JPH0365863B2 - - Google Patents

Info

Publication number
JPH0365863B2
JPH0365863B2 JP17320983A JP17320983A JPH0365863B2 JP H0365863 B2 JPH0365863 B2 JP H0365863B2 JP 17320983 A JP17320983 A JP 17320983A JP 17320983 A JP17320983 A JP 17320983A JP H0365863 B2 JPH0365863 B2 JP H0365863B2
Authority
JP
Japan
Prior art keywords
ground fault
optical fiber
power cable
point
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17320983A
Other languages
Japanese (ja)
Other versions
JPS6066139A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17320983A priority Critical patent/JPS6066139A/en
Publication of JPS6066139A publication Critical patent/JPS6066139A/en
Publication of JPH0365863B2 publication Critical patent/JPH0365863B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【発明の詳細な説明】 この発明は超高圧OFケーブル等電力ケーブル
を収容する防災トラフに於て、光フアイバを用い
て地絡事故検知及び地絡点標定を迅速に行ない得
るようにした地絡検出方法に存する。
[Detailed Description of the Invention] This invention is a ground fault detection system that uses optical fibers to quickly detect ground faults and locate ground fault points in disaster prevention troughs that house power cables such as ultra-high voltage OF cables. It depends on the detection method.

電力ケーブルを収容するトラフの防災機能を高
めるための各種の提案があるが、例えば水酸化ア
ルミニウム等の難燃性添加剤が配合された強化プ
ラスチツク製の密閉型防災トラフでは、ケーブル
が地絡したときに発生するガス圧によつて破損し
た場合、この破損部分から新鮮な空気が流入し、
アークで加熱されたケーブル破壊孔に着火するの
で、ケーブルを延焼するおそれがあつた。このた
め防災トラフ自体の改良は進み、たとえば防災ト
ラフの蓋体に所定の間隔毎に放圧部が設けられか
つこの放圧部の形状も種々改良され、最近では40
〜60KAの地絡電流に耐えるようなスリツトを持
つところの放圧部を有する防災トラフも生み出さ
れている。
There are various proposals to improve the disaster prevention function of troughs that house power cables, but for example, sealed disaster prevention troughs made of reinforced plastics containing flame-retardant additives such as aluminum hydroxide have been proposed to prevent cables from grounding. If the damage occurs due to the gas pressure that sometimes occurs, fresh air will flow in through the damage,
There was a risk that the fire would spread to the cable because the cable rupture hole heated by the arc would ignite. For this reason, improvements have been made to the disaster prevention trough itself. For example, pressure relief sections are provided at predetermined intervals on the lid of the disaster prevention trough, and the shapes of these pressure relief sections have also been improved in various ways.
Disaster prevention troughs have also been created that have pressure relief sections with slits that can withstand earth fault currents of ~60 KA.

しかし、電力ケーブルに地絡事故が発生した場
合に地絡事故を検知し、地絡点を標点する方法に
ついては末だ必ずしも適切な方法ありとは云い難
い。
However, when a ground fault occurs in a power cable, it is difficult to say that there is an appropriate method for detecting the fault and marking the ground fault point.

即ち、この地絡点の標定法としてはマーレール
ープ法、パルスレーダ法、放電検出形パルスレー
ダ法等が知られているが、マーレーループ法は例
えば三相同時地絡事故のように並行健全相がない
場合や、地絡抵抗が高く、高圧電源を用いても事
故点が放電しない場合は測定精度が若干低く、ま
た測定には熟練を必要とする方法である。又、前
記パルスレーダ法はいずれも電気的パルスの反射
を利用したものであつて、探索の感度に於て充分
とは言えない。
In other words, the Murray loop method, pulse radar method, discharge detection type pulse radar method, etc. are known as methods for locating this ground fault point, but the Murray loop method is used for locating parallel healthy phases, such as a three-phase simultaneous ground fault. If there is no ground fault, or if the ground fault resistance is high and the fault point does not discharge even if a high-voltage power source is used, the measurement accuracy will be slightly low, and the measurement requires skill. Furthermore, all of the pulse radar methods described above utilize reflection of electrical pulses, and cannot be said to have sufficient search sensitivity.

