JPH0366570A - Grindstone for grinding curved face - Google Patents

Grindstone for grinding curved face

Info

Publication number
JPH0366570A
JPH0366570A JP20263589A JP20263589A JPH0366570A JP H0366570 A JPH0366570 A JP H0366570A JP 20263589 A JP20263589 A JP 20263589A JP 20263589 A JP20263589 A JP 20263589A JP H0366570 A JPH0366570 A JP H0366570A
Authority
JP
Japan
Prior art keywords
face
grinding
layer
abrasive grain
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20263589A
Other languages
Japanese (ja)
Inventor
Masakatsu Inaba
稲葉 正勝
Shigeru Arai
茂 新井
Yasuo Tsujisato
辻郷 康生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP20263589A priority Critical patent/JPH0366570A/en
Publication of JPH0366570A publication Critical patent/JPH0366570A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make a grinding face abutted on the face to be ground with an almost uniform pressure over the whole face, to prevent the excessive biting of a partial abrasive grain and to improve the surface roughness with the prevention of a streak formation, by supporting a thin electrocast abrasive grain layer having flexibility by an elastic layer. CONSTITUTION:An elastic layer 11 is fixed onto a grindstone base body 10, a curved face 11A corresponding to the grinding face of the material to be ground is formed by this elestic layer 11 and also an electrocast abrasive grain layer 12 formed in a thin plate shape by dispersing super abrasive grains into a metal plating phase is fixed by its sticking to this curved face 11A. Consequently, when this electrocast abrasive grain layer 12 is pressed to the face to be ground, the grinding face 12A thereof is deformed along the shape of the face to be ground, abutted on the face to be ground with the pressure almost uniform over the whole face and the excess local abutting pressure is difficult to be caused. The excessive biting of a partial abrasive grain due to the excess abutting pressure is prevented, the streak generation is prevented and the surface roughness can be improved.

Description

【発明の詳細な説明】 「産業上の111用分野」 本発明は、ホーニング砥石や超仕上げ用砥石等のように
、曲面の精密仕上げ加工に使用される曲面研削用砥石に
係わり、特に、砥石寿命を延長しかつ被削面に対する馴
染み性を向上するための改良に関する。
Detailed Description of the Invention "Industrial Field 111" The present invention relates to a curved surface grinding wheel used for precision finishing of a curved surface, such as a honing wheel or a superfinishing wheel. This invention relates to improvements to extend service life and improve conformability to the workpiece surface.

「従来の技術」 この種の曲面研削用砥石の代表例として、超仕上げ用砥
石とホーニング砥石を挙げて説明する。
"Prior Art" As representative examples of this type of grindstone for curved surface grinding, a superfinishing whetstone and a honing whetstone will be cited and explained.

超仕上げ研削は、第11図に示すように被削材Wを軸回
りに回転し、その外周面に超仕上げ用砥石1を一定圧力
で押し当てつつ、砥石lを軸方向に数■の振幅・数百〜
数千サイクル/分の振動数で振動させることにより、鏡
面仕上げを行なう方法である。
In superfinish grinding, as shown in Fig. 11, the workpiece W is rotated around its axis, and the superfinishing grindstone 1 is pressed against the outer circumferential surface of the workpiece W with a constant pressure, while the grindstone l is rotated in the axial direction with an amplitude of several square meters. ·hundreds~
This method creates a mirror finish by vibrating at a frequency of several thousand cycles/minute.

従来、この種の超仕上げ用砥石では、砥粒として、被削
材が鋳鉄や非鉄金属の場合はGC系砥拉、li4類に対
してはWA系砥粒、超硬合金にはダイヤモンド砥粒、軟
質金属には酸化クローム砥粒等が使用されていた。砥粒
粒径は通常#600fu度とされているか、二段仕上げ
の場合には荒加工で#300〜400、仕上げで#60
0〜1500が普通である。結合剤としては主にビトリ
ファイドボンドが用いられるが、軟質金属に対してはラ
バーボンド、レジノイドボンドが使用されることもある
。また、ダイヤモンド砥粒の場合には、メタルボンドか
レジノイドボンドが一般的である。
Conventionally, this type of superfinishing grindstone uses GC-based abrasive grains for cast iron or non-ferrous metals, WA-based abrasive grains for LI4, and diamond abrasive grains for cemented carbide. , chromium oxide abrasive grains were used for soft metals. The abrasive grain size is usually #600fu, or in the case of two-step finishing, it is #300-400 for roughing and #60 for finishing.
0 to 1500 is normal. Vitrified bond is mainly used as the bonding agent, but rubber bond and resinoid bond may also be used for soft metals. Furthermore, in the case of diamond abrasive grains, metal bond or resinoid bond is generally used.

なお、図示したのは円筒外面仕上げの例であり、その他
にも、円筒内面仕上げ等の各種曲面仕上げが行なわれて
いる。
Note that the illustrated example is an example of cylindrical outer surface finishing, and various other types of curved surface finishing such as cylindrical inner surface finishing are also performed.

