JPH0366386B2 - - Google Patents

Info

Publication number
JPH0366386B2
JPH0366386B2 JP60214770A JP21477085A JPH0366386B2 JP H0366386 B2 JPH0366386 B2 JP H0366386B2 JP 60214770 A JP60214770 A JP 60214770A JP 21477085 A JP21477085 A JP 21477085A JP H0366386 B2 JPH0366386 B2 JP H0366386B2
Authority
JP
Japan
Prior art keywords
steel wire
residual stress
less
compressive residual
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60214770A
Other languages
Japanese (ja)
Other versions
JPS6277441A (en
Inventor
Toshihiko Takahashi
Itsuyuki Asano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60214770A priority Critical patent/JPS6277441A/en
Priority to EP86113353A priority patent/EP0218167B1/en
Priority to DE8686113353T priority patent/DE3675874D1/en
Priority to KR1019860008244A priority patent/KR910003978B1/en
Publication of JPS6277441A publication Critical patent/JPS6277441A/en
Publication of JPH0366386B2 publication Critical patent/JPH0366386B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は延性にすぐれた高張力鋼線に関するも
のである。 (従来の技術) 近年、ロープ用鋼線、タイヤ補強用鋼線、光フ
アイバーケーブル補強用鋼線あるいは長大橋用鋼
線などの硬鋼線において高強度化の要求が一段と
高まつている。 従来から硬鋼線の高強度化については精力的な
研究が続けられているが、強度の増加に伴つて生
ずる延性の劣化を防止する技術が確立されていな
いことが制約条件となつて十分な高強度化を達成
する迄には至つていない。例えば延性の重要な尺
度である捻回特性は、ワイヤージヤーナル
(WireJournal)vol.16,No.4(1983)の50頁の報
文に記載されているように伸線後の鋼線を高温で
ブルーイング処理することによつて改善される
が、このような高温の処理は強度の低下を招くと
共に、タイヤ補強用鋼線のような細線では表面酸
化に伴う延性の劣化を避けることができないの
で、この方法の適用には自ずから限界がある。 一方、このような熱処理による方法ではなく、
伸線後の鋼線にスキンパス伸線を施すことによつ
て伸線後の鋼線の表面に存在する引張の残留応力
を解放することによつて延性を向上させる試みも
行われている。しかし1984年11月16日発行の日本
塑性加工学会の第20回伸線技術分科会提出資料の
「鋼線の機械的性質と残留応力に及ぼすダイスス
ケジユールの影響」に記載されているようにかか
る手段では延性はほとんど改善されない。 このように現状では鋼線の延性を向上させる十
分な手法は見い出されていない。 (発明が解決しようとする問題点) 本発明はこれらの欠点を除いた延性にすぐれた
鋼線の提供を目的とするものである。 (問題点を解決するための手段) 本発明者らは延性のすぐれた鋼線の提供につい
て種々研究した結果、特定成分組成を有し、且つ
130Kgf/mm2以上の強度を有すると共に、伸線後
の鋼線の表面に積極的に圧縮残留応力を付与し、
その圧縮残留応力を鋼線強度σに応じて(0.05σ
+23)〜(0.35σ+28)Kgf/mm2の範囲に制御す
ることによつて、延性のすぐれた硬鋼線が得られ
ることを見い出した。 すなわち本発明の要旨は下記のとおりである。 (1)重量%でC0.4〜1.0%、Si2.0%以下、Mn0.2〜
2%を含有し、P0.02%以下、S0.02%以下、
N0.01%以下に制限し、残部は鉄および不可避
不純物よりなり、且つ130Kgf/mm2以上の強度
を有すると共に、鋼線強度σに応じて(0.05σ
+23)〜(0.35σ+28)Kgf/mm2の表面圧縮残
留応力を有することを特徴とする延性にすぐれ
た高張力鋼線。 (2) 重量%でC0.4〜1.0%、Si2.0%以下、Mn0.2
〜2%を含有し、P0.02%以下、S0.02%以下、
N0.01%以下に制限し、且つCr0.05〜3%、
Mo0.01〜1%、W0.01〜1%、Cu0.05〜3%、
Ni0.1〜5%、Co0.1〜5%の1種または2種以
上を含有し、残部鉄及び不可避不純物よりな
り、且つ130Kgf/mm2以上の強度を有すると共
に、鋼線強度σに応じて(0.05σ+23)〜
(0.35σ+28)Kgf/mm2の表面圧縮残留応力を有
することを特徴とする延性にすぐれた高張力鋼
線。 (3) 重量%でC0.4〜1.0%、Si2.0%以下、Mn0.2
〜2%を含有し、P0.02%以下、S0.02%以下、
N0.01%以下に制限し、且つAl0.001〜0.1%、
Ti0.001〜0.1%、Nb0.001〜0.1%、V0.001〜0.1
%、B0.0003〜0.05%、Mg0.001〜0.1%の1種
または2種以上を含有し、残部鉄および不可避
不純物よりなり、且つ130Kgf/mm2以上の強度
を有すると共に、鋼線強度σに応じて(0.05σ
+23)〜(0.35σ+28)Kgf/mm2の表面圧縮残
留応力を有することを特徴とする延性にすぐれ
た高張力鋼線。 (4) 重量%でC0.4〜1.0%、Si2.0%以下、Mn0.2
〜2%を含有し、P0.02%以下、S0.02%以下、
N0.01%以下に制限し、且つCr0.05〜3%、
Mo0.01〜1%、W0.01〜1%、Cu0.05〜3%、
Ni0.1〜5%、Co0.1〜5%の1種または2種以
上を含有し、更にAl0.001〜0.1%、Ti0.001〜
0.1%、Nb0.001〜0.1%、V0.001〜0.1%、
B0.0003〜0.05%、Mg0.001〜0.1%の1種また
は2種以上を含有し、残部鉄および不可避不純
物よりなり、且つ130Kgf/mm2以上の強度を有
すると共に、鋼線強度σに応じて(0.05σ+23)
〜(0.35σ+28)Kgf/mm2の表面圧縮残留応力
を有することを特徴とする延性にすぐれた高張
力鋼線。 以下に本発明を詳細に説明する。 (作用) 最初に鋼線組成を前記のように限定した理由を
