JPS59154707A - Method of preventing ice and snow from adhering to aerial transmission wire - Google Patents

Method of preventing ice and snow from adhering to aerial transmission wire

Info

Publication number
JPS59154707A
JPS59154707A JP58026926A JP2692683A JPS59154707A JP S59154707 A JPS59154707 A JP S59154707A JP 58026926 A JP58026926 A JP 58026926A JP 2692683 A JP2692683 A JP 2692683A JP S59154707 A JPS59154707 A JP S59154707A
Authority
JP
Japan
Prior art keywords
heat
snow
heat pipe
conductor
ice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58026926A
Other languages
Japanese (ja)
Inventor
小島 泰雄
本間 善勝
正孝 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP58026926A priority Critical patent/JPS59154707A/en
Publication of JPS59154707A publication Critical patent/JPS59154707A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Landscapes

  • Non-Insulated Conductors (AREA)
  • Insulated Conductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は架空送電線の着氷雪防止方法、さらに詳しく
言えば送電線の導体にヒートパイプを複合させて着氷雪
の恐れのある導体部分を加熱するようにした架空送電線
の着氷雪防止方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a method for preventing the accumulation of ice and snow on overhead power transmission lines, and more specifically, a method for preventing the accumulation of ice and snow on overhead power transmission lines. This invention relates to a method for preventing ice and snow from accumulating on electric wires.

降雪地帯に架設される架空送電線はこれに付着した雪、
あるいはこれが凍結した氷等によってスリードジャンプ
やギヤロッピング1辰動を発生し、これが要因となって
さらに重大な事故をひき起すおそれがあり、この防止の
ため従来各種タイプの難着雪型電線が開発されてきた。
Overhead power lines installed in snowy areas are covered with snow,
Alternatively, this can cause sleed jumps or gear flopping due to frozen ice, etc., which can cause even more serious accidents. To prevent this, various types of snow-resistant electric wires have been developed. It has been.

しかし従来の難着雪型電線のほとんどは、たとえば右が
槓もりにくい構造とか、付着した雪が落下しやすい構造
といった消極的な対策だけのものであって十分な効果を
上げるものではなかった。この発明はこのような従来の
概念を打ち破り、天然または人工的な熱源の熱によって
電線自体を加熱し、これによって積極的に雪または氷の
付着を阻止しようとする全く新規な架空送電線の着氷雪
防止方法を提供するものである。
However, most of the conventional snow-resistant electric wires have only been passive measures, such as having a structure that prevents the right side from being crushed or a structure that makes it easier for snow to fall off, and they have not been sufficiently effective. This invention breaks away from this conventional concept and provides a completely new method for installing overhead power lines that actively attempts to prevent snow or ice from accumulating by heating the wire itself using heat from a natural or artificial heat source. This provides a method for preventing ice and snow.

この発明の詳細な説明するに先立って、まず第1図およ
び第2図について導体加熱のためtて用いられるヒート
パイプ1について説明する。図中符号11で示す中空円
柱状の容器の内周壁(/i:ば長手方向に延びるグルー
プ12が形成され、ここにたとえば炭素繊維のような毛
細管圧力の大きいウィック13が充填されて、容器1・
1と同軸的に配置される中空円柱状の細かいメツシュの
金網14によっておさえ保持される。容器11は排気さ
れた後、その長手方向の端部に設けられる充填口16か
ら蒸発熱の比較的大きい、たとえば水、)ロン、アンモ
ニア、メタノール、アンモニアナトの作動流体18が充
填されキャップ15によって密閉される。これらの作動
流体に使用する温度条件によって選択される。
Prior to a detailed explanation of the present invention, a heat pipe 1 used for heating a conductor will first be explained with reference to FIGS. 1 and 2. FIG. A group 12 extending in the longitudinal direction is formed on the inner peripheral wall (/i) of the hollow cylindrical container indicated by reference numeral 11 in the figure, and a wick 13 having a high capillary pressure, such as carbon fiber, is filled into the inner peripheral wall of the container 1.・
It is pressed down and held by a hollow cylindrical fine mesh wire gauze 14 arranged coaxially with the metal wire 1 . After the container 11 is evacuated, it is filled with a working fluid 18 having a relatively large heat of evaporation, such as water, ammonia, methanol, or ammonia, through a filling port 16 provided at its longitudinal end, and then filled with a working fluid 18 such as water, ammonia, methanol, or ammonia sodium chloride. It will be sealed. It is selected depending on the temperature conditions used for these working fluids.