次に第12図は、ホーニング加工の一例として内面ホー
ニングを示し、2はホーニングヘッド、3はヘッド2に
支持された複数の棒状砥石である。
Next, FIG. 12 shows internal honing as an example of the honing process, where 2 is a honing head and 3 is a plurality of rod-shaped grindstones supported by the head 2.

そしてホーニングヘッド2に内蔵した押圧機構により、
各砥石3を研削すべき円筒Wの内面に面接触させ、ホー
ニングヘッド2を回転しつつ軸方向に往復運動させ、仕
上げ研削を行なう。
And by the pressing mechanism built into the honing head 2,
Each grindstone 3 is brought into surface contact with the inner surface of the cylinder W to be ground, and the honing head 2 is rotated and reciprocated in the axial direction to perform finish grinding.

この種のホーニング砥石を構成する砥粒や結合層は超仕
上げと同様であるが、砥粒の粒径は超仕上げの場合より
も若干粗く、#120〜600程度が一般に使用されて
いる。
The abrasive grains and bonding layer constituting this type of honing whetstone are the same as those for superfinishing, but the grain size of the abrasive grains is slightly coarser than that for superfinishing, and approximately #120 to #600 is generally used.

「発明が解決しようとする課題」 ところで、上記の超仕上げやホーニングの場合には、他
の研削様式に比して砥粒径が小さいうえ、砥粒にかかる
力の向きが研削中に激しく変化するため、砥粒の脱落速
度が早く、砥石寿命が短いという問題があった。
``Problem to be solved by the invention'' By the way, in the case of the above-mentioned superfinishing and honing, the abrasive grain diameter is smaller than in other grinding methods, and the direction of the force applied to the abrasive grains changes drastically during grinding. Therefore, there was a problem that the abrasive grains fell off quickly and the life of the whetstone was short.

そこで、砥石寿命を延長するために、ダイヤモンドやC
BN等の超砥粒を、金属めっき相によって砥石基体の表
面に固着した電着砥石の使用が考えられる。電着すれば
、超砥粒の保持力がメタルボンド砥石などに比して格段
に向上し、砥粒脱落が著しく減少するからである。
Therefore, in order to extend the life of the whetstone, diamond or C
It is conceivable to use an electrodeposited grindstone in which superabrasive grains such as BN are fixed to the surface of a grindstone base by a metal plating phase. This is because, if electrodeposited, the holding power of the superabrasive grains is significantly improved compared to a metal bonded grindstone, and the dropout of the abrasive grains is significantly reduced.

ところが、本発明者らが実際にこのような電着砥石を作
威し、研削試験を行なったところ、確かに砥粒脱落は減
少するものの、研削面の形状が研削につれて被削面の形
状に適合する性質、いわゆる馴染み性が悪く、局部的な
当接圧力の過剰が生じてその部分の砥粒が被削面に深く
食い込み、条痕を形成する欠点が見られた。このため、
研削面の形状が被削面の形状に適合するまでの馴らし運
転に長時間かかり、その間に規格を満たさない不良品を
大量に生じて、歩留まりが悪化する欠点を有していた。
However, when the inventors actually created such an electrodeposited grindstone and conducted a grinding test, it was found that although the number of abrasive particles falling off was reduced, the shape of the grinding surface did not adapt to the shape of the workpiece surface as it was being ground. The problem was that the abrasive grains in those areas were deeply embedded in the workpiece surface due to excessive local contact pressure, resulting in the formation of scratches. For this reason,
It takes a long time to run-in until the shape of the grinding surface matches the shape of the workpiece surface, and during this time a large number of defective products that do not meet the specifications are produced, resulting in a reduction in yield.

「課題を解決するための手段」 本発明は上記課題を解決するためになされたもので、砥
石基体上に弾性層を固定し、この弾性層で被削材の研削
面に対応する曲面を構成するとともに、金属めっき相中
に超砥粒を分散して薄板状に成形した電鋳砥粒層を前記
曲面に張り付けて固定したことを特徴としている。
"Means for Solving the Problems" The present invention has been made to solve the above problems, and includes fixing an elastic layer on a grinding wheel base, and forming a curved surface corresponding to the grinding surface of the workpiece with this elastic layer. In addition, it is characterized in that an electroformed abrasive grain layer formed into a thin plate by dispersing superabrasive grains in a metal plating phase is attached and fixed to the curved surface.

「作 用] この曲面研削用砥石によれば、可撓性を有する薄い電鋳
砥粒層を弾性層によって支持しているので、電鋳砥粒層
を被削面に押し当てると、その研削面が被削面の形状に
沿って変形し、研削面が全面に亙ってほぼ均等な圧力で
被削面に当接し、局部的な当接圧力の過剰が起こりにく
い。
[Function] According to this grindstone for curved surface grinding, the flexible thin electroformed abrasive grain layer is supported by the elastic layer, so when the electroformed abrasive grain layer is pressed against the workpiece surface, the grinding surface deforms along the shape of the surface to be cut, and the grinding surface contacts the surface with substantially uniform pressure over the entire surface, making it difficult for local excessive contact pressure to occur.

