteresis loss etc. even when placed in a magnetic field. The wick 2 is made of, for example, an alloy net, and the wick 2 is made of an alloy net.
Like the condensing section 5 and the heat insulating section 6, it is made of a material with low magnetic properties. And also evaporation section 4
The exterior body 1 is made of a flexible pipe, such as a corrugated pipe.
以上のように構成されたヒートパイプ3の低キ
ユリー材から成る蒸発部4の温度が前記キユリー
点以下の場合、ヒートパイプ3を磁場中に設置す
ると、キユリー点以下の状態にある低キユリー材
は、強磁性体となるため、蒸発部4が交流磁界に
よつて発熱し、その結果ヒートパイプ3がその熱
の輸送を行なう。すなわち蒸発部4が発熱するこ
とによりウイツク2に浸透した液相の作動流体が
蒸発して気相作動流体となり、その気相作動流体
がウイツク2内部の圧力差によつて蒸発部4から
断熱部6を経て凝縮部5に到達し、凝縮部5に設
けられた適宜の冷却源(図示せず)に気相作動流
体の潜熱が奪われる。その結果気相作動流体が外
装体1の内壁に液相作動流体となつて凝縮付着
し、その凝縮した液相作動流体が凝縮部5に内蔵
されたウイツク2に浸透するとともに、ウイツク
2の毛細管現象により凝縮部5から蒸発部4へウ
イツク2内を還流し、再び蒸発部4の熱によつて
液相作動流体が蒸発して気相作動流体となつて熱
を運ぶ。こうして交流磁界による低キユリー材か
らなる蒸発部4の熱が凝縮部5に設けた適宜の冷
却源に繰返し輸送される。さらに外装体1の蒸発
部4の温度がキユリー点以上になると低キユリー
材の磁気特性が低下するため、磁場中に在つても
蒸発部4が発熱しないのでヒートパイプの熱輸送
が停止する。 When the temperature of the evaporator 4 made of a low-Kyrie material in the heat pipe 3 configured as described above is below the above-mentioned Kyrie point, when the heat pipe 3 is installed in a magnetic field, the low-Kyrie material in a state below the Kyrie point will be Since it is a ferromagnetic material, the evaporator 4 generates heat due to the alternating magnetic field, and as a result, the heat pipe 3 transports the heat. That is, as the evaporator 4 generates heat, the liquid-phase working fluid that has permeated the wick 2 evaporates and becomes a gas-phase working fluid, and the gas-phase working fluid is transferred from the evaporator 4 to the heat insulating part due to the pressure difference inside the wick 2. 6 and reaches the condensing section 5, where the latent heat of the gas phase working fluid is taken away by an appropriate cooling source (not shown) provided in the condensing section 5. As a result, the gas phase working fluid becomes a liquid phase working fluid and condenses and adheres to the inner wall of the exterior body 1, and the condensed liquid phase working fluid permeates into the wick 2 built in the condensing section 5, and the capillary tube of the wick 2. Due to this phenomenon, the inside of the wick 2 is refluxed from the condensing section 5 to the evaporating section 4, and the liquid phase working fluid is evaporated again by the heat of the evaporating section 4, becoming a gas phase working fluid and carrying heat. In this way, the heat of the evaporator section 4 made of a low Curie material due to the alternating current magnetic field is repeatedly transported to an appropriate cooling source provided in the condensing section 5. Furthermore, when the temperature of the evaporator 4 of the exterior body 1 reaches or exceeds the Curie point, the magnetic properties of the low-Qurie material deteriorate, so that the evaporator 4 does not generate heat even in a magnetic field, so the heat transport of the heat pipe stops.
なお、上記の例では外装体の蒸発部を低キユリ
ー材で構成したが、外装体もしくはウイツクの少
なくとも一部が低キユリー材で構成されていれば
よい。 In the above example, the evaporation part of the exterior body is made of a low-Kyrie material, but at least a part of the exterior body or the wick may be made of a low-Kyrie material.