述べる。 Cは0.4未満では所要の強度が得られないため、
また1.0%を超えると延性が著しく劣化するため
含有量を0.4〜1.0%に限定した。 Siは主としてその固溶体硬化作用を利用するた
めに添加されるが、添加量が2%を超えるとやは
り延性の低下が顕著になるので上限を2.0%にし
た。 Mnは焼入性の確保とSの固定のために添加さ
れるが、0.2%未満ではSが十分固定されないた
め、また2%を超えて添加しても焼入性はもはや
増加しないので0.2〜2.0%に限定した。 PとSは延性の向上のためには少ないほぼ良
い。それぞれ0.02%を超えると延性に対する悪影
響が大きいので0.02%以下に制限した。 Nは0.01%を超えると延性に悪影響を及ぼすの
で0.01%以下に制限した。 以上が本発明の対象とする鋼線の基本成分系で
あるが、本発明では、(A)Cr0.05〜3%、Mo0.01
〜5%、W0.01〜1%、Cu0.05〜3%、Ni0.1〜
5%、Co0.1〜5%の1種以上あるいは(B)Al0.001
〜0.1%、Ti0.001〜0.1%、Nb0.001〜0.1%、
V0.001〜0.1%、B0.0003〜〜0.05%、Mg0.001〜
0.1%の1種以上の、(A),(B)の一方又は両方を含
有することができる。 まず、Cr、Mo、W、Cu、Ni、Coは強度の増
加及び耐食性の増加を目的にして添加されるが、
Cr0.05%未満、Mo0.01%未満、W0.01%未満、
Cu0.05%未満、Ni0.1未満及びCo0.1%未満ではそ
れらの強化及び耐食性に対する効果は認められな
くなるのでCr0.05%、Mo0.01%、W0.01%、
Cu0.05%、Ni0.1%及びCo0.1%を下限とした。 一方Cr3%超、Mo1%超、W1%超、Cu3%超、
Ni5%超及びCo5%超ではこれらの元素の強化及
び耐食性に対する効果は飽和する一方、延性を低
下させる効果が顕著になるので、Cr3%、Mo1
%、W1%、Cu3%、Ni5%及びCo5%を上限とし
た。なおこれらの合金元素の合計量は延性の点か
ら7%以下に抑えることが望ましい。 次にAl、Ti、Nb、V、B及びMgはN及びS
を固定して延性を向上させることを目的に添加さ
れるが、Al0.001%未満、Ti0.001%未満、
Nb0.001%未満、V0.001%未満、B0.0003%未満、
Mg0.001%未満では、N及びSを固定することが
出来ないので、Al0.001%、Nb0.001%、V0.001
%、B0.0003%及びMg0.001%を下限とした。 一方Al0.1%超、Ti0.1超、Nb0.1%超、V0.1%
超、B0.05%超及びMg0.1%超ではこれらの元素
のN及びS固定効果は飽和する一方、これらの元
素の窒化物及び硫化物による延性劣化作用が顕著
になるので、Al0.1%、Ti0.1%、Nb0.1%、V0.1
%、B0.05%及びMg0.1%を上限とした。またこ
れらの元素の合計量を0.2%以下に抑えることが
延性の点で望ましい。 次に鋼線の強度を130Kgf/mm2以上に限定した
のは、これより強度の低いところでは圧縮残留応
力が鋼線表面に存在しても延性の向上はほとんど
認められないためである。 次に本発明の最大の特徴は、鋼線がその表面に
鋼線強度σに応じて(0.05σ+23)〜(0.35σ+
28)Kgf/mm2の範囲で圧縮残留応力を有する点に
ある。以下鋼線表面の圧縮残留応力をこのように
定めた理由を述べる。 鋼線の延性は普通引張試験における伸び、絞り
値あるいは捻回試験における破断までの回転数
(捻回値)及びそのときの破断形態あるいは曲げ
試験などによつて判定される。 これらの延性評価基準の中で、鋼線の強度の増
加に伴つて最も顕著に劣化するのは捻回試験にお
ける破断形態である。 第1図は捻回試験における鋼線1の破断形態を
模式的に示したものであつて、aは正常破断の状
況を示すものであるが、強度の増加と共に、同図
bに示したような割れ2を伴う異常破断の頻度が
増加する。これは第2図に模式的に示したように
把み治具3で鋼線1を把持して行われる捻回試験
中に、鋼線1の表面に長手方向に割れ2が生ずる
ことに起因するもので、異常破断の発生は鋼線の
円周方向の延性の劣化を意味していると考えるこ
とができる。 強度の増加に伴つて鋼線の円周方向の延性が最
も劣化し易いことは、実際に鋼線の曲げ加工で、
曲げ破断は起らないのに長手方向に縦割れが生ず
る場合があること、また撚り線加工をしたときに
撚り破断はしないのに同じく縦割れが生ずる場合
があることによつても理解される。このように捻
回試験の破断形態は鋼線の延性評価尺度の中でも
最も重要なものであるということが出来る。 本発明者らは、鋼線がその表面に圧縮残留応力
を有することが、鋼線の円周方向の延性を向上さ
せるのに極めて有効であることを見い出し、付与
する圧縮残留応力の適正範囲を検討した。すなわ
ち捻回試験の異常破断の発生率を10%以下に抑え
ることを目標に、引張強度152Kgf/mm2、235Kg
f/mm2、316Kgf/mm2及び377Kgf/mm2の鋼線を用
いて、表面圧縮残留応力と異常破断の発生率の関
係を調べた。 その結果、引張強度152Kgf/mm2の鋼線では29
Kgf/mm2、235Kgf/mm2の鋼線では36Kgf/mm2
316Kgf/mm2の鋼線では38Kgf/mm2、377Kgf/mm2
の鋼線では42Kgf/mm2以上の圧縮残留応力が、捻
回試験の異常破断の発生率を10%以下に抑えるた
めに必要であることが明らかになつた。ここで得
られた圧縮残留応力を鋼線の引張強度σに対して
整理するとと、(0.05σ+23)Kgf/mm2なる関係が
実験的に得られる。なお捻回試験の異常破断の発
生率が10%以下であれば、鋼線を実際に加工する
場合、縦割れなどの発生の心配は全くない。この
ような理由で表面に付加する圧縮残留応力の下限
を鋼線強度σに応じて(0.05+23)Kgf/mm2とし
た。 一方、鋼線表面の圧縮残留応力は大きいほど円
周方向の延性の改善には望ましいが、周知の如
く、表面の圧縮残留応力に比例して、鋼線中心の
引張残留応力は増加する。鋼線中心の引張残留応
力が大きくなると、中心部に割れが生じ、捻回試
験時に異常破断を生ずるに至る。従つて、鋼線中
心の割れとの関係で自ずから、鋼線表面に許容さ
れる圧縮残留応力の上限値が決る。そこで本発明
者らは前記の4種類の鋼線を用いて、鋼線中心の
割れに起因する捻回試験の異常破断の発生と、圧
縮残留応力の関係を調べた。その結果、引張強度
152Kgf/mm2の鋼線では、80Kgf/mm2、235Kgf/
mm2の鋼線では113Kgf/mm2、316Kgf/mm2の鋼線で
は136Kgf/mm2、377Kgf/mm2の鋼線では160Kg
f/mm2を表面圧縮残留応力が超えると、異常破断
が発生することが明らかになつた。この圧縮残留
応力は鋼線強度σと比例関係にあり、(0.35σ+
28)Kgf/mm2と実験的に与えられる。圧縮残留応
力の上限(0.35σ+28)Kgf/mm2はこのようにし