このような構造を持つヒートパイプ1は次のように作動
する。ヒートパイプ1の一端、たとえば第1図の左端A
の部分を外部から熱するときは、作動流体18UA部分
に位置する分から順次蒸発して気体となり減圧された容
器11内を音速に近い速度で反対側の右端C部分に流れ
、ここで凝縮して液体となり周囲に熱を放出する。液化
した作動流体18はウィック13および金網14の毛細
管現象によってA部分に還流され、再びここで加熱され
て蒸発し前記の変化をくり返すのである。
The heat pipe 1 having such a structure operates as follows. One end of the heat pipe 1, for example, the left end A in FIG.
When heating the section C from the outside, the working fluid 18UA is sequentially evaporated into gas and flows through the reduced pressure container 11 at a speed close to the speed of sound to the right end section C on the opposite side, where it condenses. It becomes a liquid and emits heat to its surroundings. The liquefied working fluid 18 is returned to the part A by the capillary action of the wick 13 and the wire mesh 14, where it is heated again and evaporated, repeating the above-mentioned changes.

A部分はこの部分において作動流体18が周囲から加熱
されて蒸発するゆえに加熱部または蒸発部と呼ばれ、ま
たC部分はこの部分において作動流体18が凝縮して周
囲に放熱するゆえ放熱部またに凝縮部と呼ばれる。また
A部分とC部分の中間のB部分に作動流体18と周囲と
の熱交換がないゆえ断熱部と呼ばれる。作動流体18の
flfllに立ってみれば上述したようにA部分は加熱
部、C部分(ζ放熱部であるけれどもヒートパイプ1に
近接しているヒートパイプ以外の物から見ればA部分に
おいてばヒートパイプ内の作動流体18に熱を奪われて
冷却され、またC部分においてはヒートパイプ1からの
放熱を受けて加熱されることになる。上述したようにヒ
ートパイプ1によれば作動流体18の状態変化によって
熱エネルギーを急速にヒートパイプの長手方向に溜って
輸送することができるのである。
Part A is called a heating part or evaporation part because the working fluid 18 is heated from the surroundings and evaporates, and part C is called a heat radiation part or evaporation part because the working fluid 18 condenses in this part and radiates heat to the surroundings. It is called the condensing part. In addition, since there is no heat exchange between the working fluid 18 and the surroundings in the B part between the A part and the C part, it is called a heat insulating part. If we look at the working fluid 18, as mentioned above, part A is a heating part, and part C (ζ is a heat dissipation part, but from the perspective of something other than the heat pipe that is close to the heat pipe 1, part A is a heating part.) The working fluid 18 inside the pipe takes heat and cools it, and the C part receives heat radiated from the heat pipe 1 and is heated.As described above, according to the heat pipe 1, the working fluid 18 is cooled. Due to the change in state, thermal energy can be rapidly accumulated and transported in the longitudinal direction of the heat pipe.

なおヒートパイプの寸法、材質について付言すれば、直
径は数咽から数10m、長さは100mに及ぶものもあ
り、主として銅、ステンレス鋼、アルミニウムなどによ
って製作されているから、後述する架空送電線の導体と
も親和性を持つことができる。
Regarding the dimensions and materials of heat pipes, the diameter can range from several meters to several tens of meters, and the length can reach up to 100 meters, and they are mainly made of copper, stainless steel, aluminum, etc. It can also be compatible with other conductors.

