JPH04351973A - Detection method for failure point in underground electric wire - Google Patents

Detection method for failure point in underground electric wire

Info

Publication number
JPH04351973A
JPH04351973A JP12770691A JP12770691A JPH04351973A JP H04351973 A JPH04351973 A JP H04351973A JP 12770691 A JP12770691 A JP 12770691A JP 12770691 A JP12770691 A JP 12770691A JP H04351973 A JPH04351973 A JP H04351973A
Authority
JP
Japan
Prior art keywords
temperature distribution
optical fiber
tunnel
power transmission
power cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12770691A
Other languages
Japanese (ja)
Inventor
Yasuo Ozawa
保夫 小沢
Teruaki Tsutsui
筒井 輝明
Keiichi Hashiba
橋場 圭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Cable Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP12770691A priority Critical patent/JPH04351973A/en
Publication of JPH04351973A publication Critical patent/JPH04351973A/en
Pending legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PURPOSE:To enable determination of a failure point in a underground electric wire involving connection parts of cables in a short time and with high accuracy. CONSTITUTION:An optical fiber 1 is put inside a plastic pipe 8 installed in a tunnel 10 of an electric power cable 3, and a temperature distribution measuring apparatus 2 for measuring a longitudinal temperature distribution inside the tunnel 10 according to backward scattering light distribution in the optical fiber 1 is provided. A trigger signal is sent to a temperature distribution measuring apparatus 2 at the moment when a trip signal of a underground electric wire is received, the longitudinal temperature distribution of optical fiber 1 is directly measured. Differential values of the temperature distributions' been before and after the trip signal is received are obtained by a data Processor 7, and a position with the maximum differential value is detected as a failure point.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、地中送電線の故障点、
特に地絡点の検知に有効な故障点検知方法に関するもの
である。
[Industrial Application Field] The present invention is directed to the failure point of an underground power transmission line,
In particular, the present invention relates to a fault point detection method that is effective for detecting ground fault points.

【0002】0002

【従来の技術】従来、電力ケーブルでは落雷による衝撃
電圧の印加や、電力ケーブルを構成する絶縁体の劣化あ
るいは外傷によるケーブルの損傷によって絶縁破壊が生
じ、この部分で大電流が接地系に流れ、ケーブルが大破
するいわゆる地絡事故が起こっている。このような地絡
事故が発生した場合には、電気所では、系統電流の監視
により事故を判断し、継電器等を自動遮断するシステム
となっている。また事故点の標定には、ブリッジの原理
を用い、故障ケーブルの心線をブリッジの一辺として事
故点までの抵抗を測定することによって標定するマレー
ループ法や、電気的なパルスの反射をとらえるパルスレ
ーダ法が用いられている。
[Prior Art] Conventionally, dielectric breakdown occurs in power cables due to the application of shock voltage due to lightning strikes, deterioration of the insulation that constitutes the power cable, or damage to the cable due to external trauma, and a large current flows into the grounding system at this point. So-called ground fault accidents, in which cables are severely damaged, are occurring. When such a ground fault occurs, electrical stations have systems in place to determine the fault by monitoring system current and automatically shut off relays and the like. In addition, the fault point can be located using the Murray loop method, which uses the bridge principle and measures the resistance up to the fault point with the core wire of the faulty cable as one side of the bridge, or the pulse pulse method, which captures the reflection of electrical pulses. Radar method is used.

【0003】更に最近では、ケーブル内あるいはケーブ
ル表面に多数の光ファイバを布設し、地絡時に生じるア
ークエネルギで断線した光ファイバ破断位置をOTDR
(Optical Time Domain Refl
ectometry )の手法で測定し、この破断点か
ら地絡点を標定する方法が考えられている。
[0003]More recently, many optical fibers have been laid inside or on the cable surface, and OTDR has been developed to detect the location of optical fiber breakage due to arc energy generated during a ground fault.
(Optical Time Domain Ref.
A method of locating the ground fault point from this rupture point has been considered.

【0004】0004

【発明が解決しようとする課題】しかしながら、先の従
来技術では以下の欠点がある。
However, the prior art described above has the following drawbacks.

