JPS6277442A - High-tensile steel wire excellent in ductility - Google Patents

High-tensile steel wire excellent in ductility

Info

Publication number
JPS6277442A
JPS6277442A JP21477185A JP21477185A JPS6277442A JP S6277442 A JPS6277442 A JP S6277442A JP 21477185 A JP21477185 A JP 21477185A JP 21477185 A JP21477185 A JP 21477185A JP S6277442 A JPS6277442 A JP S6277442A
Authority
JP
Japan
Prior art keywords
steel wire
less
residual stress
ductility
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21477185A
Other languages
Japanese (ja)
Inventor
Toshihiko Takahashi
高橋 稔彦
Itsuyuki Asano
浅野 厳之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21477185A priority Critical patent/JPS6277442A/en
Priority to EP86113353A priority patent/EP0218167B1/en
Priority to DE8686113353T priority patent/DE3675874D1/en
Priority to KR1019860008244A priority patent/KR910003978B1/en
Publication of JPS6277442A publication Critical patent/JPS6277442A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To manufacture a high-tensile steel wire excellent in ductility by providing the surface of a steel wire, which has a specific composition and in which the difference of hardness between the center and surface is controlled to a specific value or below, with residual compressive stress according to the strength of the steel wire. CONSTITUTION:The steel wire has a basic composition consisting of, by weight, 0.4-1.0% C, <2.0% Si, 0.2-2% Mn, <0.02% P, <0.02% S, <0.01% N and the balance Fe or further contains 1 or >=2 kinds among 0.05-3% Cr, 0.01-1% Mo, 0.01-1% W, 0.05-3% Cu, 0.1-5% Ni and 0.1-5% Co or 1 or >=2 kinds among 0.001-0.1% Al, Ti, Nb, V and Mg and 0.0003-0.05% B independently or in combination. Furthermore, the difference of hardness between the center and surface of the steel wire is limited to <=100 vickers hardness and the surface is provided with a residual compressive stress of (0.05sigma+13)-(0.35sigma+28)kgf/mm<2> according to the strength (sigma) of the steel wire, so that high-tensile steel wire excellent in ductility can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は延性にすぐれた高張力鋼線に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a high tensile strength steel wire with excellent ductility.

(従来の技術) 近年、ロープ用鋼線、タイヤ補強用@線、光フアイバー
ケーブル補強用鋼線あるいは長大橋用鋼紛などの硬鋼線
において高強度化の要求が一段と高まっている。
(Prior Art) In recent years, there has been an increasing demand for higher strength in hard steel wires such as steel wires for ropes, @ wires for reinforcing tires, steel wires for reinforcing optical fiber cables, and steel powder for long bridges.

従来から硬鋼線の高強度化については精力的な研究が続
けられているが、強度の増加に伴って生ずる延性の劣化
を防止する技術が確立されていないことが制約条件とな
って十分な高強度化を達成する迄には至っていない。例
えば延性の重要な尺度である捻回特性は、ワイヤージャ
ーナル(WireJournal) vol、 16.
44 (1983)の50頁の雑文に記載されているよ
うに伸線後の鋼線を高温でブルーイング処理することに
よって改善されるが、このような高温の処理は強度の低
下を招くと共に、タイヤ補強用鋼線のような細線では表
面酸化に伴う延性の劣化を避けることができないので、
この方法の適用には自ずから限界がおる。
Although intensive research has been carried out on increasing the strength of hard steel wires, the lack of established technology to prevent the deterioration of ductility that occurs with increased strength is a constraint. It has not yet reached the point where high strength has been achieved. For example, torsional properties, which are an important measure of ductility, are described in Wire Journal, vol. 16.
44 (1983), p. 50, this can be improved by subjecting the steel wire after drawing to a high-temperature bluing treatment, but such high-temperature treatment not only leads to a decrease in strength; With thin wires such as tire reinforcing steel wires, deterioration in ductility due to surface oxidation cannot be avoided.
There are limits to the application of this method.

一方、このような熱処理による方法ではなく、伸線後の
鋼線にスキン/母ス伸線を施すことによって伸線後の鋼
線の表面に存在する引張の残留応力を解放することによ
って延性を向上させる試みも行われている。しかし19
84年11月16日発行の日本塑性加工学会の第20回
伸線技術分科会提出資料の「鋼線の機械的性質と残留応
力に及ぼすダイススケジュールの影響」に記載されてい
るようにかかる手段では延性はほとんど改善されない。
On the other hand, instead of using such a heat treatment method, ductility can be improved by applying skin/mother wire drawing to the steel wire after drawing to release the tensile residual stress that exists on the surface of the steel wire after drawing. Efforts are also being made to improve it. But 19
Such measures as described in "Effect of die schedule on mechanical properties and residual stress of steel wire" in the material submitted by the 20th Wire Drawing Technology Subcommittee of the Japan Society for Plasticity Processing, published on November 16, 1984. ductility is hardly improved.

このように現状では鋼線の延性を向上させる十分な手法
は見い出されていない。
Thus, at present, no sufficient method has been found to improve the ductility of steel wire.

(発明が解決しようとする問題点) 本発明はこれらの欠点を除いた延性にすぐれた鋼線の提
供を目的とするものである。
(Problems to be Solved by the Invention) The object of the present invention is to provide a steel wire with excellent ductility that eliminates these drawbacks.

(問題点を解決するための手段) 本発明者らは延性のすぐれた鋼線の提供について種々研
究した結果、特定成分組成を有し、且つ鋼線の中心と表
面の硬度差をビッカース硬度にして100以下に規制し
た鋼線の表面に積極的に圧縮残留応力を付与し、その圧
縮残留応力を鋼線強度σに応じて(0.05σ+13)
〜(0.35σ+28)嘔42の範囲に制御することに
よって、延性のすぐれた硬鋼線が得られることを見い出
した。
(Means for Solving the Problems) As a result of various studies to provide a steel wire with excellent ductility, the present inventors found that the steel wire has a specific composition and the hardness difference between the center and surface of the steel wire is determined by Vickers hardness. A compressive residual stress is actively applied to the surface of the steel wire, which is regulated to 100 or less, and the compressive residual stress is adjusted to (0.05σ + 13) according to the steel wire strength σ.
It has been found that a hard steel wire with excellent ductility can be obtained by controlling the hardness within the range of 0.35σ+28)42.

すなわち、本発明の要旨は下記のとおシである。That is, the gist of the present invention is as follows.

(1)重量係でC004〜1.0%、Si2.0%以下
、Mn  0.2〜2%を含有し、P 0.02%以下
、 S 0.02%以下、N0.01%以下に制限し、
残部は鉄および不可避不純物よりなシ、且つ中心と表面
の硬度差がビッカース硬度にして100以下で、且つ、
鋼線強度σに応じて(0.05σ+13)〜(0.35
σ+28)kgf/m2の表面圧縮残留応力を有するこ
とを特徴とする延性にすぐれた高張力鋼線。
(1) Contains C004 to 1.0%, Si 2.0% or less, Mn 0.2 to 2% by weight, P 0.02% or less, S 0.02% or less, and N 0.01% or less. limit,
The remainder is free of iron and unavoidable impurities, and the difference in hardness between the center and the surface is 100 or less on Vickers hardness, and
Depending on the steel wire strength σ (0.05σ+13) to (0.35
A high tensile strength steel wire with excellent ductility, characterized by having a surface compressive residual stress of σ+28) kgf/m2.

(2)重量係で00.4〜1.0%、Si2.04以下
、un0.2〜2%を含有し、P0.02%以下、80
.02係以下、N 0.011以下に制限し、且つCr
0.05〜3%、Mo0.01〜1%、W0.01〜1
%、Cu 0.05〜3%、NI0.1〜5チ、Co0
.1〜5チの1種または2種以上を含有し残部鉄及び不
可避不純物よシなシ、且つ中心と表面の硬度差がビッカ
ース硬度にして100以下で且つ、鋼線強度σに応じて
(Qj)5σ+13)ぺ035σ+28)kgf/■2
0表面圧縮残留応力を有することを特徴とする延性にす
ぐれた高張力鋼線。
(2) Contains 0.4-1.0% by weight, 2.04 or less Si, 0.2-2% un, 0.02% or less P, 80
.. 02 or less, N 0.011 or less, and Cr
0.05-3%, Mo0.01-1%, W0.01-1
%, Cu 0.05~3%, NI0.1~5chi, Co0
.. Containing one or two or more of the following: 1 to 5, the remaining iron and unavoidable impurities are free, and the difference in hardness between the center and the surface is 100 or less in terms of Vickers hardness, and according to the steel wire strength σ (Q )5σ+13) Pe035σ+28) kgf/■2
A high tensile strength steel wire with excellent ductility, characterized by having zero surface compressive residual stress.