第2図は上述のヒートパイプ3を利用した融雪
方法の一実施例を示すものである。なお、以下の
説明では、第1図に示すヒートパイプ3と同じ部
分には同一符号を付して説明を省略する。 FIG. 2 shows an embodiment of a snow melting method using the heat pipe 3 described above. In the following description, the same parts as those of the heat pipe 3 shown in FIG. 1 are denoted by the same reference numerals, and the description thereof will be omitted.
ヒートパイプ3におけるフレキシブルな蒸発部
4が第2図に示す如く送電線懸吊支持体例えば鉄
塔7に鉛直方向に配置された送電線8に螺旋状に
巻付けられかつ鉄塔7における基体部から水平に
突出した送電線懸架部9の上面にヒートパイプ3
の凝縮部5が配置されている。したがつて送電線
懸架部9の上面に付着たい積した氷雪を以下の如
く融雪する。すなわち降雪時には大気が常温以下
すなわちキユリー点以下となるため、低キユリー
材の特性により低キユリー材が強磁性体となる。
それゆえ送電線8に巻付けた蒸発部4が送電線8
の交流磁界によつて発熱し、ウイツク2に浸透し
た液相作動流体が蒸発して気相作動流体となり、
ウイツク2内部の圧力差によつて気相作動流体が
蒸発部4から凝縮部5に流れ、その結果、気相作
動流体の潜熱を送電線懸架部9上の氷雪に放出さ
せて氷雪を溶かす。その後潜熱を奪われた気相作
動流体が凝縮して液相作動流体となつてウイツク
2に浸透し、ウイツク2の毛細管現象によつて液
相作動流体が凝縮部5から蒸発部4へ還流する。
こうして送電線8の交流磁界による熱を送電線懸
架部9上の氷雪に繰返し運んで氷雪を溶かす。 As shown in FIG. 2, a flexible evaporator section 4 in the heat pipe 3 is spirally wound around a power transmission line 8 disposed vertically on a power transmission line suspension support, for example, a steel tower 7, and horizontally extended from a base portion of the steel tower 7. A heat pipe 3 is attached to the upper surface of the power transmission line suspension part 9 that protrudes from the
A condensing section 5 is arranged. Therefore, the ice and snow that has accumulated on the upper surface of the power transmission line suspension section 9 is melted as follows. That is, during snowfall, the atmospheric temperature is below room temperature, that is, below the Curie point, so the low Curie material becomes ferromagnetic due to its characteristics.
Therefore, the evaporator 4 wrapped around the power transmission line 8
Heat is generated by the alternating current magnetic field, and the liquid-phase working fluid that permeates into the wick 2 evaporates and becomes a gas-phase working fluid.
Due to the pressure difference inside the switch 2, the gas-phase working fluid flows from the evaporator section 4 to the condensing section 5, and as a result, the latent heat of the gas-phase working fluid is released to the ice and snow on the power transmission line suspension section 9, thereby melting the ice and snow. Thereafter, the gas-phase working fluid that has been deprived of latent heat condenses to become a liquid-phase working fluid and permeates into the wick 2, and the liquid-phase working fluid flows back from the condensing section 5 to the evaporating section 4 due to capillary action in the wick 2. .
In this way, the heat generated by the alternating current magnetic field of the power transmission line 8 is repeatedly transferred to the ice and snow on the power transmission line suspension section 9 to melt the ice and snow.
なお、上記実施例では鉛直方向に配設された送
電線にフレキシブルな蒸発部を巻付けたが、送電
線懸吊支持体間においてほぼ水平に懸吊された送
電線に蒸発部を巻付けてもよいことはもちろんで
ある。 In addition, in the above embodiment, the flexible evaporator was wrapped around the vertically arranged power transmission line, but it is also possible to wrap the evaporator around the power transmission line suspended almost horizontally between the transmission line suspension supports. Of course it's a good thing.