さて次にこの発明の一実砲例を第3図および第4図につ
いて説明する。この某施例は送電線導体2を構成する各
素線21A、21B、・・・と直径のあまシ違わないヒ
ートパイプ1を第4図に示すように導体2の中心に位置
するようVC複合配置すると共に、照射する太陽光Sを
熱源としてヒートパイプ1の加熱部Aを加熱させるもの
である。つまり送電線路の日照のよい架設区間部分にヒ
ートパイプ1の加熱部Aが、また着氷雪の恐れのある架
設区間部分にヒートパイプ1の放熱部Cが存在するよう
にさせて、前記加熱部Avc生じた熱を前記放熱部Cに
移動させてこの部分の導体2を加熱して着氷雪発生の恐
れを排除するものである。なおこのような架線地域では
夜間は気温が0°C以下になることがあるわけであるか
らヒートパイプ1の作動流体として1−1−50°C〜
50’Cの温度範囲で使用できるメタノールアンモニア
等が適当である。
Next, an example of a gun according to the present invention will be explained with reference to FIGS. 3 and 4. In this particular embodiment, a heat pipe 1 having the same diameter as each of the wires 21A, 21B, . At the same time, the heating section A of the heat pipe 1 is heated using the irradiated sunlight S as a heat source. In other words, the heating section A of the heat pipe 1 is located in the section of the power transmission line that receives good sunlight, and the heat dissipation section C of the heat pipe 1 is located in the section of the construction section where there is a risk of icing and snow. The generated heat is transferred to the heat radiating part C to heat the conductor 2 in this part, thereby eliminating the possibility of ice and snow formation. In addition, in such overhead line areas, the temperature can drop below 0°C at night, so the working fluid for the heat pipe 1 should be 1-1-50°C.
Methanolic ammonia and the like, which can be used in a temperature range of 50'C, are suitable.

第5図はこの発明の別の実施例を示すものであって、こ
の実施例ではヒートパイプ1の加熱部Aを加熱する熱源
として導体2の外周につるまき線状に巻きつけた磁性体
3を用いている。導体2に流れる電流によって磁性体3
には渦電流が誘導されると共にヒステリシス損が発生し
、この両者によって磁性体3が発熱してヒートパイプ1
の加熱部Aに熱を与えるものである。なおこの熱源の部
分では電線目体を流れる電流によるオーム発熱分も加わ
って皮切などはかなり高温になり、導体2が炊化して適
正な架線張力の保持が困難になるおそれがあるため、熱
源が設けられる導体2の両端部ケ架線張力を肩代りする
テンションロッド5i/i:より槍び、前記導体2の部
分を実質的に無張力状態にバイパスさ?る対策が施され
ている。
FIG. 5 shows another embodiment of the present invention. In this embodiment, a magnetic material 3 is wound around the outer periphery of the conductor 2 as a heat source for heating the heating part A of the heat pipe 1. is used. Due to the current flowing through the conductor 2, the magnetic body 3
An eddy current is induced and a hysteresis loss occurs, and both of these generate heat in the magnetic body 3 and the heat pipe 1.
It applies heat to the heating section A of the. In addition, this heat source part becomes quite high in temperature at the beginning due to the ohmic heat generated by the current flowing through the wire eye, which may cause the conductor 2 to heat up and make it difficult to maintain proper overhead wire tension. Tension rods 5i/i, which take over the tension of the overhead wire, are provided at both ends of the conductor 2, which bypass the conductor 2 into a substantially tension-free state. Measures have been taken to prevent this.

この実施例の鳩舎には熱源が常時働いているためO0C
以下になることはなく、シたがってヒートパイプ1の作
動流体としては水が適当であろう。
Since the heat source is constantly working in the pigeon coop in this example, O0C
Therefore, water would be suitable as the working fluid for the heat pipe 1.