(3)重量係で00.4〜1.0%、Si2.0係以下
、Mn 0.2〜2%を含有し、P0.02%以下、8
0.02%以下、N 0.0001〜0.1%以下に制
限し、目、つAt0.001〜0.1 俤 、 Ti0
.001〜0.1 %、 Nb0.ool  〜0.1
 チ 、V0.001〜0.1%、B 0.0003〜
0.05%、Mg0.001〜0.1%の1種または2
種以上を含有し、残部鉄および不可避不純物よりなシ、
且つ中心と表面の硬度差がビッカース硬度にして100
以下で且つ、@線強度σに応じて(0β5σ+13)ダ
035σ+28)kg f / w2の表面圧縮残留応
力を有することを特徴とする延性にすぐれた高張力鋼線
(3) Contains 0.4 to 1.0% by weight, Si 2.0 or less, Mn 0.2 to 2%, P 0.02% or less, 8
0.02% or less, N 0.0001-0.1% or less, At0.001-0.1%, Ti0
.. 001-0.1%, Nb0. ool ~0.1
Chi, V0.001~0.1%, B0.0003~
0.05%, Mg0.001-0.1%, one or two
Contains more than 10% of iron and no residual iron and unavoidable impurities.
And the difference in hardness between the center and the surface is 100 in terms of Vickers hardness.
A high tensile strength steel wire with excellent ductility, characterized in that it has a surface compressive residual stress of (0β5σ+13)da035σ+28)kg f/w2 according to the wire strength σ.

(4)  重fr %でC0.4〜1.0%、 Si 
2.0 %以下、Mn0、2〜2 %を含有し、P0.
024以下、80.021以下、N0.011以下に制
限し、且つCr 0.05〜3 %、M。
(4) C0.4-1.0% in weight fr%, Si
2.0% or less, Mn0, 2-2%, P0.
024 or less, 80.021 or less, N0.011 or less, and Cr 0.05-3%, M.

0.01〜1%、W0.01〜1憾、Cu0.05〜3
%、N1011〜5チ、Co0.1〜5チの1種または
2種以上を含有し、更にAt0.001〜0.1壬、T
i0.001〜0.001〜0.1%、Nb 0.00
1〜0.1、V0.OOl 〜0.1%、B0.000
3〜0.05憾、Mg0.001〜0.1係の1種また
は2種以上を含有し、残部鉄および不可避不純物よりな
9、且つ中心と表面の硬度差がビッカース硬度にして1
00以下で且つ、鋼線強度σに応じて(0.OSσ+1
3)〜(0.35σ+28)kgf/−の表面圧縮残留
応力を有することを特徴とする延性にすぐれた高張力鋼
線。
0.01~1%, W0.01~1, Cu0.05~3
%, N1011-5T, Co0.1-5T, and further At0.001-0.1T, T
i0.001~0.001~0.1%, Nb 0.00
1-0.1, V0. OOl ~0.1%, B0.000
Contains one or more of Mg0.001 to 0.1, with the balance being iron and unavoidable impurities, and the difference in hardness between the center and surface is 1 in terms of Vickers hardness.
00 or less and depending on the steel wire strength σ (0.OSσ+1
3) A high-tensile steel wire with excellent ductility, characterized by having a surface compressive residual stress of ~(0.35σ+28) kgf/-.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

(作用) 最初に鋼線組成を前記のように限定した理由を述べる。(effect) First, the reason for limiting the steel wire composition as described above will be described.

Cは0.4%未満では所要の強度が得られないため、ま
た1、0チを超えると延性が著しく劣化するため含有量
を0.4〜1,0チに限定した。
If C is less than 0.4%, the required strength cannot be obtained, and if it exceeds 1.0 inch, the ductility deteriorates significantly, so the content is limited to 0.4 to 1.0 inch.

Stは主としてその固溶体硬化作用を利用するために添
加てれるが、添加量が2%を超えるとやはシ延性の低下
が顕著になるので上限を2.0チにした。
St is added mainly to take advantage of its solid solution hardening effect, but if the amount added exceeds 2%, the reduction in ductility becomes significant, so the upper limit was set at 2.0%.

Mnは焼入性の確保とSの固定のために添加されるが、
0.2%未満ではSが十分に固定されないため、また2
%を超えて添加しても焼入性はもはや増加しないので0
.2〜2.0チに限定した。
Mn is added to ensure hardenability and fix S, but
If it is less than 0.2%, S will not be fixed sufficiently;
Even if it is added in excess of 0%, the hardenability will no longer increase.
.. It was limited to 2 to 2.0 inches.

PとSは延性の向上のためには少々いほど良い。It is better for P and S to be slightly smaller in order to improve ductility.

それぞれ0.02%を超えると延性に対する悪影響が大
きいので0.02%以下に制限した。Nは0.01%を
超えると延性に悪影響を及ぼすので0.01%以下に制
限した。
If each exceeds 0.02%, it will have a significant negative effect on ductility, so it is limited to 0.02% or less. If N exceeds 0.01%, it will have a negative effect on ductility, so it is limited to 0.01% or less.

以上が本発明の対象とする5IA線の基本成分系である
が、この他必要に応じて(A) Cr 0.05〜3チ
、M。
The above is the basic component system of the 5IA wire that is the object of the present invention, but in addition, (A) Cr 0.05-3T, M.

0.0 1〜1  %  、  W0.0 1〜1  
%  、  Cu  0.05〜3チ。
0.0 1~1%, W0.0 1~1
%, Cu 0.05-3chi.

Ni0.1〜5%、 Co 0.1〜5%の1種以上あ
るいは(B) Al0.001〜0.1%、 T10.
001〜0.1 % 、 Nb0.001〜0.1  
% 、V 0.001〜0.1  % 、B0.0O0
3〜0805%、Mg0.O0.〜0.001〜0.1
%の1種以上の、(4)、(B)の一方又は両方を含有
することができる。
One or more of Ni0.1-5%, Co 0.1-5%, or (B) Al0.001-0.1%, T10.
001~0.1%, Nb0.001~0.1
%, V 0.001~0.1%, B0.0O0
3-0805%, Mg0. O0. ~0.001~0.1
% of one or more of (4) and (B).

まず、Cr 、 Mo 、 W 、 Cu 、 Ni 
、 Co 11強度の増加及び耐食性の増加を目的にし
て添加さnるが、Cr0.05%未満、Mo 0.01
4未満、W0.01%未満、Cu0.05%未満、Ht
0.1%未満及びCo0.001〜0.1%未満ではそ
nらの強化及び耐食性に対する効果は認めら扛なくなる
のでCr0.05%、 Mo 0.01%。
First, Cr, Mo, W, Cu, Ni
, Co 11 is added for the purpose of increasing strength and corrosion resistance, but less than 0.05% Cr, Mo 0.01
Less than 4, W less than 0.01%, Cu less than 0.05%, Ht
If the content is less than 0.1% and Co is less than 0.001 to 0.1%, the effect on reinforcement and corrosion resistance will not be observed, so Cr is 0.05% and Mo is 0.01%.

W0.01%、Cu0.05%、NI0.1%及びCo
 0.1係を下限とした。
W0.01%, Cu0.05%, NI0.1% and Co
The lower limit was set to 0.1.

一方Cr 3%超、Mo 1%超、W1%超、Cu 3
%超、Nl 5%超及びCo5%超ではこ几らの元素の
強化及び耐食性に対する効果は飽和する一方、延性を低
下させる効果が顕著になるので、Cr 3%。
On the other hand, Cr more than 3%, Mo more than 1%, W more than 1%, Cu 3
%, Nl more than 5% and Co more than 5%, the effects of these elements on strengthening and corrosion resistance are saturated, while the effect of reducing ductility becomes significant, so Cr is 3%.

Mo 1%、W1%、 Cu 3 % 、 Nl 5%
及びCo5%を上限とした。なおこnらの合金元素の合
計量は7チ以下に抑えることが延性の点で望ましい。
Mo 1%, W1%, Cu 3%, Nl 5%
and Co5% as the upper limit. From the viewpoint of ductility, it is desirable to suppress the total amount of these alloying elements to 7 or less.