したがって、当接圧力の過剰に起因する一部砥粒の食い
込み過ぎを防ぎ、条痕発生を防いで面粗さの向上が図れ
るとともに、超砥粒を金属めっき相で強固に支持した電
着砥粒層を用いているので超砥粒の脱落が少なく、砥石
寿命を大幅に延長できる。また、研削開始初期から被削
材に馴染むため、慣らし運転の時間が短くて済み、その
間の製品の歩留まり向上も図れる。
Therefore, it is possible to prevent some of the abrasive grains from digging into too much due to excessive contact pressure, prevent the generation of streaks, and improve the surface roughness. Since a grain layer is used, there is less chance of superabrasive grains falling off, and the life of the grinding wheel can be significantly extended. In addition, since it adapts to the work material from the beginning of grinding, the break-in time is short, and the product yield during that time can be improved.

「実施例」 第1図は本発明に係わる曲面研削用砥石の第1実施例と
して、超仕上げ用砥石を示す正面図である。
Embodiment FIG. 1 is a front view showing a superfinishing grindstone as a first embodiment of the curved surface grinding wheel according to the present invention.

符号lOは砥石基体で、その−面10Aは被削材の研削
面に対応した曲面に形成され、この曲面10Aに一定厚
の弾性層IIか接着等により固定されている。砥石基体
IOの材質は金属など、従来使用されているいかなるも
のでもよく、超仕上げ盤に対応して適宜形状変更される
Reference numeral 10 denotes a grindstone base body, and its - face 10A is formed into a curved surface corresponding to the grinding surface of the workpiece, and an elastic layer II of a constant thickness is fixed to this curved surface 10A by adhesive or the like. The material of the grinding wheel base IO may be any conventionally used material such as metal, and its shape is changed as appropriate to correspond to the superfinishing machine.

弾性層!lは、ウレタンゴム等の合成ゴムや、ポリエス
テル、アクリルなど各種の熱可塑性または熱硬化性エラ
ストマー等の弾性を有する材質のうち、超仕上げ用研削
液として一般に使用される軽油や灯油等に侵されない材
質が選択される。弾性層11は多孔質構造、無孔質構造
のいずれでもよいが、その厚さおよび弾性率は、後述す
る電鋳砥粒層12が被削材の曲面に十分適合しうるよう
に、かつ超仕上げの振動時にも電鋳砥粒層12がぐらつ
いて研削むらが生じないように設定されるべきである。
Elastic layer! l refers to elastic materials such as synthetic rubber such as urethane rubber, and various thermoplastic or thermosetting elastomers such as polyester and acrylic, which are not affected by light oil, kerosene, etc. commonly used as grinding fluid for super finishing. Material is selected. The elastic layer 11 may have either a porous structure or a non-porous structure, but its thickness and elastic modulus should be set so that the electroformed abrasive layer 12 (described later) can sufficiently conform to the curved surface of the workpiece, and The settings should be made so that the electroformed abrasive layer 12 does not wobble and cause uneven grinding even during finishing vibration.

具体的には、弾性層11の厚さが一定の場合、体積弾性
率が2000〜6000に9/■2、厚さが0.5〜5
 mm程度であることが好ま1.い。体積弾性率が10
0未満、または厚さが5■より大であると、電鋳砥粒層
12が研削中にぐらついて仕上げ面の精度低下を招くお
それがある。逆に、体積弾性率が6000より大、また
は厚さが0.5■より小であると十分な馴染み性が得ら
れない。
Specifically, when the thickness of the elastic layer 11 is constant, the bulk modulus is 2000 to 6000, 9/■2, and the thickness is 0.5 to 5.
It is preferable that it is about mm1. stomach. Bulk modulus is 10
If the thickness is less than 0 or greater than 5 cm, the electroformed abrasive layer 12 may wobble during grinding, leading to a decrease in the accuracy of the finished surface. On the other hand, if the bulk modulus is greater than 6000 or the thickness is less than 0.5 cm, sufficient conformability cannot be obtained.

弾性層11の曲面11Aは被削面の曲率とほぼ等しくさ
れ、この曲面には、NiやCo等の金属めっき相中にダ
イヤモンドまたはCBN等の超砥粒を分散してなる電鋳
砥粒層12が固定されている。
The curved surface 11A of the elastic layer 11 is made approximately equal to the curvature of the surface to be cut, and this curved surface has an electroformed abrasive layer 12 formed by dispersing superabrasive grains such as diamond or CBN in a metal plating phase such as Ni or Co. is fixed.