て決めた。 なお圧縮残留応力は機械的にどのような手段で
付加しても良いが、伸線後の鋼線の表面に本発明
で限定した範囲の圧縮残留応力を付加する手段と
して例えばローラー圧延加工あるいはシヨツトピ
ーニング加工をあげることができる。 このような圧縮残留応力は伸線後、鋼線が製品
として使用されるまでのいずれの工程において付
与されても良いが、ブルーイング処理後あるいは
メツキ処理後に付与された場合には、250℃以下
の温度で再度ブルーイング処理を行う方が鋼線の
応力緩和特性の向上のためには好ましい。 なお、本発明になる鋼線は疲労特性、腐食疲労
特性、応力腐食割れ特性、へたり性などにもすぐ
れている。 また本発明の鋼線は、鋼線を用いて作られる製
品例えばロープ、鋼線強化タイヤあるいは鋼線強
化プラスチツクなどの耐久性、疲労性の向上にも
効果を発揮する。 次に実施例をあげて本発明の効果をさらに具体
的に説明する。 (実施例) 実施例に供した鋼線の組成、線径、引張強度、
本発明で限定した鋼線表面の圧縮残留応力の下限
値(0.05σ+23)及び上限値(0.35σ+28)、実施
例に供した鋼線の表面に存在している残留応力、
及びこれらの鋼線について捻回試験、疲労試験、
腐食疲労試験、遅れ破壊試験、へたり試験などを
行つた結果、これらの鋼線を用いて製造された製
品の疲労試験の結果を第1表に併記した。 なお、同表において各種試験の判定基準或いは
手段は次のとおりである。 まず残留応力の+記号は引張残留応力を、−記
号は圧縮残留応力を示す。 次に、捻回試験異常破断率は捻回試験において
第1図bに示した異常破断が発生する比率を示
す。 腐食疲労寿命は鋼線の3%食塩水中の回転曲げ
疲労試験において、20Kgf/mm2の負荷で破断する
迄の回転数数を示す。 タイヤ中のコード破損率は500Kgの負荷で10万
Km走行後のタイヤ中のコードの破損率を示す。 へたり率は鋼線に引張強度の60%のねじり応力
を与え、96時間放置した後の残留剪断歪を示す。 遅れ破壊時間は0.1N塩酸溶液中で80Kgf/mm2
の引張応力を負荷したときの破断までの時間を示
す。 プラスチツク板の疲労限比は1mm2当り100本の
鋼線で強化した1mm厚×10mm幅のプラスチツク板
の曲げ疲労における疲労限を比較例の鋼線で強化
されたプラスチツク板の疲労限を1として対比す
る。 ロープ疲労限比はJIS1号ロープの曲げ疲労限
で、比較例の鋼線で製造されたロープの疲労限を
1として、その対比で発明例の鋼線で製造された
ロープの疲労限を示す。 圧力腐食割れ時間は、0.5%酢酸+5%食塩水
溶液中で70Kgf/mm2の引張応力を負荷したときの
破断までの時間を示す。 疲労限は鋼線の回転曲げ疲労試験における疲労
限界応力を示す。 次に第1表において試験No.1〜8は発明1に関
するもので、こね内No.1,3,4は本発明であり
他は比較例である。 No.1,2は線径0.2mm、引張強度332Kgf/mm2
同一成分組成を有する鋼線についての結果であ
り、これらの内112Kgf/mm2の圧縮残留応力を有
するNo.1の鋼線の捻回試験の異常破断率率は0で
ある。なお圧縮残留応力はローラー圧延加工によ
つて付与されている。一方61Kgf/mm2の引張残留
応力を有するNo.2の鋼線の異常破断率は100%で、
本発明になる鋼線がすぐれた延性を示すことが分
る。また本発明になる鋼線は腐食疲労特性及びタ
イヤ中における耐久性にもすぐれている。 No.3は線径2.6mm、引張強度168Kgf/mm2で50Kg
f/mm2の圧縮残留応力を有する鋼線、またNo.4は
線径4.5mm、引張強度196Kgf/mm2で83Kgf/mm2
圧縮残留応力を有する鋼線の結果で、共に異常破
断率は0で、延性がすぐれている。圧縮残留応力
は共にシヨツトピーニング加工で与えられた。 No.5,6,7,8は、いずれも組成あるいは残
留応力が本発明外にあるため異常破断率が高く、
延性に欠けていることが明らかである。 次にNo.9〜27は発明2に関するもので、この内
No.9,11,12,14,15,16,19,20は本発明例で
あり、他は比較例である。 No.9,10は線径0.25mm、引張強度286Kgf/mm2
の同一成分組成を有する鋼線についての結果で、
87Kgf/mm2の圧縮残留応力を有するNo.9の鋼線の
捻回試験の異常破断率は5%で、一方45Kgf/mm2
の引張残留応力を有するNo.10の鋼線の異常破断率
は95%で、本発明になる鋼線が延性に極めてすぐ
れていることが分る。なお圧縮残留応力はローラ
ー圧延によつて与えられた。 No.11は線径2.5mm、引張強度205Kgf/mm2で、60
Kgf/mm2の圧縮残留応力を有する鋼線の結果で、
異常破断率は0で延性にすぐれている。この場
合、圧縮残留応力はシヨツトピーニングによつて
与えられている。 No.12と13は線径0.6mm、引張強度256Kgf/mm2
同一成分組成を有する鋼線に関する例で、65Kg
f/mm2の圧縮残留応力を有するNo.12の鋼線では異
常破断率が5%であるのに対して、130Kgf/mm2
にも及ぶ圧縮残留応力が存在するNo.13の鋼線では
異常破断率が70%にも達しており、本発明の鋼線
の延性がすぐれていることが明らかである。この
場合の圧縮残留応力はローラー圧延加工によつて
与えられた。 No.14は線径4.5mm、引張強度195Kgf/mm2で45Kg
f/mm2の圧縮残留応力を有する鋼線、No.15は線径
3.2mm、引張強度170Kgf/mm2で41Kgf/mm2の圧縮
残留応力を有する亜鉛メツキ鋼線の結果で、共に
異常破断率は0で延性にすぐれている。圧縮残留
応力はNo.14の鋼線はローラー圧延で、No.15の鋼線
はシヨツトピーニングによつて与えられた。 No.16〜18は線径8mm、引張強度152Kgf/mm2
同一成分組成を有する鋼線に関する結果で、41Kg
f/mm2の圧縮残留応力を有するNo.16では異常破断
率は5%で、25Kgf/mm2の引張残留応力の存在す
るNo.17及び18Kgf/mm2の圧縮残留応力しか有して
いないNo.18の鋼線では異常破断率はそれぞれ60%
と45%で、本発明になる鋼線の延性がすぐれてい
ることが分る。ここでNo.16の鋼線ではシヨツトピ
ーニング、No.18の鋼線ではローラー延性加工によ
つて圧縮残留応力が与えられた。また本発明にな
る鋼線はへたり性、遅れ破壊特性にもすぐれてい
る。 No.19は線径1.2mm、引張強度220Kgf/mm2で、78
Kgf/mm2の圧縮残留応力を有する鋼線、またNo.20
は線径3.6mm、引張強度184Kgf/mm2で50Kgf/mm2
の圧縮残留応力を有する鋼線の結果で、異常破断
率はそれぞれ5%と0と延性にすぐれている。こ
れらはいずれもローラー圧延によつて圧縮残留応
力を与えられた。 No.21〜27はそれぞれ鋼線組成あるいは残留応力
が本発明外にあるため、いずれも異常破断率が高
く、延性が劣つている。 No.28〜42は発明3に関するもので、この内No.