次にkA 、 TI 、 Nb 、 V 、 B及びM
gはN及びSを固定して延性を向上させることを目的に
添加されるが、Al0.001%未満、Tl0.O0.
チ未満、Nb0.001%未満、V0.001%未満、
B 0.0003%未満及びMg 0.0014未満で
は、N及びSを固定することが出来ないので、Al0.
001% 、 Nb 0.001%。
Then kA, TI, Nb, V, B and M
g is added for the purpose of fixing N and S to improve ductility, but Al is less than 0.001%, Tl is 0. O0.
Less than 1%, Nb less than 0.001%, V less than 0.001%,
If B is less than 0.0003% and Mg is less than 0.0014%, N and S cannot be fixed, so Al0.
001%, Nb 0.001%.

V 0.001% 、 B U、0003%及びMg0
.001%を下限とした。
V 0.001%, B U, 0003% and Mg0
.. The lower limit was set at 0.001%.

一方AA 0.1%超、TI0.1.%超、Nb 0.
1%超、V0.1%超、80.05%超及びMgo:x
%超ではこれらの元素のN及びS固定効果は飽和する一
方、これらの元素の窒化物及び硫化物による延性劣化作
用が顕著になるので、At 0.001〜0.1%、 
T10.1%。
On the other hand, AA exceeds 0.1%, TI0.1. %, Nb 0.
More than 1%, V0.1%, more than 80.05% and Mgo:x
At more than 0.001% to 0.1%, the N and S fixing effects of these elements become saturated, while the ductility deterioration effect due to nitrides and sulfides of these elements becomes significant.
T10.1%.

Nb 0.1%、V0.1%、B0.05%及びMg 
0.1%を上限とした。なおこれらの元素の合計量を0
.2−以下に抑えることが延性の点で望ましい。
Nb 0.1%, V0.1%, B0.05% and Mg
The upper limit was set to 0.1%. Note that the total amount of these elements is 0
.. From the viewpoint of ductility, it is desirable to keep it to 2- or less.

次に本発明の最大のvf@に、中心と表面の硬度差をピ
ンカース硬度にして100以下に規制すると共に、鋼紗
がその表面に、鋼線強度σに応じて(0.05σ+13
)〜(0.35σ千28)kgf/笥2の範囲で圧縮残
留応力を有する点にある。以下、鋼線の中心と表面の硬
度差及び鋼線の圧縮残留応力をこのように定めた理由を
述べる。
Next, for the maximum vf@ of the present invention, the hardness difference between the center and the surface is regulated to 100 or less on the Pinkers hardness, and the steel gauze is applied to the surface according to the steel wire strength σ (0.05σ + 13
) to (0.35σ1,28) kgf/2. The reason why the hardness difference between the center and surface of the steel wire and the compressive residual stress of the steel wire were determined in this way will be described below.

′、(j、線の延性は普通引張試験における伸び、絞り
値あるいは捻回試験における破断までの回転数(捻回値
)及びそのときの破断形態あるいは曲げ試験などによっ
て判定される。
', (j) The ductility of a wire is usually determined by the elongation in a tensile test, the reduction of area, the number of rotations until breakage in a twisting test (twisting value), the form of breakage at that time, or a bending test.

これらの延性評価基準の中で、鋼線の強度の増加に伴っ
て最も顕著に劣化するのは捻回試験における破断形態で
ある。
Among these ductility evaluation criteria, the one that deteriorates most significantly as the strength of the steel wire increases is the fracture mode in the twisting test.

第1図は、捻回試験における!IJmlの破断形態を模
式的に示したものであって、ta)は正常破断の状況を
示すものであるが、強度の増加と共に、同図(b)に示
した工うな割n2を伴なう異常破断の頻度が増加する。
Figure 1 shows the torsion test! This diagram schematically shows the fracture mode of IJml, and ta) shows a normal rupture situation, but as the strength increases, the fracture n2 shown in the same figure (b) also occurs. The frequency of abnormal breaks increases.

これは第2図に模式的に示したように把み治具3で11
を把持して行われる捻回試験中に、wi紗1の表面に長
平方向に割れ2が生ずることに起因するもので、異常破
断の発生は鋼線の円周方向の延性の劣化を意味している
と考えることかできる。
This is done by gripping jig 3 as shown schematically in Figure 2.
This is due to the occurrence of cracks 2 in the longitudinal direction on the surface of the wire gauze 1 during the twisting test conducted by gripping the steel wire. It is possible to think that it is true.

強度の増加に伴って鋼線の円周方向の延性が最も劣化し
易いことは、実際に鋼線の曲げ加工で、曲げ破断は起ら
ないのに長手方向に縦割れが生ずる場合があること、ま
た撚り線加工をしたときに撚り破断はしないのに同じく
縦割れが生ずる場合があることによっても理解される。
The ductility of steel wire in the circumferential direction is most likely to deteriorate as the strength increases.In fact, during bending of steel wire, vertical cracks may occur in the longitudinal direction even though bending does not break. This can also be understood from the fact that when stranded wires are processed, vertical cracks may occur even though the strands do not break.

このように捻回試験の破断形態は!i14線の延性評価
尺度の中でも最も重要なものであるということが出来る
In this way, the fracture mode of the twisting test is! It can be said that this is the most important ductility evaluation scale for i14 wire.

本発明者らは、−線の中心と表面の硬度差を規制し、且
つ本線がその表面に圧縮残留応力を有することが、銅線
の円周方向の延性を向上させるのに極めて有効であるこ
とを見い出し、硬度差と圧縮残留応力の適正範囲を検討
した。すなわち捻回試験の異常破断の発生率を10%以
下に抑制することを目標に、163に9f/wa” 、
 220kgf/m”  。
The present inventors have found that - regulating the hardness difference between the center and surface of the wire and having the main wire have compressive residual stress on its surface is extremely effective in improving the circumferential ductility of the copper wire. We found this and investigated the appropriate range of hardness difference and compressive residual stress. In other words, with the goal of suppressing the incidence of abnormal fractures in torsion tests to 10% or less,
220kgf/m”.

305に9f/fi”及び360kl!f/餌2の引張
強度を有し、且つ中心と表面の硬度がビッカース硬度に
して10から150の範囲に変化している鋼線を用いて
、残留応力及び硬度差と捻回試験の異常破断の発生率の
関係を調べた。
The residual stress and We investigated the relationship between hardness differences and the incidence of abnormal fractures in torsion tests.

その結果、引張強度152ゆf /w”の鋼線では20
ゆf/un”  、 235に9f/−2の鋼線では2
5ゆf/lel 。
As a result, a steel wire with a tensile strength of 152 yf/w" has a tensile strength of 20
Yuf/un”, 235 and 9f/-2 steel wire
5 Yuf/lel.

316に9fi−の鋼線では29に9f/額”、377
ゆルーの1線では31 kgf/wJ以上の圧縮残留応
力を有することと、銅線の中心と表面の硬度差をビッカ
ース硬度にして100以下、望ましくは60以下に制限
することが、捻回試験の異常破断の発生率を10%以下
に抑えるために必要であることが明らかになった。ここ
で得らnた圧縮残留応力を銅線の引張強度σに対して整
理すると、(0.05σ+13)kl? f /1rr
r2なる関係が実験的に得ら扛た。ここで硬度差が10
0を超えていると、(0.05σ+13)kgf/vr
rn2の圧縮残留応力を与えても、鋼線自体の硬度差に
伴う組織の内部不均一の悪影響を克服することが出来な
いために、捻回試験の異常破断率を10%9、下に抑え
ることはできなかった。また硬度差が100を超えてい
ると、機械的に圧縮残留応力を付与するとき鋼線の内部
に割nが生ずる場合のあることも明らかになった。
316 to 9fi steel wire is 29 to 9f/amount", 377
The torsion test requires that a single wire of Yuru has a compressive residual stress of 31 kgf/wJ or more, and that the difference in hardness between the center and surface of the copper wire is limited to 100 or less, preferably 60 or less in terms of Vickers hardness. It has become clear that this is necessary in order to suppress the incidence of abnormal fractures to 10% or less. Organizing the compressive residual stress n obtained here with respect to the tensile strength σ of the copper wire, (0.05σ + 13)kl? f/1rr
The relationship r2 was obtained experimentally. Here, the hardness difference is 10
If it exceeds 0, (0.05σ+13)kgf/vr
Even if a compressive residual stress of rn2 is applied, it is not possible to overcome the negative effects of the internal non-uniformity of the structure due to the difference in hardness of the steel wire itself, so the abnormal rupture rate in the torsion test is kept below 10%9. I couldn't do that. It has also been found that when the hardness difference exceeds 100, cracks may occur inside the steel wire when compressive residual stress is mechanically applied.

一方、硬度差は、100以内に収まっていても、圧縮残
留応力が(0.05σ+13)kgf/覇2に満たない
ときは異常破断率を10%以下に抑えることはできなか
った。
On the other hand, even if the hardness difference was within 100, it was not possible to suppress the abnormal rupture rate to 10% or less when the compressive residual stress was less than (0.05σ+13) kgf/ha2.