この電鋳砥粒層I2は全面に亙って肉厚が一定で、その
厚さは30〜300μl程度であることが望ましい。3
00μ度より厚いと剛性が高すぎて馴染み性の向上が図
れず、30μlより薄いと寿命が短く実用的でない。
This electroformed abrasive grain layer I2 has a constant thickness over the entire surface, and it is desirable that the thickness is about 30 to 300 μl. 3
If it is thicker than 00 μl, the rigidity is too high to improve conformability, and if it is thinner than 30 μl, the service life will be short and impractical.

超砥粒の粒径は#400〜1000が望ましく、415
00未満の砥粒が混じると、研削刃の密度が低下して個
々の研削刃の当接圧力が高まり、面粗さを悪化させる。
The grain size of the superabrasive grains is preferably #400 to #1000, and #415
When abrasive grains of less than 0.00 are mixed, the density of the grinding blades decreases, the contact pressure of each grinding blade increases, and the surface roughness worsens.

また、#400より大きな砥粒が混入した場合には、こ
れらの突出量か大きいタメ食イ込みか深まり、やはり而
粗さを悪化させる。
Furthermore, if abrasive grains larger than #400 are mixed in, the amount of protrusion caused by these grains increases, and the roughness becomes worse.

超砥粒の含有率は20〜40vo1%であることが望ま
しい。20vo1%未満では砥粒の露出密度が低下し、
個々の切刃にかかる圧力が増して切り込みが深くなり、
面粗さを低下させる。また4゜vo1%より大では目詰
まり等により切れ味が低下する。
The content of superabrasive grains is preferably 20 to 40 vol%. If it is less than 20vo1%, the exposed density of abrasive grains decreases,
The pressure on each cutting edge increases and the depth of cut deepens.
Reduces surface roughness. Moreover, if it is larger than 4°vo1%, the sharpness decreases due to clogging, etc.

上記構成からなる超仕上げ用砥石によれば、可撓性を有
する薄い電鋳砥粒層I2を、弾性層IIによって支持し
ているので、電鋳砥粒層12を被削面に押し当てると、
その研削面12Aが被削面の形状に沿って変形し、研削
面12Aが全面に亙ってほぼ一定の圧力で被削面に当接
し、局部的な当接圧力の過剰が起こりにくい。したがっ
て、当接圧力過剰に起因する一部砥粒の食い込み過ぎを
防ぎ、条痕形成を防いで面粗さの向上が図れる。
According to the superfinishing whetstone having the above configuration, since the flexible thin electroformed abrasive layer I2 is supported by the elastic layer II, when the electroformed abrasive layer 12 is pressed against the surface to be cut,
The grinding surface 12A deforms along the shape of the surface to be cut, and the grinding surface 12A contacts the surface with substantially constant pressure over the entire surface, making it difficult for local excessive contact pressure to occur. Therefore, it is possible to prevent some of the abrasive grains from biting in too much due to excessive contact pressure, prevent the formation of striations, and improve the surface roughness.

また、超砥粒を金属めっき相で強固に支持した電着砥粒
層12を用いているので、超砥粒の脱落が少なく、従来
の超仕上げ用砥石に比して砥石寿命を大幅に延長できる
。また、研削開始初期から被削材に馴染む、ため、慣ら
し運転の時間が短くて済み、その間の製品の歩留まりも
向上できる。
In addition, since the electrodeposited abrasive layer 12 in which superabrasive grains are firmly supported by a metal plating phase is used, there is less chance of superabrasive grains falling off, significantly extending the life of the grinding wheel compared to conventional superfinishing grindstones. can. In addition, since it adapts to the work material from the beginning of grinding, the break-in time can be shortened, and the product yield during that time can also be improved.

さらに、電鋳砥粒層12では、他の結合剤を使用した砥
石に比して高価な超砥粒の使用量が少なくて済むため、
製造コスI・低下が図れるうえ、砥石全体として軽量化
が可能なので、駆動力がその分小さくてよいという利点
も有する。
Furthermore, the electroformed abrasive grain layer 12 requires less expensive superabrasive grains than grinding wheels using other binders.
In addition to reducing manufacturing costs, the grindstone as a whole can be made lighter, so it also has the advantage that the driving force can be reduced accordingly.

なお、前記実施例では弾性層11の厚さが全面に亙って
一定であったが、第2図に示すように砥石基体IOの弾
性層取付面10Aを平面または曲率が小さい面とし、こ
こに凹形状の弾性層11を介して電鋳砥粒層12を固定
してもよい。この場合、被削面への当接圧力が砥粒層!
2の中央部で若干高く、周辺部で若干低くなるが、馴染
み性の良好さは維持される。
In the above embodiment, the thickness of the elastic layer 11 was constant over the entire surface, but as shown in FIG. The electroformed abrasive layer 12 may be fixed through the concave elastic layer 11. In this case, the contact pressure on the workpiece surface is the abrasive layer!
2, it is slightly higher in the center and slightly lower in the periphery, but good conformability is maintained.