本発明はこのような状況の下になされたもの
で、電力ケーブルを布設したトラフのケーブル収
納部に光フアイバを配設し、電力ケーブルの地絡
事故が発生した際の高温により生ずる光フアイバ
の破断または局所的な伝送損失が変化する障害点
からの反射光または後方散乱光を検知して地絡事
故の検知及び地絡点の標定をするようにしたこと
を特徴とする地絡検出方法である。
The present invention has been made under these circumstances, and it is designed to install optical fibers in the cable storage area of a trough in which power cables are laid, and to prevent the damage of optical fibers caused by high temperatures when a power cable ground fault occurs. A ground fault detection method characterized by detecting reflected light or backscattered light from a fault point where a break or local transmission loss changes to detect a ground fault accident and locate the ground fault point. be.

次に図面を参照しつゝ本発明を説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明を実施するためのケーブル収納
部に光フアイバを配設した状態を示す横断面図で
トラフ1はケーブル収納部1−1と蓋部1−2と
からなり、ケーブル収納部1−1の中央には電力
ケーブル2が収納布設され、光フアイバ3は残存
空所の適宜な位置に配設される。(図ではケーブ
ル収納部1−1の上縁に沿つて引留められてい
る。) 第2図は本発明の方法を説明するための簡略説
明図でトラフ1内に電力ケーブルが収納布設さ
れ、これに並行に光フアイバ3が設けられてお
り、この光フアイバ3は地絡点標定器4に接続さ
れている。ここで光フアイバ3の一端からパルス
信号を送ると断線箇所で反射パルスとなり帰つて
くるのでこの断線点を地絡点標定器4により検出
できるので結局地絡位置を検出することになる。
又、図示してないが、光フアイバ3の一端を発光
部他端を受光部を介して地絡点標定器に接続して
おけば、光フアイバの断線は直ちに地絡点標定器
に伝えられ、地絡事故の発生を検知できる。
FIG. 1 is a cross-sectional view showing a state in which optical fibers are arranged in a cable storage part for carrying out the present invention. A power cable 2 is housed and laid in the center of 1-1, and an optical fiber 3 is placed at an appropriate position in the remaining space. (In the figure, it is held along the upper edge of the cable storage section 1-1.) FIG. 2 is a simplified explanatory diagram for explaining the method of the present invention, in which a power cable is stored and laid in the trough 1, An optical fiber 3 is provided in parallel with this, and this optical fiber 3 is connected to a ground fault point locator 4. Here, when a pulse signal is sent from one end of the optical fiber 3, it returns as a reflected pulse at the broken point, and this broken point can be detected by the ground fault location device 4, resulting in the detection of the ground fault position.
Although not shown, if one end of the optical fiber 3 is connected to a ground fault point locator through a light emitting section and the other end is connected to a ground fault point locator through a light receiving section, a break in the optical fiber will be immediately transmitted to the ground fault point locator. , the occurrence of a ground fault can be detected.

以上光フアイバの地絡による断線の場合につい
て述べたが断線以外の障害についても伝送損失の
変化により地絡事故を検知し、地絡点を標定する
ことができる。
The case where the optical fiber is disconnected due to a ground fault has been described above, but ground faults can also be detected based on changes in transmission loss and the ground fault point can be located for failures other than disconnections.