なお、捻回試験の異常破断の発生率が10%以下であn
ば、鋼線を実際に加工する場合、縦割nなどの発生の心
配は全くない。
In addition, if the incidence of abnormal rupture in the twisting test is 10% or less, then
For example, when actually processing steel wire, there is no need to worry about the occurrence of vertical splits.

このような理由で、鋼線の中心と表面の硬度差と鋼線表
面に付与さnる圧縮残留応力の下限を定めた。
For these reasons, the lower limit of the difference in hardness between the center and surface of the steel wire and the compressive residual stress imparted to the surface of the steel wire was determined.

一方、鋼線表面の圧縮残留応力は大きいほど円周方向の
延性の改讐には望筐しいが、周知の如く、表面の圧縮残
留応力に比例して、鋼線中心の引張残留応力は増加する
。鋼線中心の引張残留応力が大きくなると、中心部に割
nが生じ、捻回試験時に異常破断を生ずるに至る。従っ
て、w41f!j、中心の割nとの関係で自ずから、鋼
線表面に許容さnる圧縮残留応力の上限値が決る。そこ
で本発明者らは前記の4種類の鋼1種を用いて、鋼線中
心の割れに起因する捻回試験の異常破断の発生と、圧縮
残留応力の関係を調べた。
On the other hand, the larger the compressive residual stress on the surface of the steel wire, the better it is for improving the ductility in the circumferential direction, but as is well known, the tensile residual stress at the center of the steel wire increases in proportion to the compressive residual stress on the surface. do. When the tensile residual stress at the center of the steel wire increases, a split n occurs at the center, leading to abnormal fracture during the twisting test. Therefore, w41f! The upper limit of the compressive residual stress n allowed on the surface of the steel wire is naturally determined by the relationship between j and the center division n. Therefore, the present inventors investigated the relationship between the occurrence of abnormal fracture in a twisting test due to a crack at the center of the steel wire and compressive residual stress using one of the four types of steel described above.

その結果、引張強度152に9f/■2の鋼、線では、
80 kgf/m”  、 235kl?f/+m”の
鎖線では、113に9f/wr2.316に9f/wn
”の鋼線では136 XJ f/lrt+” +377
 K17m2の鋼線では160 kg f /m2を表
面圧縮残留応力が超えると、異常破断が発生することが
明らかになった。この圧縮残留応力は鋼線強度σと比例
関係にあシ、(0.35σ+28 ) kgf /m”
  と実験的に与えら几る。圧縮残留応力の上限(0.
35σ+28)kgf/τ2はこのようにして決めた。
As a result, for steel wire with a tensile strength of 152 and 9f/■2,
80 kgf/m", 235kl?f/+m" chain line, 113 has 9f/wr2.316 has 9f/wn
” steel wire is 136 XJ f/lrt+” +377
It has become clear that abnormal fracture occurs in K17m2 steel wire when the surface compressive residual stress exceeds 160 kgf/m2. This compressive residual stress is proportional to the steel wire strength σ, (0.35σ+28) kgf/m”
It is given experimentally. Upper limit of compressive residual stress (0.
35σ+28)kgf/τ2 was determined in this way.

なお、このように鋼線の中心と表面の硬度差を100以
下、望ましくは60以下に抑える手段としては、例えば
連続鋳造工程において低温鋳入を実施すること、あるい
は電磁攪拌を行うこと、ないしは鋼片を高温で均熱処理
することが有効である。
In addition, as a means to suppress the hardness difference between the center and the surface of the steel wire to 100 or less, preferably 60 or less, for example, low-temperature casting in the continuous casting process, electromagnetic stirring, or It is effective to soak the pieces at high temperatures.

なお圧縮残留応力は機械的にどのような手段で付加して
も良いが、伸線後の鋼線の表面に本発明で限定した範囲
の圧縮残留応力を付加する手段として例えばローラー圧
延加工あるいはショットピーニング加工をあげることが
できる。
Note that the compressive residual stress may be applied mechanically by any means, but as a means for applying the compressive residual stress within the range limited in the present invention to the surface of the steel wire after wire drawing, for example, roller rolling or shot processing may be used. Peening processing can be used.

このような圧縮残留応力は伸線後、鋼線が製品として使
用さ几るまでのいずれの工程に於いて付与さ扛ても良い
が、ブルーイング処理後あるいはメッキ処理後に付与さ
れた場合にi’t250℃以下の温度で再度ブルーイン
グ処理を行う方が鋼線の応力緩和特性の向上のためには
好まし、い。
Such compressive residual stress may be applied in any process after wire drawing until the steel wire is used as a product, but if it is applied after bluing or plating, It is preferable to perform the bluing treatment again at a temperature of 250° C. or lower in order to improve the stress relaxation properties of the steel wire.

なお、鋼線の強度は特に限定しないが、引張強度130
に9f/lxm”以上のw4線で本発明を適用すると効
果が大きい。
Note that the strength of the steel wire is not particularly limited, but the tensile strength is 130
The present invention is highly effective when applied to a w4 line of 9 f/lxm'' or higher.

なお、本発明になる鋼線は疲労特性、腐食疲労特性、遅
n破壊特性、応力閥食割れ性あるいはへたり性にもすぐ
nている。
The steel wire of the present invention also has excellent fatigue properties, corrosion fatigue properties, slow n-fracture properties, stress cracking properties, and setting properties.

また本発明の鋼線は、鋼線を用いて作らnる製品例えば
ロープ、S組節化タイヤあるいは鋼線強化プラスチック
などの耐久性、疲労特性の向上にも効果を発揮する。
The steel wire of the present invention is also effective in improving the durability and fatigue properties of products made using the steel wire, such as ropes, S-section knotted tires, and steel wire-reinforced plastics.

次に実施例をあげて本発明の効果をさらに具体的に説明
する。
Next, the effects of the present invention will be explained in more detail with reference to Examples.

(実施例) 実施例に供した一線の組成、線径、引張強度。(Example) Composition, wire diameter, and tensile strength of the wire used in the examples.

陵絣の中心硬度9表面硬度及びそ几らの硬度差、本発明
で限定した鋼線表面の圧縮残留応力の下限値(0.05
σ+13)及び上限値(035σ+28)、実施例に供
した鋼線の表面に存在している残留応力、及びこnらの
鋼線について捻回試験、疲労試験。
Center hardness 9 of Ryo Kasuri, surface hardness and hardness difference between them, lower limit of compressive residual stress on steel wire surface limited in the present invention (0.05
σ+13) and upper limit value (035σ+28), residual stress existing on the surface of the steel wire used in the example, and twisting test and fatigue test for these steel wires.

腐食疲労試験、遅れ破壊試験、へたり試験などを行った
結果とこnらのgA綜を用いて製造された製品の疲労試
験の結果を第1表に併記した。
The results of corrosion fatigue tests, delayed fracture tests, fatigue tests, etc., and the results of fatigue tests of products manufactured using these gA healds are also listed in Table 1.

なお、同表において各種試股の判定基準或いは手段は次
のとおシである。
In addition, in the same table, the criteria or means for judging various test legs are as follows.

まず残留応力の十記号は引張残留応力を、−記号は圧縮
残留応力を示す。
First, the residual stress symbol (+) indicates tensile residual stress, and the - symbol (-) indicates compressive residual stress.

次に捻回試験異常破断率は捻回試験において第1図(b
lに示した異常破断が発生する比率を示す。
Next, the abnormal rupture rate in the twisting test is shown in Figure 1 (b).
The ratio of occurrence of abnormal fracture shown in 1 is shown.

疲労限は鋼線の回転曲げ疲労試験における疲労限界応力
を示す。
Fatigue limit indicates the fatigue limit stress in a rotating bending fatigue test of steel wire.

タイヤ中のコード破損率は500ゆの負荷で10万kn
+走行後のタイヤ中のコードの破損率を示す。
Cord breakage rate in tires is 100,000 kn at a load of 500 yu
+ Indicates the damage rate of the cord in the tire after driving.

へたυ率は鋼線に引張強度の60チのねじシ応力を与え
、96時間放置した後の残留剪断歪を示す。
The shear modulus indicates the residual shear strain after applying a thread stress of 60 degrees of tensile strength to the steel wire and leaving it for 96 hours.

遅れ破壊時間は0.IN塩酸溶液中で80に9f/m2
の引張応力を負荷したときの破断までの時間を示す。
Delayed destruction time is 0. 80 to 9 f/m2 in IN hydrochloric acid solution
It shows the time until rupture when a tensile stress of .