また、第3図に示すように、砥石基体10の弾性層取付
面10Aの曲率を被削材の被削面よりも大とし、ここに
凸形状の弾性層11を介して電鋳砥粒層12を固定して
もよい。この例では、第1図のものに比して、砥粒層1
2の中央部での当接圧力が相対的に小となる。
Further, as shown in FIG. 3, the curvature of the elastic layer mounting surface 10A of the grinding wheel base 10 is made larger than the surface to be cut of the workpiece material, and the electroformed abrasive grain layer 12 is inserted through the convex elastic layer 11 here. may be fixed. In this example, compared to the one in FIG.
The contact pressure at the central portion of 2 is relatively small.

なお、弾性層および電鋳砥粒層を貫通して研削面に研削
液を供給する構成も可能である。例えば第4図の例では
、砥石基体1oに給液孔13および給液溝14を形成す
る一方、弾性層11ど電鋳砥粒層12には給液溝に連通
する貫通孔15を形成している。
Note that a configuration in which the grinding liquid is supplied to the grinding surface through the elastic layer and the electroformed abrasive layer is also possible. For example, in the example shown in FIG. 4, a liquid supply hole 13 and a liquid supply groove 14 are formed in the grinding wheel base 1o, and a through hole 15 communicating with the liquid supply groove is formed in the elastic layer 11 and the electroformed abrasive grain layer 12. ing.

電鋳砥粒層12に貫通孔15を形成するには、レーザー
光線を用いるか、研削面側か与打ち抜き加工を行なうの
が好適である。レーザー光線を用いると、第5図に示す
ように貫通孔15の周縁が溶けて面取りされた状態にな
る。また、打ら抜き加工によれば、第6図に示すように
研削面+2A側で面取りされた状態になり、いずれも被
削面に条痕を形成するおそれがない。
In order to form the through holes 15 in the electroformed abrasive grain layer 12, it is preferable to use a laser beam or to perform pre-punching on the ground surface side. When a laser beam is used, the periphery of the through hole 15 is melted and becomes chamfered as shown in FIG. Further, according to the punching process, the ground surface is chamfered on the +2A side as shown in FIG. 6, and there is no risk of forming streaks on the surface to be cut.

さらに第7図に示すように、電鋳砥粒層12の曲率を積
極的に変更可能どすることも可能である。
Furthermore, as shown in FIG. 7, it is also possible to actively change the curvature of the electroformed abrasive grain layer 12.

砥石基体16の曲面の中央部には、可撓性を有する一定
曲率に曲げられた金属製または樹η旨製の支持板17の
中央部が固定され、この支持板17の両端には、軸受・
18を介して回動可能にロッド19が連結されている。
A flexible support plate 17 made of metal or wood and bent to a constant curvature is fixed to the center of the curved surface of the whetstone base 16, and bearings are provided at both ends of the support plate 17.・
A rod 19 is rotatably connected via 18.

これらロッド19の先端には雄ネジが形成され、それぞ
れにナツト20の一端が螺合されている。
Male screws are formed at the tips of these rods 19, and one end of a nut 20 is screwed into each of the rods 19.

また、各ナツト20の他端には、砥石基体16の側面に
形成された軸受部21に回動可能に連結されたロッド2
2の先端の雄ネジが螺合され、各ナツト20を回転する
と、支持板17の曲率が所定の範囲で変更できる。また
、支持板17の曲面17Aには一定厚の弾性層itを介
して電鋳砥粒層12が固定されている。これらは上記同
様でよい。
Further, at the other end of each nut 20, a rod 2 is rotatably connected to a bearing portion 21 formed on the side surface of the grindstone base body 16.
When the male threads at the ends of the two nuts 20 are screwed together and each nut 20 is rotated, the curvature of the support plate 17 can be changed within a predetermined range. Further, the electroformed abrasive layer 12 is fixed to the curved surface 17A of the support plate 17 via an elastic layer it of a constant thickness. These may be the same as above.

この例によれば、ナツト20の調節により、研削面12
Aの曲率を被削面に適合させることが容易なので、弾性
層l!による馴染み性の向上と相まってさらに馴染み性
向上か図れる利点を有する。
According to this example, by adjusting the nut 20, the grinding surface 12
Since it is easy to adapt the curvature of A to the surface to be cut, the elastic layer l! This has the advantage of further improving the familiarity.

次に、本発明をホーニング砥石に適用した例を説明する
。第8図は内面ホーニング用砥石の一例を示し、図中3
0は砥石基体、31は一定厚の弾性層、32は電鋳砥粒
層である。各部の材質等は前述の超仕上げの場合と同様
でよい。
Next, an example in which the present invention is applied to a honing stone will be described. Figure 8 shows an example of a grindstone for internal honing.
0 is a grindstone base body, 31 is an elastic layer of constant thickness, and 32 is an electroformed abrasive grain layer. The materials of each part may be the same as in the case of super finishing described above.