本発明で用いられる光フアイバについては例え
ば第3図に示したように光フアイバ3は光フアイ
バ素線31とその上に被覆されたプライマリコー
ト32と更にその上の2次被覆33とからなる。
この光フアイバ素線31は通常の石英系光フアイ
バで例えばコア径50μm、クラツド径125μm、コ
アクラツド間の比屈折率差1%のグレーデツド型
屈折率分布を有するものが用いられる。そしてプ
ライマリコートは、必ずしもやわらかいものでは
なく、通常のものより固いものが好ましい。2次
被覆層33には架橋ポリエチレン、シリコンゴム
或はエチレン酢酸ビニル樹脂等の熱収縮性ゴム又
はプラスチツクが用いられる。
Regarding the optical fiber used in the present invention, for example, as shown in FIG. 3, the optical fiber 3 consists of an optical fiber strand 31, a primary coat 32 coated thereon, and a secondary coat 33 thereon.
The optical fiber 31 is a normal silica-based optical fiber having, for example, a core diameter of 50 .mu.m, a cladding diameter of 125 .mu.m, and a graded refractive index distribution with a relative refractive index difference of 1% between the core and cladding. The primary coat is not necessarily soft, but is preferably harder than normal. The secondary coating layer 33 is made of crosslinked polyethylene, silicone rubber, heat-shrinkable rubber such as ethylene vinyl acetate resin, or plastic.

このような光フアイバを用いるときは、周囲温
度が高温になつたときに急激な熱収縮を起し、こ
れが光フアイバ素線に強く作用し伝送損失を増加
させることができる。
When such an optical fiber is used, rapid thermal contraction occurs when the ambient temperature rises, and this strongly acts on the optical fiber strands, increasing transmission loss.

又、更に光フアイバのクラツド材も適宜選択す
れば、熱履歴が加わることで、伝送損失が変化
し、光パルスの反射の増大を図ることができ、地
絡時の火焔風、熱等により切断し易くすることも
可能である。実際の地絡の際には地絡付近の温度
は200℃以上で5秒程度、300℃以上で2秒程度と
なるので、例えば200℃、5秒間で溶断し或は特
性劣化が生じるような光フアイバを用いることは
一層好ましいものと言える。
In addition, if the cladding material of the optical fiber is selected appropriately, the transmission loss will change due to the addition of thermal history, and the reflection of optical pulses can be increased. It is also possible to make it easier. In the event of an actual ground fault, the temperature near the ground fault will be about 5 seconds at 200℃ or higher, and about 2 seconds at 300℃ or higher. It is even more preferable to use optical fibers.

以上述べたように本発明によれば、トラフ内に
於て電力ケーブルに並行に配設された光フアイバ
を利用し、地絡時の断線は勿論、高温時の損失状
態の増大による入射端に戻つてくる散乱光或は反
射光の強度の変化を利用し、光フアイバの長さ方
向の損失測定(光パルス測定)を地絡点標定器に
より行なうことができ、地絡による異常温度上昇
が起きたときにその部分の受光レベルの急激な落
ち込みを検知することによつて異常発生箇所を知
り得るものであり、受光レベルの変化検知には例
えば微分回路を用いて連続モニタ装置を構成し、
波形信号としてとらえればよい。
As described above, according to the present invention, the optical fibers installed in parallel to the power cable in the trough are used to prevent breakage in the event of a ground fault, as well as damage to the input end due to increased loss at high temperatures. By using changes in the intensity of the returning scattered light or reflected light, it is possible to measure the loss in the length direction of the optical fiber (optical pulse measurement) using a ground fault location device, which can prevent abnormal temperature rises due to ground faults. By detecting a sudden drop in the light reception level in that area when an abnormality occurs, it is possible to know the location of the abnormality, and to detect changes in the light reception level, a continuous monitoring device is configured using, for example, a differential circuit.
It can be seen as a waveform signal.

又、本発明は地絡点標定は特別な操作を要する
ものではないので熟練を要せず、又、ケーブルを
用いないので事故の様相に無関係に地絡点標定が
でき、銅線による電磁パルスよりもパルスの応答
性もよいので精度の高い標定をなし得るものであ
る。
In addition, the present invention does not require any special operation to locate the ground fault point, so no skill is required, and since no cable is used, the ground fault point can be located regardless of the nature of the accident. Since the pulse response is better than that of the conventional method, highly accurate positioning can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するための光フアイバを
配設したトラフの横断面図、第2図は本発明の方
法の簡略説明図、第3図は、本発明で用いられる
光フアイバの一例を示す横断面図である。 1……トラフ、1−1……ケーブル収納部、1
−2……蓋部、2……電力ケーブル、3……光フ
アイバ、4……地絡点標定器。
FIG. 1 is a cross-sectional view of a trough equipped with optical fibers for carrying out the present invention, FIG. 2 is a simplified illustration of the method of the present invention, and FIG. 3 is an example of the optical fiber used in the present invention. FIG. 1...Trough, 1-1...Cable storage section, 1
-2...Lid, 2...Power cable, 3...Optical fiber, 4...Ground fault locator.