プラスチック板の疲労限比は1種+”5I100本の鋼
線で強化した1+w+厚X10mm幅のプラスチック板
の曲は疲労における疲労限を比較例の試験番号扁37の
疲労限を1として対比する。
The fatigue limit ratio of a plastic plate is 1+"5I. The fatigue limit of a plastic plate reinforced with 100 steel wires of 1+W+thickness x 10mm width is compared with the fatigue limit of a comparison example, test number 37, as 1.

腐食疲労寿命は鋼線の3−食塩水中の回転曲は疲労試験
において、20kg7/wm2の負荷で破断する迄の回
転数を示す。
Corrosion fatigue life indicates the number of rotations of a steel wire until it breaks under a load of 20 kg7/wm2 in a fatigue test.

応力腐食割れ時間は、0.5チ酢酸+5%食塩水溶液中
で70kgf/wn”の引張応力を負荷したときの破断
までの時間を示す。
The stress corrosion cracking time indicates the time until rupture when a tensile stress of 70 kgf/wn'' is applied in a 0.5 thiacetic acid + 5% saline solution.

ロープ疲労限比はJIS 1号ロープの曲は疲労限で、
比較例屋51の一線で製造されたロープの疲労限を1と
して、その対比で発明例屋50の銅線で製造されたロー
プの疲労限を示す。
Rope fatigue limit ratio is JIS No. 1 rope's fatigue limit,
Assuming that the fatigue limit of the rope manufactured using the single wire of Comparative Example 51 is 1, the fatigue limit of the rope manufactured using the copper wire of Invention Example 50 is shown in comparison.

次に第1表において試験人1〜9は発明1に関するもの
で、この内A 1 、3 、5は本発明例であり、他は
比較例である。
Next, in Table 1, Testers 1 to 9 are related to Invention 1, among which A 1 , 3, and 5 are examples of the present invention, and the others are comparative examples.

A1,2はθ径0.25瀞、引張強度344ゆf/m?
の同一成分組成を有する鋼線についての結果であシ、こ
nらの内中心と表面の硬度差が32で103kgf/M
2  の圧縮残留応力を有するA1の銅線の捻回試験の
異常破Ur率はOである。なお圧縮残留応力はローラー
圧延加工によって付与されている。
A1 and 2 have a θ diameter of 0.25 and a tensile strength of 344 f/m?
These are the results for steel wires with the same composition, and the difference in hardness between the center and surface is 32, which is 103 kgf/M.
The abnormal fracture rate in the twisting test of A1 copper wire having a compressive residual stress of 2 is O. Note that the compressive residual stress is imparted by roller rolling.

一方中心と表面の硬度差が112で40 kgf/w2
の引張残留応力を有する屋2のジ線の異常破断率は90
チで、本発明になる鋼線がすぐ几だ延性を示すことが分
る。また本発明になる鋼線は疲労特性及びタイヤ中に於
ける耐久性にもすぐnている。
On the other hand, the difference in hardness between the center and the surface is 112, which is 40 kgf/w2
The abnormal rupture rate of the second wire with tensile residual stress is 90
It can be seen that the steel wire of the present invention exhibits excellent ductility. The steel wire of the present invention also has excellent fatigue properties and durability in tires.

A3,4は線径2.6 mm 、引張強度170kll
f/wm”の同一成分組成を有する鋼線に関する結果で
あ夛、こnらの内中心と表面の硬度差が45で、50k
lil f / m”の圧縮残留応力を有する扁3の鎖
線は異常破断率がOで延性がすぐれているが、硬度差が
120も存在する屋4の鋼線は異常破断率が75チで延
性が劣っている。残留応力はショットピーニングによっ
て与えら軸1 A5は線径1.2 m、引張強度221 ’に9 f 
/lt、”、中心と表面の硬度差50の鋼線に関する結
果で、異常破断率は0で、延性がすぐれている。圧縮残
留応力はショットピーニングによって与えらfた。
A3 and 4 have a wire diameter of 2.6 mm and a tensile strength of 170 kll.
The results are for steel wires with the same composition of f/wm, and the difference in hardness between the center and the surface is 45, and it is 50k.
The chain line of flat 3, which has a compressive residual stress of lil f / m'', has an abnormal rupture rate of 0 and is excellent in ductility, but the steel wire of 4, which has a hardness difference of 120, has an abnormal rupture rate of 75 and has excellent ductility. The residual stress is given by shot peening and the shaft 1 A5 has a wire diameter of 1.2 m and a tensile strength of 221' to 9 f.
/lt,'' The results are for a steel wire with a hardness difference of 50 between the center and the surface, the abnormal rupture rate is 0, and the ductility is excellent.The compressive residual stress was given by shot peening.

A 6 、7 、8 、9は、いずnも組成、中心と表
面の硬度差あるいは残留応力が本発明外にあるため異常
破断率が篩<、延性に欠けていることが明らかである。
It is clear that A 6 , 7 , 8 , and 9 all have abnormal rupture rates of less than the sieve and lack ductility because the composition, hardness difference between the center and surface, or residual stress are outside the scope of the present invention.

次にA18〜20は発明2に関するもので、この肉屋1
0.12.13,15,17,18゜21.22は本発
明例であり、他は比較例である。
Next, A18 to A20 are related to invention 2, and this butcher 1
0.12.13, 15, 17, 18°21.22 are examples of the present invention, and the others are comparative examples.

基10.1iIfi線径0.25 m、引張強度284
に9 f /m”の同一成分組成を有する鋼線について
の結果で、中心と表面の硬度差が38で80kl?、?
”/wn2の圧縮残留応力を有するA10の鋼線の捻回
試験の異常破断率tci5チで、一方中心と表面の硬度
差が109で40 kgf/m”の引張残留応力を有す
るAllの鋼線の異常破断率f′i95%で、本発明に
なる鋼線が延性に極めてすぐ几ていることが分る。
Base 10.1iIfi wire diameter 0.25 m, tensile strength 284
The results are for steel wires with the same composition of 9 f/m'', and the difference in hardness between the center and surface is 38 and 80 kl?,?
An A10 steel wire with a compressive residual stress of ``/wn2'' has an abnormal rupture rate of tci5 in a torsion test, while the hardness difference between the center and the surface is 109, and an All steel wire with a tensile residual stress of 40 kgf/m''. It can be seen that the steel wire according to the present invention has an abnormal rupture rate f'i of 95%, which shows that the ductility of the steel wire decreases extremely quickly.

なお圧縮残留応力はローラー圧延によって与えら扛た。The compressive residual stress was applied by roller rolling.

A12は線径2.5諺、引張強度205ゆf/雪2で、
28 kgf/m”の圧縮残留応力を有する鋼線の結果
で、異常破断率UOで延性にすぐれている。この場合、
圧縮残留応力はショットピーニングニよって与えられて
いる。
A12 has a wire diameter of 2.5 mm and a tensile strength of 205 yuf/snow 2.
The result is a steel wire with a compressive residual stress of 28 kgf/m" and excellent ductility with an abnormal rupture rate of UO. In this case,
Compressive residual stress is given by shot peening.

A13と14汀線径0.6 m 、引張強度254に9
 f /1an2の同一成分組成を有する鎖線に関する
例であって、硬度差70で68 kgf/■2の圧縮残
留応力を有する屋13の鋼線では異常破断率が5%であ
るのに対して、硬度差が108で、50に9f/mFの
引張残留応力を有する屋14の銅線の異常破断率は10
0%で、本発明の鋼線の延性がすぐnていることが明ら
かである。この場合の圧縮残留応力1−iローラー圧延
加工によって与えらnた。
A13 and 14 shore wire diameter 0.6 m, tensile strength 254 to 9
This is an example regarding the chain line having the same component composition of f/1an2, and the abnormal rupture rate is 5% for the steel wire of Ya 13 which has a hardness difference of 70 and a compressive residual stress of 68 kgf/■2. The abnormal rupture rate of the copper wire of No. 14 with a hardness difference of 108 and a tensile residual stress of 9 f/mF at 50 is 10.
It is clear that at 0%, the ductility of the steel wire of the present invention is very low. In this case, the compressive residual stress 1-i was given by the roller rolling process.