【0005】(1)マレーループ法やパルスレーダ法で
は、地絡事故が発生したことが分かってからでないと、
測定装置を設置できないため、地絡事故発生後、標定で
きるまでに時間がかかる。更に、事故点の位置標定精度
が悪く、結果的に巡回点検が必要になり、事故復旧の効
率が悪い。
(1) In the Murray loop method and pulse radar method, it is necessary to know that a ground fault has occurred.
Because measuring equipment cannot be installed, it takes time to locate the ground after a ground fault occurs. Furthermore, the location accuracy of the accident point is poor, resulting in the need for patrol inspections, and the efficiency of accident recovery is poor.

【0006】(2)光ファイバの断線位置をOTDR法
で検出する方式では、地絡エネルギが小さいため光ファ
イバが断線しない場合があり、標定ができないことがあ
る。また、ケーブルの地絡方向に光ファイバが布設され
ていなかった場合には、地絡エネルギの影響が少なく断
線しないため、標定ができなくなる。このため、地絡方
向や地絡エネルギに左右されにくい位置標定を行うには
、多数の光ファイバを極力電力ケーブル内部に配置する
ことが必要となり、実用上困難となる。
(2) In the method of detecting the position of an optical fiber break using the OTDR method, the optical fiber may not break because the ground fault energy is small, and location may not be possible. Furthermore, if the optical fiber is not laid in the direction of the ground fault of the cable, the influence of the ground fault energy is small and the wire will not break, making it impossible to locate the cable. Therefore, in order to locate a position that is not affected by the ground fault direction or ground fault energy, it is necessary to arrange as many optical fibers inside the power cable as possible, which is difficult in practice.

【0007】本発明の目的は、前記した従来技術の欠点
を解消し、電力ケーブルの地絡事故点をケーブル接続部
も含め、高精度かつ短時間で標定できる地絡故障点検知
方法を提供することにある。
An object of the present invention is to eliminate the drawbacks of the prior art described above and provide a ground fault point detection method that can locate the ground fault point of a power cable, including the cable connection, with high precision and in a short time. There is a particular thing.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明は、光ファイバを電力ケーブルの布設されてい
る洞道内あるいは管路内に布設し、光ファイバの後方散
乱光分布から洞道内あるいは管路内の長手方向温度分布
を計測し、その温度分布から故障点を検知する地中送電
線の故障点検知方法において、地中送電線のトリップ信
号を受信後、これをトリガ信号として直ちに上記光ファ
イバ長手方向の温度分布を計測し、トリップ信号の受信
前後での温度分布の差分値を求め、この差分値が最大の
位置から故障点を検知するものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention lays an optical fiber in a tunnel or conduit where a power cable is installed, and uses the backscattered light distribution of the optical fiber to determine the inside of the tunnel. Alternatively, in an underground power transmission line failure point detection method that measures the longitudinal temperature distribution in the conduit and detects the failure point from that temperature distribution, after receiving a trip signal of the underground power transmission line, this is immediately used as a trigger signal. The temperature distribution in the longitudinal direction of the optical fiber is measured, the difference value between the temperature distributions before and after receiving the trip signal is determined, and the failure point is detected from the position where this difference value is maximum.

【0009】この場合、電力ケーブルの布設されている
洞道内あるいは管路内に耐熱性に優れるプラスチックパ
イプを予め布設し、この中に上記光ファイバを圧送して
温度分布測定用センサとし、該光ファイバの温度分布か
ら故障点を検知することが好ましい。
In this case, a plastic pipe with excellent heat resistance is laid in advance in the tunnel or conduit where the power cable is laid, and the above-mentioned optical fiber is fed under pressure into the pipe to serve as a temperature distribution measurement sensor, and the optical fiber is used as a sensor for measuring temperature distribution. It is preferable to detect a failure point from the temperature distribution of the fiber.