発明の効果
以上の説明から明らかなように、この発明の融
雪方法によれば、既設の送電線の交流磁界により
ヒートパイプの低キユリー材からなる一端部を発
熱させ、その熱を送電線懸吊支持体における送電
線懸架部に輸送してその送電線懸架部に付着した
氷雪を溶かすことができるため、ヒートパイプ本
体とは別個の加熱源を利用しないで送電線懸架部
上の氷雪を溶かすことができる。また地熱等の自
然エネルギーを利用する融雪方法では適用できる
地域に制限があるが、この発明では任意の送電線
懸架部に付着した氷雪の融雪を行なうことができ
るとともに、構成が簡単となるため低コストで送
電線懸架部に付着した氷雪の融点を行なうことが
できる。またヒートパイプの蒸発部側の部分のキ
ユリー点が低いから、氷雪の生じない高温時期に
は、たとえ交流磁界中に配置されていてもヒステ
リシス損などによる発熱を防止することができ
る。さらにこの発明では、低キユリー材を有する
一端部がフレキシブルなヒートパイプを用いて、
その一端部を送電線の外周上に巻付けているた
め、送電線周囲の磁界を有効に利用することがで
き、そのため単にヒートパイプを送電線に沿わせ
る場合と比較して大きな発熱量を得て、送電線懸
架部の氷雪を確実かつ充分に溶かすことができ
る。Effects of the Invention As is clear from the above explanation, according to the snow melting method of the present invention, one end of the heat pipe made of a low-Kyuri material is made to generate heat by the alternating current magnetic field of the existing power transmission line, and the heat is transferred to the suspended power transmission line. Since the ice and snow attached to the power transmission line suspension part can be transported to the power transmission line suspension part in the support body and melted, the ice and snow on the power transmission line suspension part can be melted without using a heating source separate from the heat pipe body. Can be done. In addition, snow melting methods that utilize natural energy such as geothermal heat are limited in the areas where they can be applied, but this invention can melt ice and snow that has adhered to any suspended part of a power transmission line, and has a simple configuration that reduces costs. It is possible to measure the melting point of ice and snow adhering to power transmission line suspension parts at a low cost. Furthermore, since the Curie point of the portion of the heat pipe on the evaporation section side is low, heat generation due to hysteresis loss can be prevented during high temperature periods without ice or snow even if the heat pipe is placed in an alternating current magnetic field. Furthermore, in this invention, a heat pipe having a flexible end portion having a low Curie material is used to
Because one end of the heat pipe is wrapped around the outer circumference of the power transmission line, it is possible to effectively utilize the magnetic field around the power transmission line, resulting in a greater amount of heat generation compared to simply placing the heat pipe along the power transmission line. As a result, ice and snow on suspended parts of power transmission lines can be melted reliably and sufficiently.
第1図はこの発明で使用するヒートパイプの構
成の一例を示す断面図、第2図は第1図に示した
ヒートパイプを利用してこの発明の融雪方法を実
施している状況を示す概略的な全体図である。
1……外装体、2……ウイツク、3……ヒート
パイプ、7……鉄塔、8……送電線、9……送電
線懸架部。
Fig. 1 is a cross-sectional view showing an example of the configuration of the heat pipe used in the present invention, and Fig. 2 is a schematic diagram showing a situation in which the snow melting method of the present invention is implemented using the heat pipe shown in Fig. 1. This is an overall diagram. 1...Exterior body, 2...Witch, 3...Heat pipe, 7...Tele tower, 8...Power transmission line, 9...Power transmission line suspension part.