A15,16は線径4.5 m 、引張強度195に9
 f /vm ”の同一成分組成を有する銅線に関する
結果で、この内中心と表面の硬度差が43で45kli
’ f /m”の圧縮残留応力を有する扁15の鋼線は
異常破断率Oで延性がすぐれているが、中心と表面の硬
度差が131で110に9f/m”にも及ぶ圧縮残留応
力を有するA16の鋼線の異常破断率は60チで延性が
劣っている。圧縮残留応力はローラー圧延によって与え
た。
A15 and 16 have a wire diameter of 4.5 m and a tensile strength of 195 to 9
The results are for copper wires with the same composition of f/vm'', and the hardness difference between the center and surface is 43 and 45kli.
A flat 15 steel wire with a compressive residual stress of 'f/m'' has an abnormal rupture rate of O and excellent ductility, but the difference in hardness between the center and the surface is 131 and 110, which is as much as 9 f/m''. The abnormal rupture rate of the A16 steel wire having the following properties is 60 inches, indicating poor ductility. Compressive residual stress was applied by roller rolling.

屋17は線径2.5 wa、引張強度171 ko f
 /m2硬度差58で44 kgf/m”の圧縮残留応
力を有する亜鉛メッキw4線の結果で、異常破断率はO
で延性にすぐれている。圧縮残留応力はショットピーニ
ングによって与えらnた。
Ya 17 has a wire diameter of 2.5 wa and a tensile strength of 171 ko f.
/m2 hardness difference 58 and compressive residual stress of 44 kgf/m'' galvanized W4 wire, abnormal rupture rate is O
It has excellent ductility. Compressive residual stress was imparted by shot peening.

A18〜20は線径8m、引張強度180ff/van
2の同一成分組成を有する鋼線に関する結果で、中心と
表面の硬度差が50で35 kgf/wm2の圧縮残留
応力を有する418では異常破断率はOで、中心と表面
の硬度差が113で20 kgf/m2の引張残留応力
の存在するA19及び中心と表面の硬度差が119で1
5 kyf/1種”の圧縮残留応力しか有していないA
20の鋼線では異常破断率にそnぞ九60チ゛と40%
で、本発明になる鋼線の延性がすぐnでいることが分る
。ここでA18の峙線ではショットピーニング、A20
の鋼線ではローラー圧延加工によって圧縮残留応力が与
えらnた。
A18-20 has a wire diameter of 8m and a tensile strength of 180ff/van.
2, the difference in hardness between the center and the surface is 50 and the compressive residual stress of 35 kgf/wm2 is 418, the abnormal rupture rate is O, and the difference in hardness between the center and the surface is 113. A19 with a tensile residual stress of 20 kgf/m2 and a hardness difference of 119 between the center and the surface of 1
A with only a compressive residual stress of 5 kyf/1 type
The abnormal breakage rate for the steel wire of 20% is 960%, which is 40%.
It can be seen that the ductility of the steel wire according to the present invention is just n. Here, on the front line of A18, shot peening, A20
A compressive residual stress was applied to the steel wire by roller rolling.

咬た本発明になる鋼線はへたp性、遅n破壊特性にも寸
ぐれている。
The steel wire according to the present invention also has poor p-ability and slow-n fracture properties.

屋21は線径1.2「、引張強度220 kg f /
am”中心と表面の硬度差26で、72 klf/m2
の圧縮残留応力を有する帽りまたIfx 22は線径3
.6簡、引張強度186kgf/m2、硬度差56で5
1 ’に9f/WrM2の圧縮残留応力を有するi#紗
の結果で、異常破断率はそ几ぞれ5%と0で延性がすぐ
nている。こnらはい−jAもローラー圧延によって圧
縮残留応力を与えらnた。
Ya 21 has a wire diameter of 1.2" and a tensile strength of 220 kg f/
am'' hardness difference between center and surface is 26, 72 klf/m2
Ifx 22 has a compressive residual stress of
.. 6 simple, tensile strength 186 kgf/m2, hardness difference 56
The results are for i# gauze having a compressive residual stress of 9f/WrM2 at 1', the abnormal rupture rate is 5% and 0, respectively, and the ductility is close to n. This material was also given compressive residual stress by roller rolling.

屋23〜29はそれぞれ鋼線組成、中心と表面の硬度差
あるいは残留応力が本発明外にあるため、いず几も異常
破断率が高く、延性が劣っている。
Since steel wire compositions, differences in hardness between the center and surface, or residual stress of steel wires 23 to 29 are outside the scope of the present invention, all of them have high abnormal rupture rates and poor ductility.

屋30〜45は発明3に関するもので、この内430.
31,32,34.36,38.39は本発明例であり
、他は比較例である。
Items 30 to 45 relate to invention 3, of which item 430.
31, 32, 34, 36, and 38.39 are examples of the present invention, and the others are comparative examples.

まず、扁30は線径2.Ofi、引張強度195に9f
/m”、中心と表面の硬度差25 テ30 kgf/m
”の圧縮残留応力を有する鋼線、またA 3114線径
0.8覇、引張強度260に9f/m”、硬度差55で
69に9f/τ2の圧縮残留応力を有する鍋紗の結果で
、異常破断率はそA−5f’LQと5%でぃずnも延性
にすぐ几ている。
First, the flat plate 30 has a wire diameter of 2. Ofi, tensile strength 195 to 9f
/m”, hardness difference between center and surface 25 te 30 kgf/m
The result is a steel wire with a compressive residual stress of "A 3114 wire diameter of 0.8 mm, a tensile strength of 260 to 9 f/m", a pot gauze with a hardness difference of 55 and a compressive residual stress of 69 to 9 f/τ2, The abnormal rupture rate of A-5f'LQ and 5% dezn is also close to the ductility.

屋32は線径0.06m、引張強度408に9f/1p
p2、硬度差43で、102に9f/■2と大きな圧に
残留応力を有する極細鋼線に関する結果で異常破断率は
5%で良好な延性を示している。A 30 、31 。
Ya 32 has a wire diameter of 0.06 m, a tensile strength of 408, and 9 f/1 p.
p2, a hardness difference of 43, and a residual stress of 102 to 9f/■2, which shows an abnormal rupture rate of 5% and good ductility. A 30, 31.

32の鋼線の残留応力はショットピーニングによって付
加さnた。
The residual stress in the steel wire of 32 was added by shot peening.

ム33は線径5.5■、引張強度186ki?f/m+
”の鋼線に関する結果であるが、中心と表面の硬度差が
110も存在し、また圧縮残留応力も10ゆf/m?で
小さいために、異常破断率は50チで延性が劣っている
Mu33 has a wire diameter of 5.5cm and a tensile strength of 186ki? f/m+
The results for the steel wire shown in ``The difference in hardness between the center and the surface is as much as 110, and the compressive residual stress is small at 10 yf/m, so the abnormal rupture rate is 50 yf/m, which indicates that the ductility is poor. .

扁34と35は線径3.2鰭、引張強度145に9 f
 /w”の鋼線に関する結果で、中心と表面の硬度差が
26で、46に9f/−の圧縮残留応力を有するA34
のm線は異常破断率0で延性はすぐれているが、硬度差
107で40 kgf/m”の引張残留応力を有する扁
35の鋼線の異常破断率は40チで延性が劣っている。
Flats 34 and 35 have a wire diameter of 3.2 fins and a tensile strength of 145 to 9 f.
/w'' steel wire, the hardness difference between the center and the surface is 26, and the A34 has a compressive residual stress of 9f/- at 46.
The m-wire has an abnormal breakage rate of 0 and excellent ductility, but the abnormal breakage rate of the flat 35 steel wire, which has a hardness difference of 107 and a tensile residual stress of 40 kgf/m'', is 40 inches and has poor ductility.

残留応力はショットピーニングによって与えた。Residual stress was applied by shot peening.

A36と37は線径0.04■、引張強度421に9 
f /sa=”の同一成分組成の鋼線に関する結果で、
中心と表面の硬度差18で68 kgf/m”の圧縮残
留応力を有する扁36の鋼線の異常破断率は5チである
のに対して、中心と表面の硬度差109で35 kg 
f /w2の引張残留応力を有する扁37の銅線の異常
破断率は80%で本発明になるm線の延性がすぐれてい
ることが分る。また本発明になる錯組で強化さnたプラ
スチック板はすぐれた疲労特性を示すことが明らかであ
る。なお圧縮残留応力はローラー圧延加工によって与え
た。
A36 and 37 have a wire diameter of 0.04 cm and a tensile strength of 421 to 9
The results for steel wires with the same composition of f/sa="
The abnormal rupture rate of a flat 36 steel wire with a compressive residual stress of 68 kgf/m" with a hardness difference of 18 between the center and the surface is 5 cm, whereas it is 35 kg with a hardness difference of 109 between the center and the surface.
It can be seen that the abnormal breakage rate of the flat copper wire 37 having a tensile residual stress of f/w2 is 80%, indicating that the m-wire according to the present invention has excellent ductility. It is also clear that the composite reinforced plastic plate according to the invention exhibits excellent fatigue properties. Note that the compressive residual stress was given by roller rolling.