【0010】0010

【作用】電力ケーブル布設ルートに沿って光ファイバを
布設し、光ファイバの後方散乱光分布から該電力ケーブ
ル布設ルートの長手方向温度分布を計測する。この場合
、洞道内あるいは管路内の長手方向の温度分布は地絡事
故等がない正常な状態下でも異なっている可能性があり
、測定した温度分布の最高温度検出点を故障点と断定す
ることはできない。そこで、まず地中送電線のトリップ
信号を受信したということを以て事故が発生したと判断
し、これをトリガ信号として直ちに上記光ファイバ長手
方向の温度分布を計測する。そして、このトリップ信号
の受信前後での温度分布の差分値、即ち瞬時の温度上昇
を求め、この差分値が最大の位置に対応する距離位置を
以て故障点とする。これにより、正常な状態下での温度
分布の影響が除去され、事故位置をケーブル接続部も含
めて正確に標定することができる。
[Operation] An optical fiber is laid along the power cable installation route, and the longitudinal temperature distribution of the power cable installation route is measured from the backscattered light distribution of the optical fiber. In this case, the temperature distribution in the longitudinal direction inside the tunnel or pipe may differ even under normal conditions without any ground faults, and the highest temperature detection point of the measured temperature distribution should be determined to be the failure point. It is not possible. Therefore, first, it is determined that an accident has occurred when a trip signal of the underground power transmission line is received, and this is used as a trigger signal to immediately measure the temperature distribution in the longitudinal direction of the optical fiber. Then, the difference value of the temperature distribution before and after receiving the trip signal, that is, the instantaneous temperature rise, is determined, and the distance position corresponding to the position where this difference value is maximum is determined as the failure point. As a result, the influence of temperature distribution under normal conditions is removed, and the accident location, including the cable connection, can be accurately located.

【0011】地絡のエネルギ時のアークエネルギ等で、
光ファイバが断線することも考えられるが、このときは
計測した後方散乱光分布から、断線位置即ち地絡地点を
検出できる。従って、本方法によれば、地絡事故発生時
に光ファイバが断線した時は後方散乱光分布から、断線
しない時は温度分布から地絡点を検出できる。
[0011] With the arc energy etc. at the time of the earth fault energy,
Although it is possible that the optical fiber may be disconnected, in this case, the position of the disconnection, that is, the ground fault point can be detected from the measured backscattered light distribution. Therefore, according to this method, a ground fault point can be detected from the backscattered light distribution when the optical fiber is broken when a ground fault occurs, and from the temperature distribution when the optical fiber is not broken.

【0012】0012

【実施例】以下、本発明の一実施例を添付図面に従って
詳述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

【0013】図1は、本発明の地中送電線の故障点検知
方法の実施例を示す構成である。
FIG. 1 shows a configuration of an embodiment of the method for detecting a fault point in an underground power transmission line according to the present invention.

【0014】図において、1は光ファイバ、2はこの光
ファイバ1によるラマン後方散乱光の分布波形からOT
DRの手法で光ファイバ1に沿った温度分布を求める温
度分布測定装置である。3は電源4で示す送電側から受
電側へ送電を行う3相の電力ケーブルであり、実際には
図3に示すように洞道10に複数回線が布設されている
。この電力ケーブル3の布設されている洞道10には、
その上部中央に耐熱性に優れるプラスチックパイプ8が
取り付けられ洞道10に沿って予め布設されている。光
ファイバ1は、このプラスチックパイプ8内に予め図2
のように圧送し、以て温度分布測定用センサとして洞道
10に沿って延線されている。
In the figure, 1 is an optical fiber, and 2 is an OT obtained from the distribution waveform of Raman backscattered light by this optical fiber 1.
This is a temperature distribution measuring device that measures temperature distribution along an optical fiber 1 using the DR method. Reference numeral 3 denotes a three-phase power cable that transmits power from the power transmission side to the power reception side, which is indicated by a power source 4, and in reality, as shown in FIG. 3, a plurality of lines are laid in the tunnel 10. In the tunnel 10 where this power cable 3 is laid,
A plastic pipe 8 having excellent heat resistance is attached to the center of the upper part and laid in advance along the tunnel 10. The optical fiber 1 is placed in advance in this plastic pipe 8 as shown in FIG.
The wire is then extended along the tunnel 10 as a sensor for measuring temperature distribution.