Claims (1)
はウイツクを低キユリー材によつて構成するとと
もにその一端部をフレキシブルに構成しておき、
そのヒートパイプの前記一端部を送電線の周囲に
巻付けるとともに、他端部を送電線懸吊支持体に
おける送電懸線架部に配置し、前記低キユリー材
を送電に伴つて生じる磁界によつて発熱させ、そ
の熱を前記ヒートパイプによつて送電線懸吊支持
体における送電線懸架部に輸送してその送電線懸
架部に付着した氷雪を溶かすことを特徴とする発
熱型ヒートパイプを使用した送電線懸吊支持体の
融雪方法。1. The exterior body or wick at one end of the heat pipe is made of a low Curie material, and the one end is made flexible,
The one end of the heat pipe is wrapped around the power transmission line, and the other end is placed on the power transmission cable suspension part of the power transmission line suspension support, and the low Curie material is exposed to the magnetic field generated by power transmission. A heat generating type heat pipe is used, which is characterized in that the heat pipe generates heat, and the heat is transported to the power transmission line suspension part of the power transmission line suspension support by the heat pipe to melt ice and snow attached to the power transmission line suspension part. Snow melting method for suspended power transmission line supports.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58090423A JPS59215592A (en) | 1983-05-23 | 1983-05-23 | Heat pipe, thawing method of snow on support body for suspended power-transmission cable using heat pipe, and method of cooling cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58090423A JPS59215592A (en) | 1983-05-23 | 1983-05-23 | Heat pipe, thawing method of snow on support body for suspended power-transmission cable using heat pipe, and method of cooling cable |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018625A Division JPH0322815A (en) | 1990-01-29 | 1990-01-29 | Cable cooling method employing heat pipe of heat generating type |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59215592A JPS59215592A (en) | 1984-12-05 |
JPH036726B2 true JPH036726B2 (en) | 1991-01-30 |
Family
ID=13998192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58090423A Granted JPS59215592A (en) | 1983-05-23 | 1983-05-23 | Heat pipe, thawing method of snow on support body for suspended power-transmission cable using heat pipe, and method of cooling cable |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59215592A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5788074B1 (en) | 2014-11-17 | 2015-09-30 | 古河電気工業株式会社 | heat pipe |
CN109494615B (en) * | 2018-12-10 | 2020-07-28 | 贵州电网有限责任公司 | Method for realizing ice melting of power distribution network by manufacturing active circulation current through flexible multi-state switch |
CN112653053B (en) * | 2021-01-20 | 2022-06-10 | 国网重庆市电力公司市北供电分公司 | Cable rack capable of strengthening and protecting cable connection position |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5378094A (en) * | 1976-12-22 | 1978-07-11 | Urd Kk | Method of preventing snowfall over power transmission line and snowfalllprevention type transmission line |
JPS5631312A (en) * | 1979-08-23 | 1981-03-30 | Furukawa Electric Co Ltd | Device for preventing top snow |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57127176U (en) * | 1981-01-26 | 1982-08-07 |
-
1983
- 1983-05-23 JP JP58090423A patent/JPS59215592A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5378094A (en) * | 1976-12-22 | 1978-07-11 | Urd Kk | Method of preventing snowfall over power transmission line and snowfalllprevention type transmission line |
JPS5631312A (en) * | 1979-08-23 | 1981-03-30 | Furukawa Electric Co Ltd | Device for preventing top snow |
Also Published As
Publication number | Publication date |
---|---|
JPS59215592A (en) | 1984-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1120029A (en) | Heat pipe bag system | |
US3952798A (en) | Internally heated heat pipe roller | |
US3777811A (en) | Heat pipe with dual working fluids | |
JPH036726B2 (en) | ||
JPS58164993A (en) | Accumulation type heat exchanger | |
JP2768212B2 (en) | Heat transfer device and manufacturing method thereof | |
JPS60108643A (en) | Solar heat collector | |
SU747442A3 (en) | Thermal energy transmission device | |
JPH11350411A (en) | Heat pipe system road snow melting device utilizing terrestrial heat and auxiliary heat source | |
JPS63123992A (en) | Heat transporting pipe | |
JPH06136714A (en) | Thawing device utilizing sewage heat | |
JPH09126671A (en) | Heat pipe and burying method of heat pipe | |
JPS59154707A (en) | Method of preventing ice and snow from adhering to aerial transmission wire | |
JPH0323683B2 (en) | ||
JPH0588048B2 (en) | ||
JPS59154712A (en) | Electric power transmitting wire | |
RU2638U1 (en) | HEAT PIPE | |
KR900000573B1 (en) | Anti-freezing device made use of thermatap | |
JPH01150796A (en) | Spiral type heat pipe | |
JPS5639229A (en) | Soil freezing device | |
JPS6035135Y2 (en) | Difficult to snow-accumulate electric wire | |
JPH03290507A (en) | Thawing treatment device | |
JPH116694A (en) | Polybutene heat pipe | |
JPS6051327B2 (en) | insulation support device | |
JPS61271807A (en) | Transformer |