この種のホーニング砥石においては、弾性層31の厚さ
が一定の場合、その体積弾性率が2000〜6000、
厚さが0.5〜511程度が好ましい。体積弾性率が5
00未満または厚さが5肩肩より大であると、電鋳低粒
層32がぐらつくおそれがある。逆に、体積弾性率が6
000より大または厚さが0.5m翼より小であると馴
染み性の向上効果が不十分となる。
In this type of honing stone, when the thickness of the elastic layer 31 is constant, its bulk modulus is 2000 to 6000,
The thickness is preferably about 0.5 to 511 mm. bulk modulus is 5
If the thickness is less than 0.00 or the thickness is greater than 5.00, the electroformed low grain layer 32 may wobble. On the other hand, the bulk modulus is 6
If the thickness is larger than 0.000 or smaller than 0.5 m, the effect of improving conformity will be insufficient.

また、電鋳砥粒層32の厚さは30〜300μ賃程度か
望ましい。300μlより厚いと剛性が高すぎて馴染み
性の向上が図れず、30μ友より薄いと寿命が短く実用
的でない。使用される超砥粒の粒径は#400〜800
であることが望ましく、この範囲を外れると面粗さが悪
化する。さらに、超砥粒の含有率は20〜40vo1%
であることが望ましい。20vo1%未満では砥粒の露
出密度か低下し、面粗さが低下する。また、40vo1
%より大では目詰まりの問題を生じる。
Further, the thickness of the electroformed abrasive grain layer 32 is desirably about 30 to 300 μm. If it is thicker than 300 μl, the rigidity is too high and it is difficult to improve the conformability, and if it is thinner than 30 μl, the life is short and it is not practical. The particle size of the superabrasive grains used is #400~800
It is desirable that the surface roughness is outside this range, and the surface roughness will deteriorate. Furthermore, the content of super abrasive grains is 20 to 40 vol.
It is desirable that If it is less than 20vol%, the exposed density of the abrasive grains decreases and the surface roughness decreases. Also, 40vo1
If it is larger than %, clogging problems will occur.

上記の構成からなるホーニング砥石においても、前記の
超仕上げ用砥石と同様の効果が得られる。
The same effects as the superfinishing whetstone described above can also be obtained with the honing whetstone having the above configuration.

なお、第9図に示すように弾性層31を凹形状または凸
形状としたり、第10図のように研削液の給液路35を
形成することも可能である。さらに、電鋳砥粒層32に
多数の窪みを形成して切粉排出性の向上を図ることも可
能であるし、内面ホーニングに限らず、外面ホーニング
等にも本発明は適用できる。
It is also possible to form the elastic layer 31 in a concave or convex shape as shown in FIG. 9, or to form a liquid supply path 35 for the grinding fluid as shown in FIG. 10. Furthermore, it is possible to form a large number of depressions in the electroformed abrasive grain layer 32 to improve chip discharge performance, and the present invention is applicable not only to internal honing but also to external honing.

さらに、本発明はホーニング砥石や超仕上げ用砥石のみ
に適用されるものではなく、曲面の加工を行なうための
地形式の砥石にも勿論適用可能である。
Further, the present invention is not only applicable to honing wheels and superfinishing wheels, but also to ground-type grindstones for machining curved surfaces.

「実験例」 次に、実験例を挙げて本発明の効果を実証する。"Experiment example" Next, the effects of the present invention will be demonstrated by giving experimental examples.

被削材として、ニードルベアリング用ニードル(外径6
■、長さ30mm)を用い、本発明を適用した超仕上げ
砥石の研削試験を行なった。要求される仕上げ面粗さH
waxは0.1μ舅である。
As a workpiece material, a needle for needle bearing (outer diameter 6
A grinding test was conducted using a superfinishing grindstone to which the present invention was applied. Required surface roughness H
Wax is 0.1μ.

50■×5■で曲率半径がl yxtxの曲面を有する
砥石基体に、所定の肉厚を有するウレタンゴム製の弾性
層を前記曲面に接着剤で貼付したうえ、この弾性層に種
々の電鋳砥粒層を貼付し、5種類の超仕上げ用砥石を作
成した。
An elastic layer made of urethane rubber having a predetermined thickness is attached to the curved surface of a grinding wheel base with an adhesive of 50 mm x 5 mm and a radius of curvature of lyxtx. Five types of super-finishing grindstones were created by attaching an abrasive layer.

次いで、これら砥石のそれぞれにより、以下の条件で超
仕上げを行なった。
Next, superfinishing was performed using each of these grindstones under the following conditions.

被削材の回転速度+50Orpm 砥石の振動数:  1000サイクル/分砥石の振幅:
1wy 砥石の当接圧カニ1000g/c肩2 砥石の各部と、得られた仕上げ面粗さ(Hmax)の平
均値および砥石寿命を求めた結果、この例における砥石
の好適な条件は下記の通りであることが判明した。
Rotational speed of workpiece material + 50 Orpm Grinding wheel vibration frequency: 1000 cycles/min Grinding wheel amplitude:
1wy Grinding wheel contact pressure crab 1000g/c shoulder 2 As a result of determining each part of the grinding wheel, the average value of the obtained finished surface roughness (Hmax), and the grinding wheel life, the suitable conditions for the grinding wheel in this example are as follows. It turned out to be.