【0015】温度分布測定装置2は、この光ファイバ1
の片端に接続されており、温度分布測定装置2内部の光
源からレーザパルス光を光ファイバ1内に入射し、光フ
ァイバ1内で生ずる後方散乱光であるラマン散乱光パル
スを時分割で検出することによって、ラマン散乱光の長
手方向分布を得るものであり、このラマン散乱光強度が
温度に依存することを利用して、光ファイバを布設した
電力ケーブル3のトータル全長に亘って温度分布を求め
る。
[0015] The temperature distribution measuring device 2 uses this optical fiber 1.
is connected to one end of the temperature distribution measuring device 2, and inputs laser pulse light into the optical fiber 1 from a light source inside the temperature distribution measuring device 2, and detects Raman scattered light pulses, which are backscattered light generated within the optical fiber 1, in a time-division manner. By doing this, the longitudinal distribution of Raman scattered light is obtained, and by utilizing the fact that the intensity of this Raman scattered light depends on temperature, the temperature distribution is obtained over the total length of the power cable 3 in which the optical fiber is installed. .

【0016】5は電力ケーブル3の3相交流1回線の各
相u,v,w毎に取り付けられた変流器、6は変流器5
で得られる電流値から地中送電線系統におけるトリップ
信号を受信して地絡等の故障の発生を検出し、トリガ信
号を温度分布測定装置2に与えて計測を開始させるトリ
ガ信号発生器である。7は温度分布測定装置2で得られ
る温度分布信号を評価して電力ケーブル3上の故障点を
標定するデータ処理装置であり、このデータ処理装置7
は、上記トリップ信号の受信後における温度分布、即ち
温度分布測定装置2がトリガ信号を受信して測定した温
度分布を、上記トリップ信号受信前に既に測定されてい
た温度分布信号と比較して、トリップ信号の受信前後に
おける温度分布の差分値を求め、この差分値が最大の位
置を故障点として検知する。
5 is a current transformer attached to each phase u, v, w of the 3-phase AC single circuit of the power cable 3; 6 is the current transformer 5;
This is a trigger signal generator that receives a trip signal in the underground transmission line system from the current value obtained from the current value, detects the occurrence of a fault such as a ground fault, and gives a trigger signal to the temperature distribution measuring device 2 to start measurement. . 7 is a data processing device that evaluates the temperature distribution signal obtained by the temperature distribution measuring device 2 and locates a fault point on the power cable 3;
compares the temperature distribution after receiving the trip signal, that is, the temperature distribution measured by the temperature distribution measuring device 2 upon receiving the trigger signal, with the temperature distribution signal that was already measured before receiving the trip signal, The difference value of the temperature distribution before and after receiving the trip signal is determined, and the position where this difference value is maximum is detected as the failure point.

【0017】今、図1の電力ケーブル3に絶縁体の劣化
あるいは外傷による地絡事故が起こると、地絡点で大電
流が接地系に流れ、この時のエネルギで当該電力ケーブ
ル3が大破すると共に、アークエネルギで地絡点をピー
クとして周囲の温度が一時的に上昇する。これに先立ち
、トリガ信号発生器6は、電力ケーブル3に取り付けた
変流器5で得られる電流値を監視しており、地中送電線
のトリップ信号として故障に対応した電流情報が得られ
た場合には、トリガ信号を発生する。このトリガ信号を
受けて、温度分布測定装置2が即座に計測を開始し、洞
道10に沿って布設した光ファイバ1の長手方向におけ
る温度分布を測定する。データ処理装置7は、上記地絡
事故等のない正常時において温度分布測定装置2から得
られた温度分布又はトリガ信号発生直前の温度分布を予
め記憶しており、この記憶している温度分布信号に対し
てトリガ信号受信後に測定された温度分布を比較し、両
者の差分値を求め、この温度分布の差分値が最大の位置
を故障点として標定する。第4図は模擬地絡事故実験に
より得られた温度分布のデータであり、温度のピーク位
置Pから地絡点xが求まる。
[0017] If a ground fault occurs in the power cable 3 shown in Fig. 1 due to deterioration of the insulation or external trauma, a large current will flow into the ground system at the ground fault point, and the power cable 3 will be severely damaged by the energy generated at this time. At the same time, the ambient temperature rises temporarily due to the arc energy, reaching a peak at the ground fault point. Prior to this, the trigger signal generator 6 monitored the current value obtained from the current transformer 5 attached to the power cable 3, and current information corresponding to the failure was obtained as a trip signal for the underground power transmission line. If so, generate a trigger signal. Upon receiving this trigger signal, the temperature distribution measuring device 2 immediately starts measurement and measures the temperature distribution in the longitudinal direction of the optical fiber 1 laid along the tunnel 10. The data processing device 7 stores in advance the temperature distribution obtained from the temperature distribution measuring device 2 during normal times without any ground faults, etc. or the temperature distribution immediately before the trigger signal is generated, and the stored temperature distribution signal The temperature distribution measured after receiving the trigger signal is compared with the temperature distribution, the difference value between the two is determined, and the position where the difference value of the temperature distribution is the maximum is located as the failure point. FIG. 4 shows temperature distribution data obtained from a simulated ground fault accident experiment, and the ground fault point x can be found from the temperature peak position P.