28,29,30,32,33,35,36は本発明例であり、
他は比較例である。 まず、No.28は線径2.0mm、引張強度196Kgf/mm2
で60Kgf/mm2の圧縮残留応力を有する鋼線、また
No.29は線径0.8mm、引張強度258Kgf/mm2で72Kg
f/mm2の圧縮残留応力を有する鋼線の結果で、異
常破断率はそれぞれ0と5%でいずれも延性にす
ぐれている。 No.30と31は線径0.06mm、引張強度408Kgf/mm2
の同一成分組成の鋼線に関する結果で、76Kgf/
mm2の圧縮残留応力を有するNo.30の鋼線の異常破断
率は5%であるのに対して、50Kgf/mm2の引張残
留応力を有するNo.31の鋼線の異常破断率は100%
で本発明になる鋼線の延性がすぐれていることが
分る。また本発明になる鋼線で強化されたプラス
チツク板はすぐれた疲労特性を示すことが明らか
である。なお圧縮残留応力はローラー圧延加工に
よつて与えた。 No.32は線径5.5mm、引張強度185Kgf/mm2で65Kg
f/mm2の圧縮残留応力を有する鋼線の結果で、異
常破断率は0で延性にすぐれている。 No.33と34は、線径3.2mmで146Kgf/mm2の引張強
度を有する同一成分組成の鋼線に関する結果で、
45Kgf/mm2の圧縮残留応力を有するNo.33の鋼線は
異常破断率が0であるのに対して、93Kgf/mm2
過大な圧縮残留応力を有するNo.34の鋼線は異常破
断率が35%で、本発明になる鋼線の延性がすぐれ
ていることが分る。 No.35は線径3.2mm、引張強度170Kgf/mm2で、50
Kgf/mm2の圧縮残留応力を有する鋼線、またNo.36
は線径0.3mm、引張強度238Kgf/mm2で69Kgf/mm2
の圧縮残留応力を有する鋼線の例で、異常破断率
はそれぞれ0と5%で、共にすぐれた延性を示し
ている。なおNo.32,33,35,36の鋼線の圧縮残留
応力はシヨツトピーニングによつて付与された。 一方、No.37〜42は、それぞれ鋼線の組成あるい
は残留応力が本発明外にあるため異常破断率がい
ずれも高く、延性に欠けている。 最後にNo.43〜55は発明4に関するもので、この
内No.43,44,45,46,47,49は本発明例で、他は
比較例である。 No.43は線径2.0mm、引張強度195Kgf/mm2で圧縮
残留応力75Kgf/mm2を有する鋼線、No.44は線径
3.6mm、引張強度185Kgf/mm2で、50Kgf/mm2の圧
縮残留応力を有する鋼線、No.45は線径1.2mm、引
張強度221Kgf/mm2で、圧縮残留応力40Kgf/mm2
を有する鋼線、及びNo.46は線径0.35mm、引張強度
260Kgf/mm2で、80Kgf/mm2の圧縮残留応力を有
する鋼線の結果で、いずれも異常破断率は0で極
めて延性にすぐれている。 No.47と48は線径3.6mmで、引張強度228Kgf/mm2
の同一成分組成の鋼線に関する結果で、63Kgf/
mm2の圧縮残留応力を有するNo.47の鋼線は異常破断
率0で延性にすぐれている。一方30Kgf/mm2の引
張残留応力を有するNo.48の鋼線は異常破断率75%
で延性に欠けている。 また本発明のNo.47の鋼線は応力腐食割れ特性に
もすぐれ、またこの鋼線で製造されたロープはす
ぐれた疲労特性を示している。 なおNo.43,44,45,46,47の鋼線では圧縮残留
応力はローラー圧延によつて付与された。 No.49と50は、線径0.6mm、引張強度290Kgf/mm2
の同一成分組成の鋼線に関する結果で、86Kgf/
mm2の圧縮残留応力を有するNo.49の鋼線で異常破断
率は0で延性にすぐれている。一方43Kgf/mm2
引張残留応力を有するNo.50の鋼線は90%にも及び
異常破断率を示し、延性に劣つていることが明ら
かである。またこの鋼線は疲労特性にもすぐれて
いる。なおNo.49の鋼線の圧縮残留応力はシヨツト
ピーニングによつて与えられた。 No.51〜55は、それぞれ組成あるいは残留応力が
本発明外にあるため、異常破断率が高く、延性に
劣つている。
(Industrial Application Field) The present invention relates to a high tensile strength steel wire with excellent ductility. (Prior Art) In recent years, demands for higher strength of hard steel wires such as steel wires for ropes, steel wires for reinforcing tires, steel wires for reinforcing optical fiber cables, and steel wires for long bridges have been increasing. Although intensive research has been carried out on increasing the strength of hard steel wires, the lack of established technology to prevent the deterioration of ductility that occurs with increased strength is a constraint. It has not yet reached the point where high strength has been achieved. For example, the twisting property, which is an important measure of ductility, is determined by heating the steel wire after drawing at high temperature, as described in the paper on page 50 of Wire Journal vol. 16, No. 4 (1983). This can be improved by bluing treatment, but such high-temperature treatment leads to a decrease in strength, and in the case of thin wires such as tire reinforcing steel wires, deterioration in ductility due to surface oxidation cannot be avoided. However, there are limits to the application of this method. On the other hand, this method does not involve heat treatment,
Attempts have also been made to improve ductility by subjecting the drawn steel wire to skin-pass drawing to release tensile residual stress existing on the surface of the drawn steel wire. However, as described in "Effect of die schedule on mechanical properties and residual stress of steel wire" in the material submitted by the 20th Wire Drawing Technology Subcommittee of the Japan Society for Plasticity Processing, published on November 16, 1984, ductility is hardly improved by this method. Thus, at present, no sufficient method has been found to improve the ductility of steel wire. (Problems to be Solved by the Invention) The object of the present invention is to provide a steel wire with excellent ductility that eliminates these drawbacks. (Means for Solving the Problems) As a result of various research into providing a steel wire with excellent ductility, the present inventors have found that the steel wire has a specific composition and
It has a strength of 130Kgf/mm2 or more , and actively applies compressive residual stress to the surface of the steel wire after drawing.
The compressive residual stress is determined according to the steel wire strength σ (0.05σ
+23) to (0.35σ+28) Kgf/mm 2 It has been found that a hard steel wire with excellent ductility can be obtained. That is, the gist of the present invention is as follows. (1) C0.4-1.0%, Si 2.0% or less, Mn 0.2-1.0% by weight
Contains 2%, P0.02% or less, S0.02% or less,
N is limited to 0.01% or less, the remainder consists of iron and unavoidable impurities, and has a strength of 130Kgf/mm 2 or more, and according to the steel wire strength σ (0.05σ
A high tensile strength steel wire with excellent ductility, characterized by having a surface compressive residual stress of +23) to (0.35σ+28) Kgf/mm 2 . (2) C0.4-1.0%, Si2.0% or less, Mn0.2 by weight
Contains ~2%, P0.02% or less, S0.02% or less,
Limited to N0.01% or less, and Cr0.05-3%,
Mo0.01~1%, W0.01~1%, Cu0.05~3%,
Contains one or more of Ni0.1-5% and Co0.1-5%, with the balance consisting of iron and unavoidable impurities, and has a strength of 130Kgf/mm2 or more , depending on the steel wire strength σ. (0.05σ+23)~
A high tensile strength steel wire with excellent ductility, characterized by having a surface compressive residual stress of (0.35σ+28) Kgf/mm 2 . (3) C0.4-1.0%, Si2.0% or less, Mn0.2 in weight%
Contains ~2%, P0.02% or less, S0.02% or less,
Limit N to 0.01% or less, and Al0.001 to 0.1%,
Ti0.001~0.1%, Nb0.001~0.1%, V0.001~0.1
%, B0.0003~0.05%, Mg0.001~0.1%, the balance consists of iron and unavoidable impurities, and has a strength of 130Kgf/mm2 or more , and has a steel wire strength σ (0.05σ
A high tensile strength steel wire with excellent ductility, characterized by having a surface compressive residual stress of +23) to (0.35σ+28) Kgf/mm 2 . (4) C0.4-1.0% by weight, Si2.0% or less, Mn0.2
Contains ~2%, P0.02% or less, S0.02% or less,
Limited to N0.01% or less, and Cr0.05-3%,
Mo0.01~1%, W0.01~1%, Cu0.05~3%,
Contains one or more of Ni0.1~5%, Co00.1~5%, and Al0.001~0.1%, Ti0.001~
0.1%, Nb0.001~0.1%, V0.001~0.1%,
Contains one or more of B0.0003~0.05%, Mg0.001~0.1%, the balance is iron and unavoidable impurities, and has a strength of 130Kgf/mm2 or more , and depends on the steel wire strength σ. (0.05σ+23)
A high tensile strength steel wire with excellent ductility, characterized by having a surface compressive residual stress of ~(0.35σ+28) Kgf/mm 2 . The present invention will be explained in detail below. (Function) First, the reason for limiting the steel wire composition as described above will be described. If C is less than 0.4, the required strength cannot be obtained, so
Moreover, since ductility deteriorates significantly when it exceeds 1.0%, the content is limited to 0.4 to 1.0%. Si is added mainly to take advantage of its solid solution hardening effect, but if the amount added exceeds 2%, the ductility decreases significantly, so the upper limit was set at 2.0%. Mn is added to ensure hardenability and fix S, but if it is less than 0.2%, S will not be fixed sufficiently, and if it is added in excess of 2%, the hardenability will no longer increase. Limited to 2.0%. A small amount of P and S is good for improving ductility. If each exceeds 0.02%, it will have a significant negative effect on ductility, so it was limited to 0.02% or less. If N exceeds 0.01%, it will have a negative effect on ductility, so it was limited to 0.01% or less. The above is the basic composition system of the steel wire that is the object of the present invention.