磁性体3の熱源から供給される熱はヒートパイプ1を高
速で伝わって放熱部C付近の導体部分を加熱し、この部
分の着氷MY−H止が計られるのである。
The heat supplied from the heat source of the magnetic body 3 is transmitted through the heat pipe 1 at high speed and heats the conductor portion near the heat dissipation portion C, thereby preventing the formation of MY-H ice on this portion.

第6図は上記の実施例と同様に磁性体3を導体のまわシ
につるまき線状に巻きつけた熱源によるものであるが、
第5図の場合のように導体の温度上昇VC伴なう架線張
力の低下の心配を取り除くために鉄塔6のところのジャ
ンパ線導体20部分にヒートパイプの加熱部が位置する
ようにさせたものである。
FIG. 6 shows a heat source in which the magnetic material 3 is wound around a conductor in the form of a helical wire, similar to the above embodiment.
The heating part of the heat pipe is located at the jumper wire conductor 20 part at the steel tower 6 in order to eliminate the concern about the drop in overhead wire tension due to the rise in conductor temperature VC as in the case of Fig. 5. It is.

第7図にこの発明のさらに別の実施例であってここでに
地熱Eを熱源とさせている。この実施例の場合は使用す
る熱源が地熱である関係上、たとえば架空地線2“の着
氷雪防止として好適に応用できるものである。すなわち
実際の架設に当っては図示のように架空地線2′に複合
させたヒートパイプ1の加熱部Aを鉄塔60個所におい
て地表から数メートルの深さに埋没接地させる。一般に
地表から1メートルの深さの地中温度は朝、昼の日中の
温度変化の影響を受けず、また数メートルの深さでは四
季の温度変化の影響を受けないものと言われている。鉄
塔6の設置場所が火山帯であってかなり高温の場所も考
えられるが、そうでない普通の地帯でも地表より数メー
トルの深さの地中温度は10°Cを下まわることは考え
られないから、この地熱Eをヒートパイプ1を用いて架
空地線2′の架設径間部分に急速に輸送することによっ
て、前記架設径間内における所定個所の着氷雪の発生を
防止できることになる。しかも地中の熱容tU極めて大
きいから熱の供給量としてはほぼ無限である。またヒー
トパイプ加熱部いる作動流体とじてに一50°C〜常温
の温度範囲で用いられるフロン、アンモニア等が適当で
ある0 以上の各実施例においてヒートパイプ1がヒートパイプ
の一肩に位置する加熱部Aから他端の放熱部Cに急速に
熱輸送する特性を利用し、架空送電線または架空地線等
において放熱部Cが位置する導体部分を温める作用をな
すこと11理解されたであろうが、しからばこの熱輸送
効率に定量的にρの程度のものかを第8図について説明
しよう。
FIG. 7 shows yet another embodiment of the present invention, in which geothermal heat E is used as the heat source. In the case of this embodiment, since the heat source used is geothermal heat, it can be suitably applied, for example, to prevent icing and snow from forming on the overhead ground wire 2''. The heating part A of the heat pipe 1 combined with the heat pipe 2' is buried and grounded at a depth of several meters from the ground surface at 60 steel towers.Generally, the underground temperature at a depth of 1 meter from the ground surface is the same as that in the morning and afternoon. It is said to be unaffected by temperature changes, and at a depth of several meters it is unaffected by seasonal temperature changes.It is possible that steel tower 6 is installed in a volcanic zone, where the temperature is quite high. Even in ordinary areas, it is unthinkable that the underground temperature at a depth of several meters below the ground surface would drop below 10°C. Therefore, this geothermal heat E is transferred using the heat pipe 1 to the installation diameter of the overhead ground wire 2'. By rapidly transporting the heat to the intermediate portion, it is possible to prevent the formation of ice and snow at predetermined locations within the construction span.Furthermore, since the heat capacity tU of the underground is extremely large, the amount of heat supplied is almost limitless. In addition, as the working fluid in the heat pipe heating section, fluorocarbons, ammonia, etc., which are used in the temperature range of -50°C to room temperature, are suitable. In each of the above embodiments, the heat pipe 1 is located on one shoulder of the heat pipe. 11. It is understood that heat radiating part C acts to warm the conductor part where heat radiating part C is located in overhead power transmission lines or overhead ground wires by utilizing the property of rapidly transporting heat from heating part A to heat radiating part C at the other end. Let us explain with reference to Figure 8 whether the heat transport efficiency of wax is quantitatively on the order of ρ.