弾性層の厚さ二0.5〜3M肩、 弾性層の体積弾性率+ 2000〜6000電鋳砥粒層
の厚さ:50〜lOOμ次 ダイヤモンド砥粒の粒径:#1OOO〜1500低粒の
含有率 25〜30vo1% なお、弾性層の厚さか0.5■未満では十分な弾力性が
得られず、3履肩より厚いと超仕上げの振動により電鋳
砥粒層がぐらつき、研削面位置が安定しない問題を生じ
た。また、電鋳砥粒層が100μ友より厚いと十分な馴
染み性が得られず、50μlより薄いと十分な強度が得
られなかった。
Elastic layer thickness: 20.5~3M shoulder, bulk elastic modulus of elastic layer + 2000~6000 Electroformed abrasive layer thickness: 50~lOOμ diamond abrasive grain size: #1OO~1500 low grain Content: 25-30vo1% If the thickness of the elastic layer is less than 0.5cm, sufficient elasticity will not be obtained, and if it is thicker than 3 shoes, the electroformed abrasive layer will wobble due to the vibration of superfinishing, and the position of the grinding surface will deteriorate. This resulted in an unstable problem. Further, if the electroformed abrasive grain layer was thicker than 100 μl, sufficient conformability could not be obtained, and if it was thinner than 50 μl, sufficient strength could not be obtained.

さらに、砥粒粒径および含有率は、上記の範囲を外れる
といずれも表面粗さの低下を生じた。
Furthermore, when the abrasive grain size and content were outside the above ranges, the surface roughness decreased.

「発明の効果」 以上説明したように、本発明に係わる曲面研削用砥石に
よれば、可撓性を有する薄い電鋳砥粒層を弾性層によっ
て支持しているので、電鋳砥粒層を被削面に押し当てる
と、その研削面が被削面の形状に沿って変形し、研削面
が全面に亙ってほぼ均等な圧力で被削面に当接し、局部
的な当接圧力の過剰が起こりにくい。したがって、当接
圧力過剰に起因する一部砥粒の食い込み過ぎを防ぎ、条
痕形成を防いで面粗さの向上が図れる。
"Effects of the Invention" As explained above, according to the curved surface grinding wheel according to the present invention, since the flexible thin electroformed abrasive grain layer is supported by the elastic layer, the electroformed abrasive grain layer is When pressed against the workpiece surface, the grinding surface deforms along the shape of the workpiece surface, and the grinding surface contacts the workpiece surface with almost uniform pressure over the entire surface, causing localized excessive contact pressure. Hateful. Therefore, it is possible to prevent some of the abrasive grains from biting in too much due to excessive contact pressure, prevent the formation of striations, and improve the surface roughness.

また、超砥粒を金属めっき泪で強固に支持した電着砥粒
層を用いているので、超砥粒の脱落が少なく、従来の超
仕上げ用砥石に比して砥石寿命を大幅に延長できろうえ
、研削開始初期から被削材に馴染むため、慣らし運転の
時間が短くて済み、その間の製品の歩留まりも向上でき
る。
In addition, since we use an electrodeposited abrasive layer in which the superabrasive grains are firmly supported by metal plating beads, there is less chance of the superabrasive grains falling off, and the life of the grinding wheel can be significantly extended compared to conventional superfinishing wheels. Since the wax blends into the work material from the beginning of grinding, the break-in time is short, and the product yield during that time can also be improved.