~5%, W0.01~1%, Cu0.05~3%, Ni0.1~
5%, one or more of Co0.1-5% or (B)Al0.001
~0.1%, Ti0.001~0.1%, Nb0.001~0.1%,
V0.001~0.1%, B0.0003~~0.05%, Mg0.001~
It can contain 0.1% of one or more of (A), (B), or both. First, Cr, Mo, W, Cu, Ni, and Co are added for the purpose of increasing strength and corrosion resistance.
Cr less than 0.05%, Mo less than 0.01%, W less than 0.01%,
If Cu is less than 0.05%, Ni is less than 0.1%, and Co is less than 0.1%, their effects on strengthening and corrosion resistance will not be recognized.
The lower limits were set to 0.05% Cu, 0.1% Ni, and 0.1% Co. On the other hand, more than 3% Cr, more than 1% Mo, more than 1% W, more than 3% Cu,
When Ni exceeds 5% and Co exceeds 5%, the effects of these elements on strengthening and corrosion resistance become saturated, while the effect of reducing ductility becomes significant.
%, W1%, Cu3%, Ni5% and Co5% as upper limits. Note that the total amount of these alloying elements is desirably suppressed to 7% or less from the viewpoint of ductility. Next, Al, Ti, Nb, V, B and Mg are N and S
It is added for the purpose of fixing and improving ductility, but Al less than 0.001%, Ti less than 0.001%,
Nb less than 0.001%, V less than 0.001%, B less than 0.0003%,
If Mg is less than 0.001%, N and S cannot be fixed, so Al0.001%, Nb0.001%, V0.001
%, B0.0003% and Mg0.001% were the lower limits. On the other hand, Al over 0.1%, Ti over 0.1, Nb over 0.1%, V 0.1%
At Al0.1%, B0.05%, and Mg0.1%, the N and S fixing effects of these elements become saturated, while the ductility deterioration effect due to nitrides and sulfides of these elements becomes significant. %, Ti0.1%, Nb0.1%, V0.1
%, B0.05% and Mg0.1% are the upper limits. In addition, it is desirable from the viewpoint of ductility to suppress the total amount of these elements to 0.2% or less. Next, the strength of the steel wire is limited to 130 Kgf/mm 2 or more because at a strength lower than this, almost no improvement in ductility is observed even if compressive residual stress exists on the surface of the steel wire. Next, the biggest feature of the present invention is that the steel wire is coated on its surface depending on the steel wire strength σ from (0.05σ+23) to (0.35σ+
28) It has a compressive residual stress in the range of Kgf/ mm2 . The reason why the compressive residual stress on the surface of the steel wire was determined in this way will be explained below. The ductility of a steel wire is usually determined by the elongation in a tensile test, the reduction of area, the number of rotations until breakage in a twist test (twist value), the form of breakage at that time, or a bending test. Among these ductility evaluation criteria, the one that deteriorates most significantly as the strength of the steel wire increases is the fracture mode in the torsion test. Figure 1 schematically shows the fracture mode of the steel wire 1 in the twisting test, where a indicates a normal fracture situation, but as the strength increases, as shown in figure b, The frequency of abnormal fractures accompanied by large cracks 2 increases. This is due to the fact that cracks 2 occur in the longitudinal direction on the surface of the steel wire 1 during a twisting test conducted by gripping the steel wire 1 with a gripping jig 3, as schematically shown in Fig. 2. Therefore, the occurrence of abnormal fracture can be considered to mean deterioration of the ductility of the steel wire in the circumferential direction. The fact that the ductility of steel wire in the circumferential direction is most likely to deteriorate as the strength increases is actually during bending of steel wire.
This can also be understood from the fact that vertical cracks may occur in the longitudinal direction even though bending breaks do not occur, and that longitudinal cracks may also occur when twisted wires are processed, even though twist breaks do not occur. . In this way, it can be said that the fracture mode in the torsion test is the most important ductility evaluation criterion for steel wire. The present inventors discovered that having compressive residual stress on the surface of a steel wire is extremely effective in improving the circumferential ductility of the steel wire, and determined the appropriate range of compressive residual stress to be applied. investigated. In other words, the tensile strength was 152Kgf/mm 2 and 235Kg, with the goal of suppressing the incidence of abnormal fractures in torsion tests to 10% or less.