【0018】このように、故障に対応した電流情報が得
られた場合に限り温度分布測定装置2の計測を開始させ
、かつ、その前後の温度分布の差分値より瞬時の温度上
昇をとらえることにより、故障が発生したことを明確に
認識した上で、正常時の温度分布に影響されない高精度
の故障点検出ができる。
[0018] In this way, the temperature distribution measuring device 2 starts measurement only when current information corresponding to the failure is obtained, and the instantaneous temperature rise is detected from the difference value of the temperature distribution before and after that. After clearly recognizing that a failure has occurred, it is possible to detect the failure point with high accuracy without being affected by temperature distribution during normal operation.

【0019】電力ケーブル布設部に沿った連続した温度
分布情報から故障点を判定するため、運転中の地中送電
線を常時監視して、電力ケーブル接続部を含めたあらゆ
る箇所での故障を全て検出することができる。また、光
ファイバが地絡時のアークエネルギで断線した場合は、
その断線位置である地絡点を、計測した後方散乱光分布
から求めることができる。従って、信頼性が高い。
[0019] In order to determine the failure point from continuous temperature distribution information along the power cable installation section, underground power transmission lines in operation are constantly monitored and all failures are detected at all locations, including the power cable connection points. can be detected. In addition, if the optical fiber breaks due to arc energy during a ground fault,
The ground fault point, which is the position of the disconnection, can be determined from the measured backscattered light distribution. Therefore, reliability is high.

【0020】電力ケーブル布設ルートに併設する光ファ
イバは1本でよいため、経済性に優れると共に、光ファ
イバをパイプ内に後から圧送布設した構成であるため、
地絡時の熱影響で光ファイバのみ損傷を受けた場合、地
絡点近傍のみの光ファイバを容易に交換し再布設するこ
とができる。また、布設した光ファイバの端末部に装置
を置くだけで、故障点を標定できることから、新たな工
事の必要がなく、既存線絡でも容易に適用することがで
きる。
[0020] Since only one optical fiber is required to be installed along the power cable installation route, it is highly economical, and since the optical fiber is installed later under pressure into the pipe,
If only the optical fiber is damaged due to thermal effects during a ground fault, the optical fiber only in the vicinity of the ground fault can be easily replaced and reinstalled. Furthermore, since the failure point can be located simply by placing the device at the end of the installed optical fiber, there is no need for new construction and it can be easily applied to existing wire connections.

【0021】上記実施例では、電力ケーブルの布設され
ている洞道内に光ファイバを布設した場合について説明
したが、管路内に光ファイバを布設した場合においても
同様に適用することができる。
[0021] In the above embodiment, a case has been described in which an optical fiber is installed in a tunnel in which a power cable is installed, but the present invention can be similarly applied to a case in which an optical fiber is installed in a conduit.

【0022】[0022]

【発明の効果】以上述べたように、請求項1記載の発明
によれば、(1)地中送電線のトリップ信号を受信した
後に、その前後の温度分布の差分値より瞬時の温度上昇
をとらえて事故位置の標定を行うため、正常時の温度分
布に影響されない高精度かつ迅速な故障点検出ができる
。(2)電力ケーブル布設部に沿った連続した温度分布
情報から故障点を判定するため、電力ケーブル接続部を
含めたあらゆる箇所での故障を全て検出できる。特に地
絡事故発生時に光ファイバが断線したときでも後方散乱
光分布から地絡点を検出することができる。(3)電力
ケーブル布設ルートに併設する光ファイバは1本でよく
、経済性に優れる。また、布設した光ファイバの端末部
に装置を置くだけで故障点を標定できることから、基本
的に新たな工事の必要がなく、既存線絡でも容易に適用
することができる。
As described above, according to the invention as claimed in claim 1, (1) after receiving a trip signal of an underground power transmission line, an instantaneous temperature rise can be detected based on the difference value between the temperature distribution before and after the trip signal. Since the location of the fault is determined by detecting the location of the fault, it is possible to detect the fault point quickly and accurately without being affected by temperature distribution during normal conditions. (2) Since the failure point is determined from continuous temperature distribution information along the power cable installation section, all failures can be detected at all locations including the power cable connection section. In particular, even when an optical fiber is disconnected when a ground fault occurs, the ground fault point can be detected from the backscattered light distribution. (3) Only one optical fiber is required along the power cable installation route, which is highly economical. Furthermore, since the point of failure can be located simply by placing the device at the end of the installed optical fiber, there is basically no need for new construction, and it can be easily applied to existing wire connections.

【0023】また、請求項2の発明によれば、光ファイ
バをパイプ内に後から圧送布設できるため、地絡時の熱
影響でファイバのみ損傷を受けた場合には、地絡点近傍
のみの光ファイバを容易に交換することができる。
Furthermore, according to the invention as claimed in claim 2, since the optical fiber can be force-fed and installed into the pipe later, if only the fiber is damaged due to the thermal effect at the time of a ground fault, only the area near the ground fault point is damaged. Optical fibers can be easily replaced.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明に係る地中送電線の故障点検知方法を適
用した装置のブロック図
[Fig. 1] Block diagram of a device to which the underground power transmission line failure point detection method according to the present invention is applied.

【図2】図1で用いる光ファイバによる温度分布測定用
センサの断面図
[Figure 2] Cross-sectional view of the optical fiber temperature distribution measurement sensor used in Figure 1

【図3】光ファイバ布設例を示す洞道の断面図[Figure 3] Cross-sectional view of a tunnel showing an example of optical fiber installation

【図4】
模擬地絡事故時の温度分布測定結果の一例を示す図
[Figure 4]
Diagram showing an example of temperature distribution measurement results during a simulated ground fault accident

【符号の説明】[Explanation of symbols]

1  光ファイバ 2  温度分布測定装置 3  電力ケーブル 4  電源 5  変流器 6  トリガ信号発生器 7  データ処理装置 8  プラスチックパイプ 10  洞道 1 Optical fiber 2 Temperature distribution measuring device 3 Power cable 4 Power supply 5 Current transformer 6 Trigger signal generator 7 Data processing device 8 Plastic pipe 10 Cave road

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  光ファイバを電力ケーブルの布設され
ている洞道内あるいは管路内に布設し、光ファイバの後
方散乱光分布から洞道内あるいは管路内の長手方向温度
分布を計測し、その温度分布から故障点を検知する地中
送電線の故障点検知方法において、地中送電線のトリッ
プ信号を受信後、これをトリガ信号として直ちに上記光
ファイバ長手方向の温度分布を計測し、トリップ信号の
受信前後での温度分布の差分値を求め、この差分値が最
大の位置から故障点を検知することを特徴とする地中送
電線の故障点検知方法。
Claim 1: An optical fiber is installed in a tunnel or conduit where a power cable is installed, and the temperature distribution in the longitudinal direction inside the tunnel or conduit is measured from the backscattered light distribution of the optical fiber. In a fault point detection method for underground power transmission lines that detects fault points from distribution, after receiving a trip signal from an underground power transmission line, this is used as a trigger signal to immediately measure the temperature distribution in the longitudinal direction of the optical fiber, and the trip signal is detected. A method for detecting a fault point in an underground power transmission line, characterized in that the difference value of temperature distribution before and after reception is determined, and the fault point is detected from the position where the difference value is maximum.
【請求項2】  電力ケーブルの布設されている洞道内
あるいは管路内に耐熱性に優れるプラスチックパイプを
予め布設し、この中に上記光ファイバを圧送して温度分
布測定用センサとし、該光ファイバの温度分布から故障
点を検知することを特徴とする請求項1記載の地中送電
線の故障点検知方法。
2. A plastic pipe with excellent heat resistance is laid in advance in a tunnel or conduit where a power cable is laid, and the optical fiber is fed under pressure into the pipe to serve as a sensor for measuring temperature distribution, and the optical fiber is used as a sensor for measuring temperature distribution. 2. The method for detecting a fault point in an underground power transmission line according to claim 1, wherein the fault point is detected from the temperature distribution of the underground power transmission line.
JP12770691A 1991-05-30 1991-05-30 Detection method for failure point in underground electric wire Pending JPH04351973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12770691A JPH04351973A (en) 1991-05-30 1991-05-30 Detection method for failure point in underground electric wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12770691A JPH04351973A (en) 1991-05-30 1991-05-30 Detection method for failure point in underground electric wire

Publications (1)

Publication Number Publication Date
JPH04351973A true JPH04351973A (en) 1992-12-07

Family

ID=14966696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12770691A Pending JPH04351973A (en) 1991-05-30 1991-05-30 Detection method for failure point in underground electric wire

Country Status (1)

Country Link
JP (1) JPH04351973A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016151298A1 (en) * 2015-03-25 2016-09-29 Optasense Holdings Limited Detecting failure locations in power cables

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016151298A1 (en) * 2015-03-25 2016-09-29 Optasense Holdings Limited Detecting failure locations in power cables
US10534031B2 (en) 2015-03-25 2020-01-14 Optasense Holdings Limited Detecting failure locations in power cables

Similar Documents

Publication Publication Date Title
CN104502807B (en) Cable line fault localization method and device, system
EP2437075B1 (en) Locating partial discharge in a power cable
CN104678257B (en) A kind of pinpoint method of high voltage single-core cable protective layer failure
US20060226850A1 (en) Ground circuit impedance measurement
US11789060B2 (en) Grounded socket and method for insulation fault location in an ungrounded power supply system including insulation monitoring
KR20130003424A (en) System and method for detecting fault point of electrical power transmission line
JP4142608B2 (en) Tree contact monitoring device for distribution lines
CN105116285B (en) Power tunnel cable operation monitoring system
JP4301353B2 (en) Method and apparatus for detecting and locating faults in communication cables for remote monitoring and control of wired distribution lines
KR20100037375A (en) Apparatus for measuring earth resistance
US7068040B2 (en) Ground circuit impedance measurement apparatus and method
JP3305815B2 (en) Power cable fault point detection method and device
JPH04351973A (en) Detection method for failure point in underground electric wire
JP5086119B2 (en) Deterioration location method and apparatus for power cable
CN105988061B (en) A kind of method of high voltage single-core cable protective layer fault location
CN108369254B (en) Method of locating a fault in a power transmission medium
JP2003172758A (en) Lightning strike detection section orientation method by transmission line failure section detection system
EP3699619B1 (en) Wiring-integrity automatic monitoring system having improved features
KR20200004620A (en) Trouble monitoring apparatus and method of underground cable protection plate
JPS6215473A (en) Locating method for fault point of transmission line
EP3767314A1 (en) Fault location in an hvdc system
KR20210092944A (en) Underground cable fault detection system
CN213600814U (en) On-line accurate positioning device for detecting high-voltage cable fault
Yamashita et al. Study on Location Accuracy of Partial Discharge Locator
KR102244743B1 (en) Monitoring system for optical fiber and power line aggregated cable and monitoring method therefor