さらに、電鋳超砥粒はダイヤモンド砥粒の使用量が少な
くて済むため、従来のダイヤモンドを用いた超仕上げ粗
砥石ζこ比して、製造コスト低下が図れる利点も有する
Furthermore, since electroformed superabrasive grains require less diamond abrasive grains, they also have the advantage of lower manufacturing costs compared to conventional superfinishing rough abrasive wheels ζ using diamond.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる曲面研削用砥石の一実施例とし
て超仕上げ用砥石を示す正面図、第2図は本発明の第2
実施例の正面図、第3図は第3実施例の正面図、第4図
は第4実施例の一部破断l。 た正面図、第5図および第6図は電鋳砥粒層に形成した
貫通孔の断面図、第7図は第5実施例の正面図である。 また、第8図ないし第10図は、本発明をホーニング砥
石に適用した第6ないし第8実施例を示す正面図である
。 一方、第11図は超仕上げ研削の一例を示す斜視図、第
12図は内面ホーニングの一例を示す平面図である。 10・・・砥石基体、IOA・・・曲面、11・・・弾
性層、11A・・・曲面、12・・・1!1tif砥粒
層、12A・・・研削面、l 3,14.15・・・給
液路、17・・・支持板、18〜21・・・曲率変更機
構、30・・・砥石基体、31・・弾性層、32・・・
電鋳砥粒層、33.34.35・・給液路。 第1図
FIG. 1 is a front view showing a super-finishing grindstone as an embodiment of the curved surface grinding wheel according to the present invention, and FIG.
FIG. 3 is a front view of the third embodiment, and FIG. 4 is a partially cutaway view of the fourth embodiment. FIGS. 5 and 6 are cross-sectional views of through holes formed in the electroformed abrasive layer, and FIG. 7 is a front view of the fifth embodiment. Moreover, FIGS. 8 to 10 are front views showing sixth to eighth embodiments in which the present invention is applied to a honing stone. On the other hand, FIG. 11 is a perspective view showing an example of superfinish grinding, and FIG. 12 is a plan view showing an example of inner honing. 10... Grinding wheel base, IOA... Curved surface, 11... Elastic layer, 11A... Curved surface, 12... 1!1tif abrasive grain layer, 12A... Grinding surface, l 3, 14.15 ...Liquid supply path, 17...Support plate, 18-21...Curvature changing mechanism, 30...Wheelstone base, 31...Elastic layer, 32...
Electroformed abrasive grain layer, 33.34.35...liquid supply path. Figure 1

Claims (1)

【特許請求の範囲】[Claims]  砥石基体上に弾性層を固定し、この弾性層で被削材の
研削面に対応する曲面を構成するとともに、金属めっき
相中に超砥粒を分散して薄板状に成形した電鋳砥粒層を
前記曲面に張り付けて固定したことを特徴とする曲面研
削用砥石。
An elastic layer is fixed on the grinding wheel base, and this elastic layer forms a curved surface that corresponds to the grinding surface of the workpiece. Electroformed abrasive grains are formed into a thin plate by dispersing superabrasive grains in the metal plating phase. A grindstone for grinding a curved surface, characterized in that a layer is attached and fixed to the curved surface.
JP20263589A 1989-08-04 1989-08-04 Grindstone for grinding curved face Pending JPH0366570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20263589A JPH0366570A (en) 1989-08-04 1989-08-04 Grindstone for grinding curved face

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20263589A JPH0366570A (en) 1989-08-04 1989-08-04 Grindstone for grinding curved face

Publications (1)

Publication Number Publication Date
JPH0366570A true JPH0366570A (en) 1991-03-22

Family

ID=16460606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20263589A Pending JPH0366570A (en) 1989-08-04 1989-08-04 Grindstone for grinding curved face

Country Status (1)

Country Link
JP (1) JPH0366570A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371851U (en) * 1989-09-30 1991-07-19
JP2002346936A (en) * 2001-05-24 2002-12-04 Topcon Corp Pitch segment, diamond pellet segment, polishing tool using them, truing method for polishing tool, truing tool used for the method, and mold for pitch segment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371851U (en) * 1989-09-30 1991-07-19
JP2002346936A (en) * 2001-05-24 2002-12-04 Topcon Corp Pitch segment, diamond pellet segment, polishing tool using them, truing method for polishing tool, truing tool used for the method, and mold for pitch segment

Similar Documents

Publication Publication Date Title
KR100486429B1 (en) Ultra abrasive grain wheel f0r mirror finish
KR20070100904A (en) Method and device for grinding ceramic spheres
US6402600B1 (en) Bowling ball surface abrading and polishing tool assembly
US6030277A (en) High infeed rate method for grinding ceramic workpieces with silicon carbide grinding wheels
US3462887A (en) Precision surface abrading
JP4988271B2 (en) Honing whetstone
JPH0366570A (en) Grindstone for grinding curved face
JPS6246539Y2 (en)
JP2000301468A (en) Grinding wheel for grinding and grinding wheel for vertical line grinding
JP2001025948A (en) Spherical grinding wheel
JP2000084856A (en) Super abrasive grinding wheel for mirror finishing provided with super abrasive layer through elastic body
JP2006255871A (en) Honing grinding wheel and its manufacturing method
JPH11503673A (en) Grinding cup and wear parts with vibration damping means
JP3306443B2 (en) Diamond core drill
JPH02237762A (en) Honing head
US3811234A (en) Method of forming workpieces by abrading
JP2001009733A (en) Diamond tool
US20060068691A1 (en) Abrading tools with individually controllable grit and method of making the same
JP2005224917A (en) Honing grinding wheel
JP2868988B2 (en) Spiral wheel manufacturing method
JP2001001269A (en) Grinding/polishing tool and its manufacture, and grinding /polishing method using the tool
JPS5856767A (en) Correction method for super grinding wheel and device for the same
JPH11216675A (en) Highly-accurate, super-abrasive grain wheel
JP2980931B2 (en) Super Abrasive Honing Wheel
JPH04300156A (en) Grinding wheel for polishing lens