Using steel wires of f/mm 2 , 316 Kgf/mm 2 and 377 Kgf/mm 2 , the relationship between the surface compressive residual stress and the incidence of abnormal fracture was investigated. As a result, a steel wire with a tensile strength of 152Kgf/ mm2 has a tensile strength of 29
Kgf/mm 2 , 36Kgf/mm 2 for steel wire of 235Kgf/mm 2 ,
316Kgf/mm 2 steel wire is 38Kgf/mm 2 , 377Kgf/mm 2
It has become clear that a compressive residual stress of 42 Kgf/mm 2 or more is necessary for steel wires in order to suppress the incidence of abnormal fracture in torsion tests to 10% or less. When the compressive residual stress obtained here is arranged with respect to the tensile strength σ of the steel wire, the following relationship is experimentally obtained: (0.05σ+23)Kgf/mm 2 . If the incidence of abnormal fractures in the twisting test is 10% or less, there is no need to worry about vertical cracks occurring when actually processing the steel wire. For this reason, the lower limit of compressive residual stress to be added to the surface was set to (0.05+23) Kgf/mm 2 according to the steel wire strength σ. On the other hand, the larger the compressive residual stress on the surface of the steel wire is, the more desirable it is for improving the ductility in the circumferential direction, but as is well known, the tensile residual stress at the center of the steel wire increases in proportion to the compressive residual stress on the surface. When the tensile residual stress at the center of the steel wire increases, a crack occurs at the center, leading to abnormal fracture during the twisting test. Therefore, the upper limit of the compressive residual stress allowed on the surface of the steel wire is naturally determined by the relationship with the crack at the center of the steel wire. Therefore, the present inventors used the above-mentioned four types of steel wires to investigate the relationship between the occurrence of abnormal fractures in twisting tests due to cracks at the center of the steel wires and compressive residual stress. As a result, tensile strength
For 152Kgf/mm 2 steel wire, 80Kgf/mm 2 and 235Kgf/
113Kgf/mm 2 for mm 2 steel wire, 136Kgf/mm 2 for 316Kgf/mm 2 steel wire, 160Kg for 377Kgf/mm 2 steel wire
It has become clear that abnormal fracture occurs when the surface compressive residual stress exceeds f/mm 2 . This compressive residual stress is proportional to the steel wire strength σ, which is (0.35σ +
28) Given experimentally as Kgf/mm 2 . The upper limit of the compressive residual stress (0.35σ+28) Kgf/mm 2 was determined in this way. Note that the compressive residual stress may be applied mechanically by any means, but as a means for applying the compressive residual stress within the range limited in the present invention to the surface of the steel wire after wire drawing, for example, roller rolling or cylinder processing may be used. Yotsuto peening processing can be used. Such compressive residual stress may be applied at any step after wire drawing until the steel wire is used as a product, but if it is applied after bluing or plating, it must be applied at temperatures below 250°C. In order to improve the stress relaxation properties of the steel wire, it is preferable to perform the bluing treatment again at a temperature of . The steel wire of the present invention also has excellent fatigue properties, corrosion fatigue properties, stress corrosion cracking properties, and setting resistance. The steel wire of the present invention is also effective in improving the durability and fatigue properties of products made using the steel wire, such as ropes, steel wire-reinforced tires, and steel wire-reinforced plastics. Next, the effects of the present invention will be explained in more detail with reference to Examples. (Example) Composition, wire diameter, tensile strength, and
The lower limit value (0.05σ + 23) and upper limit value (0.35σ + 28) of the compressive residual stress on the steel wire surface limited in the present invention, the residual stress existing on the surface of the steel wire used in the example,
And these steel wires were subjected to twisting tests, fatigue tests,
As a result of conducting corrosion fatigue tests, delayed fracture tests, and fatigue tests, the results of fatigue tests on products manufactured using these steel wires are also listed in Table 1. In addition, the criteria or means for various tests in the same table are as follows. First, the + symbol for residual stress indicates tensile residual stress, and the - symbol indicates compressive residual stress. Next, the abnormal rupture rate in the twisting test indicates the rate at which the abnormal rupture shown in FIG. 1b occurs in the twisting test. Corrosion fatigue life indicates the number of rotations until the steel wire breaks under a load of 20 kgf/mm 2 in a rotating bending fatigue test in 3% saline solution. Cord breakage rate in tires is 100,000 at a load of 500Kg
This shows the breakage rate of cords in tires after driving Km. Settling rate indicates the residual shear strain after applying torsional stress of 60% of the tensile strength to the steel wire and leaving it for 96 hours. Delayed failure time is 80Kgf/mm 2 in 0.1N hydrochloric acid solution
It shows the time until rupture when a tensile stress of . The fatigue limit ratio of a plastic plate is the fatigue limit in bending fatigue of a 1 mm thick x 10 mm wide plastic plate reinforced with 100 steel wires per 1 mm 2 , with the fatigue limit of a comparative example of a plastic plate reinforced with steel wire as 1. Contrast. The rope fatigue limit ratio is the bending fatigue limit of the JIS No. 1 rope, and the fatigue limit of the rope manufactured with the steel wire of the comparative example is set as 1, and the fatigue limit of the rope manufactured with the steel wire of the invention example is shown in comparison. Pressure corrosion cracking time indicates the time until rupture when a tensile stress of 70 Kgf/mm 2 is applied in a 0.5% acetic acid + 5% saline solution. Fatigue limit indicates the fatigue limit stress in a rotating bending fatigue test of steel wire. Next, in Table 1, Test Nos. 1 to 8 are related to Invention 1, Test Nos. 1, 3, and 4 are related to the present invention, and the others are comparative examples. No. 1 and 2 are the results for steel wires having the same composition with a wire diameter of 0.2 mm and a tensile strength of 332 Kgf/mm 2 . Of these, No. 1 steel wire has a compressive residual stress of 112 Kgf/mm 2 . The abnormal rupture rate of the torsion test is 0. Note that the compressive residual stress is imparted by roller rolling. On the other hand, the abnormal rupture rate of No. 2 steel wire with a tensile residual stress of 61 Kgf/mm 2 was 100%.
It can be seen that the steel wire according to the invention exhibits excellent ductility. Further, the steel wire of the present invention has excellent corrosion fatigue properties and durability in tires. No. 3 has a wire diameter of 2.6 mm and a tensile strength of 168 Kgf/mm 2 and 50 Kg.
No. 4 is a steel wire with a compressive residual stress of f/ mm2 , and No. 4 is a steel wire with a wire diameter of 4.5mm, a tensile strength of 196Kgf/ mm2 , and a compressive residual stress of 83Kgf/ mm2 , both of which have abnormal rupture rates. is 0, indicating excellent ductility. Compressive residual stress was applied by shot peening in both cases. Nos. 5, 6, 7, and 8 all have a high abnormal rupture rate because their composition or residual stress is outside the scope of the present invention.
It is clear that it lacks ductility. Next, Nos. 9 to 27 are related to invention 2, of which
Nos. 9, 11, 12, 14, 15, 16, 19, and 20 are examples of the present invention, and the others are comparative examples. No.9 and 10 have a wire diameter of 0.25mm and a tensile strength of 286Kgf/mm 2
Results for steel wires with the same composition of
The abnormal rupture rate in the twist test of No. 9 steel wire with compressive residual stress of 87Kgf/ mm2 is 5%, while 45Kgf/ mm2
The abnormal rupture rate of No. 10 steel wire having a tensile residual stress of 95% indicates that the steel wire of the present invention has extremely excellent ductility. Note that the compressive residual stress was imparted by roller rolling. No. 11 has a wire diameter of 2.5 mm and a tensile strength of 205 Kgf/mm 2 , 60
Results for steel wire with compressive residual stress of Kgf/ mm2 ,
The abnormal rupture rate is 0 and it has excellent ductility. In this case, the compressive residual stress is imparted by shot peening. Nos. 12 and 13 are examples of steel wires with the same composition, wire diameter 0.6 mm, tensile strength 256 Kgf/mm 2 , and 65 kg
No. 12 steel wire, which has a compressive residual stress of f/mm 2 , has an abnormal rupture rate of 5%, whereas it has a compressive residual stress of 130Kgf/mm 2
In steel wire No. 13, which had a compressive residual stress of 70%, the abnormal rupture rate reached 70%, and it is clear that the steel wire of the present invention has excellent ductility. The compressive residual stress in this case was imparted by roller rolling. No.14 has a wire diameter of 4.5 mm, a tensile strength of 195 Kgf/mm 2, and a weight of 45 kg.
Steel wire with compressive residual stress of f/mm 2 , No.15 is wire diameter
The results are for a galvanized steel wire of 3.2 mm, tensile strength of 170 Kgf/mm 2 , and compressive residual stress of 41 Kgf/mm 2 , both of which have an abnormal rupture rate of 0 and excellent ductility. The compressive residual stress was given to the No. 14 steel wire by roller rolling, and the No. 15 steel wire was given by shot peening. Nos. 16 to 18 are results for steel wires with the same composition, wire diameter 8 mm, tensile strength 152 Kgf/mm 2 , and 41 Kg
No. 16, which has a compressive residual stress of f/mm 2 , has an abnormal rupture rate of 5%, and No. 17, which has a tensile residual stress of 25 Kgf/mm 2 , and only has a compressive residual stress of 18 Kgf/mm 2 . For No. 18 steel wire, the abnormal rupture rate is 60%.