A38は線径3.2「、引張強度172に9f/翻2、
硬度差35で、59 #f/wm”の圧縮残留応力を有
するgli線、またA39は線径0.3■、引張強度2
38に9f/簡2、硬度差40で82に9f/祁2の圧
縮残留応力を有する銀線の例で、異常破断率はそれぞf
lQと5チで、共にすぐnた延性を示している。なお、
438.39の鋼線の圧縮残留応力はショットピーニン
グによって付与す几た。
A38 has a wire diameter of 3.2", tensile strength of 172 and 9f/2,
GLI wire with a hardness difference of 35 and a compressive residual stress of 59 #f/wm", and A39 has a wire diameter of 0.3 cm and a tensile strength of 2
In the example of a silver wire with a compressive residual stress of 9 f/2 for 38 and 9 f/2 for 82 with a hardness difference of 40, the abnormal rupture rate is f.
Both lQ and 5chi exhibit very high ductility. In addition,
The compressive residual stress of the steel wire of 438.39 was applied by shot peening.

一方、屋40〜45は、それぞれ鋼線の組成、中心と表
面の硬度差あるいは残留応力が本発明外にあるため異常
破断率がいずれも高く、延性に欠けている。
On the other hand, steel wires 40 to 45 have a composition of the steel wire, a difference in hardness between the center and the surface, or a residual stress that is outside the scope of the present invention, so all of them have a high abnormal rupture rate and lack ductility.

最後に扁46〜58は発明4に関するもので、この肉屋
46,47,48.49.51は本発明例で、他は比較
例である。
Finally, flats 46 to 58 relate to invention 4, and the butchers 46, 47, 48, 49, and 51 are examples of the invention, and the others are comparative examples.

A 46は線径2. Ovm 、引張強度193klJ
f/m2、中心と表面の硬度差20で圧縮残留応カフ 
5 kgf%o+n2を有する鋼線、屋47は線径3.
5 m、引張強度186 kgf/m” 、硬度差34
で、60 kllf/r”の圧縮残留応力を有するt1
3線、ム48は線径1.3胴、引張強度220 kgf
 /wa”、硬度差50で圧縮残留応力68 kgf/
wa”を有する鋼線の結果で、いず扛も異常破断率は0
で極めて延性にすぐnている。
A46 has a wire diameter of 2. Ovm, tensile strength 193klJ
f/m2, hardness difference between center and surface is 20, compression residual stress cuff
5 kgf%o+n2 steel wire, Ya 47 has a wire diameter of 3.
5 m, tensile strength 186 kgf/m", hardness difference 34
t1 with a compressive residual stress of 60 kllf/r”
3 wire, Mu48 has a wire diameter of 1.3 and a tensile strength of 220 kgf.
/wa”, hardness difference 50, compressive residual stress 68 kgf/
In the results for the steel wire with wa'', the abnormal rupture rate was 0 in all cases.
It is extremely ductile.

なおA 46 、47 、48の鋼線では圧縮残留応力
はローラー圧延によって付与された。
Note that compressive residual stress was applied to the steel wires A 46 , 47 , and 48 by roller rolling.

&49と50id、線径045fi、引張強度285k
i?f/m”の同一成分組成の鋼線に関する結果で、中
心と表面の硬度差2ρで91 kgf/TEA2の圧縮
残留応力を有する。
&49 and 50id, wire diameter 045fi, tensile strength 285k
i? The results are for steel wires with the same composition of f/m'', which have a compressive residual stress of 91 kgf/TEA2 with a hardness difference of 2ρ between the center and the surface.

&49の鋼線では異常破断率はOで延性にすぐれている
。−男中心と表面の硬度差が108で42 ky f 
/am”の引張残留応力を有するA50の鋼むは90%
にも及ぶ異常破断率を示し、延性に劣っていることが明
らかである。またこの鋼線は腐食疲労特性にもすぐ九て
いる。なお&49の1線の圧縮残留応力はショットピー
ニングによって与えられた。
&49 steel wire has an abnormal rupture rate of 0 and has excellent ductility. -The difference in hardness between the male center and the surface is 108 and 42 ky f
A50 steel with a tensile residual stress of 90%
It is clear that the ductility is poor, with an abnormal rupture rate of up to 100%. This steel wire also has excellent corrosion fatigue properties. Note that the compressive residual stress of 1 line &49 was given by shot peening.

&51〜53は線径2.0mで、引張強度235kl?
f/m2の同一成分組成の鋼線に関する結果で、中心と
表面の硬度差が75で70 Kf/wa2の圧縮残留応
力を有するA 51の鋼lfNは異常破断率5チで延性
にすぐ几ている。一方硬度差が123で37 kI?f
/m”の引張残留応力を有するA 52の鋼線は異常破
断率75チで延性に欠けている。また中心と表面の硬度
差が118で、圧縮残留応力が25ゆf/−”の屋53
の銅線は同じく異常破断率が高く延性に欠けている。
&51-53 have a wire diameter of 2.0m and a tensile strength of 235kl?
The results are for a steel wire with the same composition of f/m2, and the hardness difference between the center and surface is 75, and the A51 steel lfN, which has a compressive residual stress of 70 Kf/wa2, has an abnormal rupture rate of 5 cm and quickly becomes ductile. There is. On the other hand, the hardness difference is 123 and 37 kI? f
An A52 steel wire with a tensile residual stress of 25 mm/m'' has an abnormal breakage rate of 75 mm and lacks ductility. 53
The copper wire also has a high abnormal breakage rate and lacks ductility.

本発明のA51の鋼線は応力腐食割れ特性にもすぐれ、
またこの鋼線で製造されたローフ″はすぐ几た疲労特性
を示している。圧縮残留応力はローラー圧延によって与
えられている。
The A51 steel wire of the present invention also has excellent stress corrosion cracking properties,
Loafs made from this steel wire also exhibit good fatigue properties. Compressive residual stress is imparted by roller rolling.

屋54〜58は、そ几ぞれ組成あるいは残留応力が本発
明外にあるため、異常破断率が高く、延性に劣っている
The structures 54 to 58 each have a composition or residual stress outside the scope of the present invention, and thus have a high abnormal rupture rate and poor ductility.

(発明の効果) 以上の実施例からも明らかなように、本発明になる鉄線
は高強度にして且つ延性にすぐれ、産業上柱するところ
は極めて大きい。
(Effects of the Invention) As is clear from the above examples, the iron wire of the present invention has high strength and excellent ductility, and is extremely useful in industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b)は捻回試験材の破断形態で、
(a)は正常破断、(b)は異常破断をそれぞれ示す図
、第2図は捻回試験中に鋼線表面に発生する割れの模式
1・・・鋼線、2・・・割れ、3・・・把み治具。 第1図
Figures 1 (a) and (b) show the fracture morphology of the torsional test material.
(a) is a diagram showing a normal fracture, (b) is a diagram showing an abnormal fracture, and Figure 2 is a diagram showing a crack that occurs on the surface of a steel wire during a twisting test. 1...Steel wire, 2...Crack, 3 ...Gripping jig. Figure 1

Claims (4)