Claims (1)

【特許請求の範囲】[Claims] 1 内部に電力ケーブルを布設したトラフのケー
ブル収納部に光フアイバを配設し、電力ケーブル
の地絡事故発生時の高温により生ずる光フアイバ
の破断または局所的な伝送損失が変化する障害点
からの反射光または後方散乱光を検知して光フア
イバの障害点を検出することにより電力ケーブル
の地絡事故及び地絡点を標定することを特徴とす
る地絡検出方法。
1. An optical fiber is installed in the cable storage part of a trough with a power cable installed inside, and it is possible to prevent optical fiber breakage caused by high temperature when a power cable ground fault occurs or from a failure point where local transmission loss changes. A ground fault detection method comprising locating a ground fault and a ground fault point in a power cable by detecting reflected light or backscattered light to detect a fault point in an optical fiber.
JP17320983A 1983-09-21 1983-09-21 Ground-fault detecting method Granted JPS6066139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17320983A JPS6066139A (en) 1983-09-21 1983-09-21 Ground-fault detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17320983A JPS6066139A (en) 1983-09-21 1983-09-21 Ground-fault detecting method

Publications (2)

Publication Number Publication Date
JPS6066139A JPS6066139A (en) 1985-04-16
JPH0365863B2 true JPH0365863B2 (en) 1991-10-15

Family

ID=15956136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17320983A Granted JPS6066139A (en) 1983-09-21 1983-09-21 Ground-fault detecting method

Country Status (1)

Country Link
JP (1) JPS6066139A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758310B2 (en) * 1989-04-07 1995-06-21 東京電力株式会社 Fault detection method for overhead power lines
JPH02131669U (en) * 1989-04-07 1990-11-01

Also Published As

Publication number Publication date
JPS6066139A (en) 1985-04-16

Similar Documents

Publication Publication Date Title
US6881948B2 (en) Method using an optical signal for detecting overheating and fire conditions in an aircraft
US7974815B2 (en) Embedded system for diagnostics and prognostics of conduits
US4453159A (en) Self-monitoring heat tracing system
US4988949A (en) Apparatus for detecting excessive chafing of a cable arrangement against an electrically grounded structure
US6559437B1 (en) Fiber optic damage sensor for wire and cable
US6265880B1 (en) Apparatus and method for detecting conduit chafing
US5144125A (en) Fiber optic based fire detection and tracking system
EP3291192A1 (en) Monitoring system of an aircraft bleed air system
US4922183A (en) Methods, systems and apparatus for detecting changes in variables
JPH0365863B2 (en)
JPS6043606B2 (en) electric cable
JPS5973812A (en) Power cable and its defect detector
EP3699619B1 (en) Wiring-integrity automatic monitoring system having improved features
Yamashita et al. Study on Location Accuracy of Partial Discharge Locator
CN217133815U (en) Cable type temperature-sensing fire detector with site position display
JPS5875041A (en) Detection for leakage of water
JPH0769248B2 (en) Optical cable fault detector
JP2734803B2 (en) Optical fiber cable for fire detection
CN117038166A (en) Intrinsic safety type control cable for ultra-high voltage power transmission device in pollution area
JPH0340279B2 (en)
JPH0535388B2 (en)
JPH04351973A (en) Detection method for failure point in underground electric wire
JPH0324477A (en) Location of accident point
JPH0548409B2 (en)
JPS60187222A (en) Method of detecting ground falt of power cble