It can be seen that the steel wire of the present invention has excellent ductility. Here, compressive residual stress was applied to the No. 16 steel wire by shot peening, and to the No. 18 steel wire by roller ductility processing. Further, the steel wire according to the present invention has excellent settability and delayed fracture properties. No. 19 has a wire diameter of 1.2 mm and a tensile strength of 220 Kgf/mm 2 , 78
Steel wire with compressive residual stress of Kgf/ mm2 , also No.20
wire diameter is 3.6mm, tensile strength is 184Kgf/mm 2 and 50Kgf/mm 2
The abnormal rupture rates are 5% and 0, respectively, indicating excellent ductility. All of these were given compressive residual stress by roller rolling. Nos. 21 to 27 each have a steel wire composition or residual stress outside the scope of the present invention, and therefore all have a high abnormal rupture rate and poor ductility. Nos. 28 to 42 relate to Invention 3, of which No.
28, 29, 30, 32, 33, 35, 36 are examples of the present invention,
The others are comparative examples. First, No. 28 has a wire diameter of 2.0 mm and a tensile strength of 196 Kgf/mm 2
steel wire with compressive residual stress of 60Kgf/ mm2 , and
No.29 has a wire diameter of 0.8mm and a tensile strength of 258Kgf/mm 2 and 72Kg.
The results are for steel wires with a compressive residual stress of f/mm 2 , and the abnormal rupture rates are 0 and 5%, respectively, indicating excellent ductility. No.30 and 31 have a wire diameter of 0.06mm and a tensile strength of 408Kgf/mm 2
The results are for steel wires with the same composition of 76Kgf/
The abnormal rupture rate of No. 30 steel wire with a compressive residual stress of mm 2 is 5%, while the abnormal rupture rate of No. 31 steel wire with a tensile residual stress of 50 Kgf/mm 2 is 100%. %
It can be seen that the steel wire of the present invention has excellent ductility. It is also clear that the steel wire reinforced plastic sheet according to the invention exhibits excellent fatigue properties. The compressive residual stress was applied by roller rolling. No.32 has a wire diameter of 5.5mm, a tensile strength of 185Kgf/ mm2, and a weight of 65Kg.
The results show that the steel wire has a compressive residual stress of f/mm 2 , has an abnormal rupture rate of 0, and has excellent ductility. Nos. 33 and 34 are results for steel wires of the same composition with a wire diameter of 3.2 mm and a tensile strength of 146 Kgf/mm 2 .
Steel wire No. 33, which has a compressive residual stress of 45 Kgf/mm 2 , has an abnormal rupture rate of 0, whereas steel wire No. 34, which has an excessive compressive residual stress of 93 Kgf/mm 2 , has an abnormal rupture rate. It can be seen that the steel wire of the present invention has excellent ductility with a ratio of 35%. No. 35 has a wire diameter of 3.2 mm and a tensile strength of 170 Kgf/mm 2 .
Steel wire with compressive residual stress of Kgf/ mm2 , also No.36
wire diameter is 0.3mm, tensile strength is 238Kgf/mm 2 and 69Kgf/mm 2
In this example, the abnormal rupture rates are 0 and 5%, respectively, and both exhibit excellent ductility. The compressive residual stress in steel wires No. 32, 33, 35, and 36 was applied by shot peening. On the other hand, in Nos. 37 to 42, the composition or residual stress of the steel wires is outside the scope of the present invention, so all have high abnormal rupture rates and lack ductility. Finally, Nos. 43 to 55 relate to Invention 4, among which Nos. 43, 44, 45, 46, 47, and 49 are examples of the present invention, and the others are comparative examples. No. 43 is a steel wire with a wire diameter of 2.0 mm, a tensile strength of 195 Kgf/mm 2 and a compressive residual stress of 75 Kgf/mm 2 , and No. 44 is a steel wire with a wire diameter of 2.0 mm.
3.6mm, tensile strength 185Kgf/ mm2 , and compressive residual stress of 50Kgf/ mm2 Steel wire No. 45 has a wire diameter of 1.2mm, tensile strength 221Kgf/ mm2 , and compressive residual stress 40Kgf/ mm2
and No. 46 has a wire diameter of 0.35 mm and a tensile strength of
The steel wire has a compressive residual stress of 260Kgf/mm 2 and 80Kgf/mm 2 , and both have extremely high ductility with an abnormal rupture rate of 0. No.47 and 48 have a wire diameter of 3.6mm and a tensile strength of 228Kgf/mm 2
The results are for steel wires with the same composition of 63Kgf/
Steel wire No. 47, which has a compressive residual stress of mm 2 , has an abnormal rupture rate of 0 and excellent ductility. On the other hand, No. 48 steel wire with a tensile residual stress of 30 Kgf/mm 2 has an abnormal rupture rate of 75%.
and lacks ductility. Further, the steel wire No. 47 of the present invention has excellent stress corrosion cracking properties, and ropes manufactured from this steel wire exhibit excellent fatigue properties. In addition, compressive residual stress was applied to steel wires No. 43, 44, 45, 46, and 47 by roller rolling. No.49 and 50 have a wire diameter of 0.6mm and a tensile strength of 290Kgf/mm 2
The results are for steel wires with the same composition of 86Kgf/
The No. 49 steel wire has a compressive residual stress of mm 2 and has an abnormal rupture rate of 0 and excellent ductility. On the other hand, steel wire No. 50 having a tensile residual stress of 43 Kgf/mm 2 showed an abnormal fracture rate of as much as 90%, and it is clear that the wire had poor ductility. This steel wire also has excellent fatigue properties. The compressive residual stress of steel wire No. 49 was given by shot peening. Nos. 51 to 55 had a composition or residual stress outside the scope of the present invention, and therefore had a high abnormal rupture rate and poor ductility.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 重量%でC0.4〜1.0%、Si2.0%以下、Mn0.2
〜2%を含有し、P0.02%以下、S0.02%以下、
N0.01%以下に制限し、残部は鉄および不可避不
純物よりなり、且つ130Kgf/mm2以上の強度を有
すると共に、鋼線強度σに応じて(0.05σ+23)
〜(0.35σ+28)Kgf/mm2の表面圧縮残留応力を
有することを特徴とする延性にすぐれた高張力鋼
線。 2 重量%でC0.4〜1.0%、Si2.0%以下、Mn0.2
〜2%を含有し、P0.02%以下、S0.02%以下、
N0.01%以下に制限し、且つCr0.05〜3%、
Mo0.01〜1%、W0.01〜1%、Cu0.05〜3%、
Ni0.1〜5%、Co0.1〜5%の1種または2種以上
を含有し、残部鉄及び不可避不純物よりなり、且
つ130Kgf/mm2以上の強度を有すると共に、鋼線
強度σに応じて(0.05σ+23)〜(0.35σ+28)Kg
f/mm2の表面圧縮残留応力を有することを特徴と
する延性にすぐれた高張力鋼線。 3 重量%でC0.4〜1.0%、Si2.0%以下、Mn0.2
〜2%を含有し、P0.02%以下、S0.02%以下、
N0.01%以下に制限し、且つAl0.001〜0.1%、
Ti0.001〜0.1%、Nb0.001〜0.1%、V0.001〜0.1
%、B0.0003〜0.05%、Mg0.001〜0.1%の1種ま
たは2種以上を含有し、残部鉄および不可避不純
物よりなり、且つ130Kgf/mm2以上の強度を有す