【特許請求の範囲】[Claims] (1)重量%でC0.4〜1.0%、Si2.0%以下
、Mn0.2〜2%を含有し、P0.02%以下、S0
.02%以下、N0.01%以下に制限し、残部は鉄お
よび不可避不純物よりなり、且つ中心と表面の硬度差が
ビッカース硬度にして100以下で、且つ鋼線強度σに
応じて(0.05σ+13)〜(0.35σ+28)k
gf/mm^2の表面圧縮残留応力を有することを特徴
とする延性にすぐれた高張力鋼線。
(1) Contains C0.4-1.0%, Si2.0% or less, Mn0.2-2%, P0.02% or less, SO
.. 02% or less, N0.01% or less, the remainder consists of iron and unavoidable impurities, and the hardness difference between the center and the surface is 100 or less in terms of Vickers hardness, and according to the steel wire strength σ (0.05σ + 13 ) ~ (0.35σ+28)k
A high tensile strength steel wire with excellent ductility, characterized by having a surface compressive residual stress of gf/mm^2.
(2)重量%でC0.4〜1.0%、Si2.0%以下
、Mn0.2〜2%を含有し、P0.02%以下、S0
.02%以下、N0.01%以下に制限し、且つCr0
.05〜3%、Mo0.01〜1%、W0.01〜1%
、Cu0.05〜3%、Ni0.1〜5%、Co0.1
〜5%の1種または2種以上を含有し、残部鉄及び不可
避不純物よりなり、且つ中心と表面の硬度差がビッカー
ス硬度にして100以下で、且つ、鋼線強度σに応じて (0.05σ+13)〜(0.35σ+28)kgf/
mm^2の表面圧縮残留応力を有することを特徴とする
延性にすぐれた高張力鋼線。
(2) Contains C0.4-1.0%, Si2.0% or less, Mn0.2-2%, P0.02% or less, SO
.. 0.02% or less, N0.01% or less, and Cr0.
.. 05~3%, Mo0.01~1%, W0.01~1%
, Cu0.05-3%, Ni0.1-5%, Co0.1
-5% of one or more kinds, the balance is iron and unavoidable impurities, and the difference in hardness between the center and the surface is 100 or less in terms of Vickers hardness, and according to the steel wire strength σ (0. 05σ+13)~(0.35σ+28)kgf/
A high tensile strength steel wire with excellent ductility, characterized by having a surface compressive residual stress of mm^2.
(3)重量%でC0.4〜1.0%、Si2.0%以下
、Mn0.2〜2%を含有し、P0.02%以下、S0
.02%以下、N0.01%以下に制限し、且つAl0
.001〜0.1%、Ti0.001〜0.1%、Nb
0.001〜0.1%、V0.001〜0.1%、B0
.0003〜0.05%、Mg0.001〜0.1%の
1種または2種以上を含有し、残部鉄および不可避不純
物よりなり、且つ中心と表面の硬度差がビッカース硬度
にして100以下で且つ、鋼線強度σに応じて(0.0
5σ+13)〜(0.35σ+28)kgf/mm^2
の表面圧縮残留応力を有することを特徴とする延性にす
ぐれた高張力鋼線。
(3) Contains C0.4-1.0%, Si2.0% or less, Mn0.2-2%, P0.02% or less, SO
.. 0.02% or less, N0.01% or less, and Al0
.. 001~0.1%, Ti0.001~0.1%, Nb
0.001-0.1%, V0.001-0.1%, B0
.. 0003 to 0.05%, Mg 0.001 to 0.1%, the remainder consists of iron and unavoidable impurities, and the difference in hardness between the center and the surface is 100 or less in terms of Vickers hardness. , depending on the steel wire strength σ (0.0
5σ+13) ~ (0.35σ+28) kgf/mm^2
A high tensile strength steel wire with excellent ductility, characterized by having a surface compressive residual stress of .
(4)重量%でC0.4〜1.0%、Si2.0%以下
、Mn0.2〜2%を含有し、P0.02%以下、S0
.02%以下、N0.01%以下に制限し、且つCr0
.05〜3%、Mo0.01〜1%、W0.01〜1%
、Cu0.05〜3%、Ni0.1〜5%、Co0.1
〜5%の1種または2種以上を含有し、更にAl0.0
01〜0.1%、Ti0.001〜0.1%、Nb0.
001〜0.1%、V0.001〜0.1%、B0.0
003〜0.05%、Mg0.001〜0.1%の1種
または2種以上を含有し、残部鉄および不可避不純物よ
りなり、且つ中心と表面の硬度差がビッカース硬度にし
て100以下で且つ鋼線強度σに応じて(0.05σ+
13)〜(0.35σ+28)kgf/mm^2の表面
圧縮残留応力を有することを特徴とする延性にすぐれた
高張力鋼線。
(4) Contains C0.4-1.0%, Si2.0% or less, Mn0.2-2%, P0.02% or less, SO
.. 0.02% or less, N0.01% or less, and Cr0.
.. 05~3%, Mo0.01~1%, W0.01~1%
, Cu0.05-3%, Ni0.1-5%, Co0.1
Contains ~5% of one or more types, and further contains Al0.0
01-0.1%, Ti0.001-0.1%, Nb0.
001~0.1%, V0.001~0.1%, B0.0
003 to 0.05%, Mg 0.001 to 0.1%, the remainder consists of iron and unavoidable impurities, and the difference in hardness between the center and the surface is 100 or less in terms of Vickers hardness. Depending on the steel wire strength σ (0.05σ+
13) A high tensile strength steel wire with excellent ductility, characterized by having a surface compressive residual stress of ~(0.35σ+28) kgf/mm^2.
JP21477185A 1985-09-30 1985-09-30 High-tensile steel wire excellent in ductility Pending JPS6277442A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP21477185A JPS6277442A (en) 1985-09-30 1985-09-30 High-tensile steel wire excellent in ductility
EP86113353A EP0218167B1 (en) 1985-09-30 1986-09-29 High tensile strength drawn steel wire with improved ductility
DE8686113353T DE3675874D1 (en) 1985-09-30 1986-09-29 DRAWN STEEL WIRE WITH HIGH BREAK RESISTANCE AND DUCTILITY.
KR1019860008244A KR910003978B1 (en) 1985-09-30 1986-09-30 High tensile strength drawn steel wire with improved ductility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21477185A JPS6277442A (en) 1985-09-30 1985-09-30 High-tensile steel wire excellent in ductility

Publications (1)

Publication Number Publication Date
JPS6277442A true JPS6277442A (en) 1987-04-09

Family

ID=16661261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21477185A Pending JPS6277442A (en) 1985-09-30 1985-09-30 High-tensile steel wire excellent in ductility

Country Status (1)

Country Link
JP (1) JPS6277442A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236029A (en) * 1989-09-22 1993-08-17 Bridgestone Corporation Heavy duty pneumatic radial tires with fatigue resistant steel carcass cords
WO1999011836A1 (en) * 1997-08-28 1999-03-11 Sumitomo Electric Industries, Ltd. Steel wire and method of manufacturing the same
JP2009280836A (en) * 2008-05-19 2009-12-03 Nippon Steel Corp High strength pc steel wire excellent in delayed crack resistance characteristic, and manufacturing method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60214770A (en) * 1984-04-05 1985-10-28 Mitsui Toatsu Chem Inc Production of aminoethanesulfonic acid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60214770A (en) * 1984-04-05 1985-10-28 Mitsui Toatsu Chem Inc Production of aminoethanesulfonic acid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236029A (en) * 1989-09-22 1993-08-17 Bridgestone Corporation Heavy duty pneumatic radial tires with fatigue resistant steel carcass cords
WO1999011836A1 (en) * 1997-08-28 1999-03-11 Sumitomo Electric Industries, Ltd. Steel wire and method of manufacturing the same
US7255758B2 (en) 1997-08-28 2007-08-14 Sumitomo Electric Industries, Ltd. Steel wire and method of manufacturing the same
JP2009280836A (en) * 2008-05-19 2009-12-03 Nippon Steel Corp High strength pc steel wire excellent in delayed crack resistance characteristic, and manufacturing method therefor

Similar Documents

Publication Publication Date Title
EP0144811B1 (en) Improved steel wire with high tensile strength
AU664336B2 (en) Stainless steel wire product
EP2532764A1 (en) Wire material, steel wire, and processes for production of those products
JPS61261430A (en) Manufacture of high strength and toughness steel wire
CA2244148A1 (en) Thick alznmgcu alloy products having improved properties
KR910003978B1 (en) High tensile strength drawn steel wire with improved ductility
JPS5928555A (en) High tensile aluminum alloy good in extrudability and excellent in strength and toughness
JPS6277442A (en) High-tensile steel wire excellent in ductility
US20220097454A1 (en) A steel cord for rubber reinforcement
EP0169587A1 (en) High-performance carbon steel wire
JPH0248605B2 (en) KOKYODO * KOENSEIKOSENNOSEIZOHO
JP2920474B2 (en) Ultra-high strength steel wire and steel cord for rubber reinforcement
JP2016056418A (en) Steel material for cold working
JPH06145895A (en) High sterength and high toughness steel wire rod, extra fine steel wire using the same steel wire rod, production therefor and straded steel wire
JPS6277441A (en) High-tensile steel wire excellent in ductility
EP3710286B1 (en) A steel cord for rubber reinforcement
WO2020054673A1 (en) Steel cord for reinforcing rubber article
JP2975223B2 (en) Steel cord for rubber article reinforcement
JP3037844B2 (en) Steel cord for reinforcing rubber articles and method for producing the same
JPH08291369A (en) High strength extra fine steel wire excellent in fatigue property and its production
JPH05500689A (en) Method of manufacturing high tensile strain hardening wire for manufacturing reinforcing cables for elastic articles such as pneumatic tires and the like, and reinforcing members or cables made from such wires
Ciganik et al. Influence of composition and processing on the strength and torsional ductility of high strength steel wire
Mihaliková et al. Analysis of pearlitic cold drawn steel wire
JPH0124208B2 (en)
SU472161A1 (en) Steel