このグラフく直径16間、長さ300醪のヒートパイプ
の一端を80°Cの湯の中に深さ150覇浸漬した後の
経過時間と他端の温度上昇を示すものであるが、このグ
ラフから読みとれるように他端の温度は約20秒で70
°C以上に達し、1分後にはほぼ同温(78°C)にな
る熱伝導性のすばらしさは同径、同長の普通の銅パイプ
と比較して館目すべきものがあるであろう。
This graph shows the elapsed time and temperature rise at the other end after one end of a heat pipe with a diameter of 16 mm and a length of 300 mm is immersed in hot water at 80°C to a depth of 150 mm. As you can read from this, the temperature at the other end is 70 in about 20 seconds.
The excellent thermal conductivity of the pipe, which reaches temperatures above 30°F and reaches almost the same temperature (78°C) 1 minute later, is something to behold when compared to ordinary copper pipes of the same diameter and length.

以上に詳述したようにこの発明の方法は従来の消極的な
対策と異なシ、熱輸送効率のすぐれたヒートパイプを導
体に複合させ、かつ天然またに人工的な熱源によって前
記ヒートパイプの加熱部を加温すると共に、その熱をヒ
ートパイプの放熱部に送ってこの部分の着氷雪しやすい
導体部分を加熱し、これにより着雪または結氷がはじめ
から生じないようにしようとするb期的なものであり、
従来に比べて顕著な着氷雪防止効果が期待できるもので
ある。
As detailed above, the method of the present invention differs from conventional passive measures in that it combines a heat pipe with excellent heat transport efficiency with a conductor, and heats the heat pipe with a natural or artificial heat source. This method aims to prevent snow or ice formation from occurring in the first place by heating the conductor part of the heat pipe and sending that heat to the heat dissipation part of the heat pipe, which heats the conductor part that is prone to ice and snow formation. It is a thing,
It can be expected to have a more significant effect on preventing ice and snow formation than conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の方法を実施する場合に用いるヒート
パイプの構造例を説明するための簡略縦断面図、第2図
(1第1図の■−■線に遣う横断面図、第3図にこの発
明の方法を実施する架空送電線の一害施例構成を示す簡
略側面図、第4図は第3図のIV −IV線に沿う断面
図、第5図にこの発明の方法を実施する架空送電線の別
の実施例構成を示す簡略側面図、第6図はこの発明の方
法を実施するときに用いるヒートパイプ加熱部の熱源を
ジャンパ線部に設けた場合を例示する簡略側面図、第7
図はこの発明の方法を架空地線においで実施する場合の
一例を示す簡略側面図、第8図にこの発明の方法を実施
する場合に用いられるヒートツクイブの熱伝導性を例示
するグラフである。 トヒートパイプ、2・・・導体、3.S、g−熱源。 代理人弁理士竹内 守
Fig. 1 is a simplified vertical cross-sectional view for explaining an example of the structure of a heat pipe used in carrying out the method of the present invention, Fig. 2 is a cross-sectional view taken along the line Fig. 4 is a simplified side view showing an example configuration of an overhead power transmission line causing damage in which the method of the present invention is implemented, Fig. 4 is a cross-sectional view taken along the line IV-IV of Fig. A simplified side view showing another embodiment of the configuration of an overhead power transmission line to be implemented, and FIG. 6 is a simplified side view illustrating a case where the heat source of the heat pipe heating section used when implementing the method of the present invention is provided in the jumper wire section. Figure, 7th
The figure is a simplified side view showing an example of the case where the method of the present invention is implemented in an overhead ground wire, and FIG. 8 is a graph illustrating the thermal conductivity of the heat tube used when implementing the method of the present invention. heat pipe, 2... conductor, 3. S, g - heat source. Representative Patent Attorney Mamoru Takeuchi

Claims (1)

【特許請求の範囲】[Claims] 導体(2)に、実質的にその長手方向に沿うようヒート
パイプ(1)を複合させ、前記ヒートパイプ(1)の加
熱部囚を適宜り熱源により加熱することを特徴とする架
空送電線の着氷雪防止方法。
An overhead power transmission line characterized in that a heat pipe (1) is combined with a conductor (2) substantially along the longitudinal direction thereof, and the heating portion of the heat pipe (1) is heated by an appropriate heat source. How to prevent icing and snow.
JP58026926A 1983-02-22 1983-02-22 Method of preventing ice and snow from adhering to aerial transmission wire Pending JPS59154707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58026926A JPS59154707A (en) 1983-02-22 1983-02-22 Method of preventing ice and snow from adhering to aerial transmission wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58026926A JPS59154707A (en) 1983-02-22 1983-02-22 Method of preventing ice and snow from adhering to aerial transmission wire

Publications (1)

Publication Number Publication Date
JPS59154707A true JPS59154707A (en) 1984-09-03

Family

ID=12206779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58026926A Pending JPS59154707A (en) 1983-02-22 1983-02-22 Method of preventing ice and snow from adhering to aerial transmission wire

Country Status (1)

Country Link
JP (1) JPS59154707A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107356287A (en) * 2017-08-30 2017-11-17 国网湖南省电力公司 Novel conductive wire ice-coated test system and test method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107356287A (en) * 2017-08-30 2017-11-17 国网湖南省电力公司 Novel conductive wire ice-coated test system and test method
CN107356287B (en) * 2017-08-30 2023-04-07 国网湖南省电力公司 Novel wire icing test system and test method

Similar Documents

Publication Publication Date Title
CA1120029A (en) Heat pipe bag system
JP4880705B2 (en) Apparatus and method for heating and / or cooling
JP4214881B2 (en) Bubble pump type heat transport equipment
US20100319884A1 (en) Self-excited oscillating flow heat pipe
Bhagwat et al. Performance of finned heat pipe assisted parabolic trough solar collector system under the climatic condition of North East India
JPS59154707A (en) Method of preventing ice and snow from adhering to aerial transmission wire
JPS593608B2 (en) antifreeze device
JP4428453B2 (en) Bubble pump type heat transport equipment
KR200424212Y1 (en) Electric heat line of hot water pipe laminated with heat medium absorption layer
JPS59154712A (en) Electric power transmitting wire
JP2768212B2 (en) Heat transfer device and manufacturing method thereof
JP3177748B2 (en) Thermal conductive film
JPH074877A (en) Heat pipe
JPS6035135Y2 (en) Difficult to snow-accumulate electric wire
JPS59154713A (en) Capacity increasing wire
JPS59183247A (en) Snow thawing device for power transmission cable suspender
JPH036726B2 (en)
JPH01200193A (en) Temperature stabilizing device for inside of case
JP2870652B2 (en) Cooling methods for tunnels and underground cables
JPH0199425A (en) Deicing device
JPS60223503A (en) Heat pipe type snow melting and freezing preventing apparatus
WO2017002252A1 (en) Solar thermal collector
JPH0140196B2 (en)
JPH0833175A (en) Cooling structure of conduit for cable
JPH0530093Y2 (en)