ると共に、鋼線強度σに応じて(0.05σ+23)〜
(0.35σ+28)Kgf/mm2の表面圧縮残留応力を有す
ることを特徴とする延性にすぐれた高張力鋼線。 4 重量%でC0.4〜1.0%、Si2.0%以下、Mn0.2
〜2%を含有し、P0.02%以下、S0.02%以下、
N0.01%以下に制限し、且つCr0.05〜3%、
N0.01〜1%、W0.01〜1%、Cu0.05〜3%、
Ni0.1〜5%、Co0.1〜5%の1種または2種以上
を含有し、更にAl0.001〜0.1%、Ti0.001〜0.1%、
Nb0.001〜0.1%、V0.001〜0.1%、B0.0003〜0.05
%、Mg0.001〜0.1%の1種または2種以上を含
有し、残部鉄および不可避不純物よりなり、且つ
130Kgf/mm2以上の強度を有すると共に、鋼線強
度σに応じて(0.05σ+23)〜(0.35σ+28)Kg
f/mm2の表面圧縮残留応力を有することを特徴と
する延性にすぐれた高張力鋼線。
[Claims] 1. C0.4 to 1.0%, Si 2.0% or less, Mn 0.2 by weight
Contains ~2%, P0.02% or less, S0.02% or less,
N is limited to 0.01% or less, the remainder consists of iron and unavoidable impurities, and has a strength of 130Kgf/mm 2 or more, and according to the steel wire strength σ (0.05σ + 23)
A high tensile strength steel wire with excellent ductility, characterized by having a surface compressive residual stress of ~(0.35σ+28) Kgf/mm 2 . 2 Weight%: C0.4-1.0%, Si2.0% or less, Mn0.2
Contains ~2%, P0.02% or less, S0.02% or less,
Limited to N0.01% or less, and Cr0.05-3%,
Mo0.01~1%, W0.01~1%, Cu0.05~3%,
Contains one or more of Ni0.1-5% and Co0.1-5%, with the balance consisting of iron and unavoidable impurities, and has a strength of 130Kgf/mm2 or more , depending on the steel wire strength σ. (0.05σ+23)~(0.35σ+28)Kg
A high tensile strength steel wire with excellent ductility, characterized by having a surface compressive residual stress of f/mm 2 . 3 Weight% C0.4-1.0%, Si2.0% or less, Mn0.2
Contains ~2%, P0.02% or less, S0.02% or less,
Limit N to 0.01% or less, and Al0.001 to 0.1%,
Ti0.001~0.1%, Nb0.001~0.1%, V0.001~0.1
%, B0.0003~0.05%, Mg0.001~0.1%, the balance consists of iron and unavoidable impurities, and has a strength of 130Kgf/mm2 or more , and has a steel wire strength σ Depending on (0.05σ+23)~
A high tensile strength steel wire with excellent ductility, characterized by having a surface compressive residual stress of (0.35σ+28) Kgf/mm 2 . 4 Weight%: C0.4-1.0%, Si2.0% or less, Mn0.2
Contains ~2%, P0.02% or less, S0.02% or less,
Limited to N0.01% or less, and Cr0.05-3%,
N0.01~1%, W0.01~1%, Cu0.05~3%,
Contains one or more of Ni0.1-5%, Co0.1-5%, and further Al0.001-0.1%, Ti0.001-0.1%,
Nb0.001~0.1%, V0.001~0.1%, B0.0003~0.05
%, Mg0.001 to 0.1%, the balance consists of iron and inevitable impurities, and
It has a strength of 130Kgf/mm 2 or more, and depending on the steel wire strength σ (0.05σ+23) to (0.35σ+28)Kg
A high tensile strength steel wire with excellent ductility, characterized by having a surface compressive residual stress of f/mm 2 .
JP60214770A 1985-09-30 1985-09-30 High-tensile steel wire excellent in ductility Granted JPS6277441A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60214770A JPS6277441A (en) 1985-09-30 1985-09-30 High-tensile steel wire excellent in ductility
EP86113353A EP0218167B1 (en) 1985-09-30 1986-09-29 High tensile strength drawn steel wire with improved ductility
DE8686113353T DE3675874D1 (en) 1985-09-30 1986-09-29 DRAWN STEEL WIRE WITH HIGH BREAK RESISTANCE AND DUCTILITY.
KR1019860008244A KR910003978B1 (en) 1985-09-30 1986-09-30 High tensile strength drawn steel wire with improved ductility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60214770A JPS6277441A (en) 1985-09-30 1985-09-30 High-tensile steel wire excellent in ductility

Publications (2)

Publication Number Publication Date
JPS6277441A JPS6277441A (en) 1987-04-09
JPH0366386B2 true JPH0366386B2 (en) 1991-10-17

Family

ID=16661246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60214770A Granted JPS6277441A (en) 1985-09-30 1985-09-30 High-tensile steel wire excellent in ductility

Country Status (1)

Country Link
JP (1) JPS6277441A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109104A (en) * 1989-09-22 1991-05-09 Bridgestone Corp Radial tire for heavy load
DE60131294T2 (en) * 2000-12-20 2008-08-28 Nippon Steel Corp. HIGH STRENGTH SPRING STEEL AND SPRING STEEL WIRE
CN101909435B (en) * 2008-01-18 2012-12-19 贝卡尔特股份有限公司 Aquaculture net with high-tensile steel wires
CN113549835B (en) * 2021-07-22 2022-08-09 王军祥 High-yield-strength and high-toughness plastic finish-rolled twisted steel and production method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60214771A (en) * 1983-06-17 1985-10-28 イ−・ア−ル・スクイブ・アンド・サンズ・インコ−ポレイテツド 4-(((amidomethyl)oxy)methyl)-2-oxo-1-azetidine sulfonates

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60214771A (en) * 1983-06-17 1985-10-28 イ−・ア−ル・スクイブ・アンド・サンズ・インコ−ポレイテツド 4-(((amidomethyl)oxy)methyl)-2-oxo-1-azetidine sulfonates

Also Published As

Publication number Publication date
JPS6277441A (en) 1987-04-09

Similar Documents

Publication Publication Date Title
EP0144811B1 (en) Improved steel wire with high tensile strength
JPH09228274A (en) Steel cord
JPH02133687A (en) Steel cord for reinforcement
EP0201997B1 (en) High strength and toughness steel bar, rod and wire and the process of producing the same
JP2001512191A (en) Steel cord for pneumatic tire protection ply
KR910003978B1 (en) High tensile strength drawn steel wire with improved ductility
JP3246210B2 (en) High strength and high toughness hot-dip coated steel wire and method for producing the same
JPH0366386B2 (en)
WO2007097354A1 (en) High-strength pc steel stranded wire, process for manufacturing the same, and concrete structure utilizing the wire
JPH0248605B2 (en) KOKYODO * KOENSEIKOSENNOSEIZOHO
JP3237305B2 (en) High carbon steel wire for high strength and high ductility steel wire
WO1998053134A1 (en) Steel wire and method of manufacturing the same
JP2920474B2 (en) Ultra-high strength steel wire and steel cord for rubber reinforcement
JPH0430462B2 (en)
EP0169587A1 (en) High-performance carbon steel wire
JP3267833B2 (en) High-strength extra-fine steel wire with excellent fatigue properties and method for producing the same
JP2001220649A (en) High strength extra-fine steel wire excellent in ductility and fatigue characteristic
JP3061918B2 (en) Method of manufacturing steel cord with excellent fatigue properties
JPH08226085A (en) Ultra-high-strength steel cord and radial tire reinforced therewith
JPS60152659A (en) Wire rod for hyperfine wire having superior workability
JP3101757B2 (en) Steel cord for rubber reinforcement and radial tire
JP3108205B2 (en) Large radial tires
JPS6277442A (en) High-tensile steel wire excellent in ductility
JP2000080441A (en) Steel wire and its production
JPH10219404A (en) Antenna material and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees