JPH036540A - Optical second harmonic wave generating element - Google Patents
Optical second harmonic wave generating elementInfo
- Publication number
- JPH036540A JPH036540A JP1141946A JP14194689A JPH036540A JP H036540 A JPH036540 A JP H036540A JP 1141946 A JP1141946 A JP 1141946A JP 14194689 A JP14194689 A JP 14194689A JP H036540 A JPH036540 A JP H036540A
- Authority
- JP
- Japan
- Prior art keywords
- domain inversion
- waveguide
- shg
- point
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 15
- 239000000758 substrate Substances 0.000 claims abstract description 29
- 230000000737 periodic effect Effects 0.000 claims abstract description 17
- 239000010409 thin film Substances 0.000 claims abstract description 11
- 239000013078 crystal Substances 0.000 claims abstract description 7
- 229910003327 LiNbO3 Inorganic materials 0.000 abstract description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract 4
- 229910004481 Ta2O3 Inorganic materials 0.000 abstract 2
- 239000010936 titanium Substances 0.000 description 18
- 238000009826 distribution Methods 0.000 description 11
- 230000005855 radiation Effects 0.000 description 11
- 239000004065 semiconductor Substances 0.000 description 9
- 230000005466 cherenkov radiation Effects 0.000 description 5
- 239000010408 film Substances 0.000 description 4
- 238000005253 cladding Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/37—Non-linear optics for second-harmonic generation
- G02F1/377—Non-linear optics for second-harmonic generation in an optical waveguide structure
- G02F1/3775—Non-linear optics for second-harmonic generation in an optical waveguide structure with a periodic structure, e.g. domain inversion, for quasi-phase-matching [QPM]
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/355—Non-linear optics characterised by the materials used
- G02F1/3558—Poled materials, e.g. with periodic poling; Fabrication of domain inverted structures, e.g. for quasi-phase-matching [QPM]
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/353—Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
- G02F1/3544—Particular phase matching techniques
- G02F1/3548—Quasi phase matching [QPM], e.g. using a periodic domain inverted structure
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、光第2高調波発生素子、特に基本波光源とし
て0.8μm帯(0,78〜0.88μm)の半導体レ
ーザーを用いて、その外波長の光をとり出す光第2高調
波発生素子に係わる。Detailed Description of the Invention [Industrial Application Field] The present invention uses a semiconductor laser in the 0.8 μm band (0.78 to 0.88 μm) as an optical second harmonic generating element, particularly as a fundamental wave light source. , and relates to an optical second harmonic generation element that extracts light of a wavelength outside of that.
本発明は、光第2高調波発生素子に係わり、周期的ドメ
イン反転領域が表面に形成されたLiNb0゜非線形光
学結晶基板上にTie、ドープのTa、O,薄膜による
基本波導波路を有して成り、その周期的ドメイン反転領
域のドメイン反転周期へと上記基本波導波路の厚さhと
の関係が、ドメイン反転周期Δ(μm)をy軸に、厚さ
h(μm)をy軸にとるX−y直交座標系において、各
(x、y)座標点の点(2,38,0,5)、 (3,
5,0,5)、 (4,46,0,16)、 (2,3
8゜0、16) 、 (2,38,0,5)を順次直線
で結ぶ範囲内に選定するものであり、このようにして0
.8μm帯の半導体レーザー光の%の波長の光を高効率
をもってとり出すことができるようにする。The present invention relates to an optical second harmonic generation device, which has a fundamental waveguide made of Tie, doped Ta, O, and thin films on a LiNb 0° nonlinear optical crystal substrate with periodic domain inversion regions formed on the surface. The relationship between the domain inversion period of the periodic domain inversion region and the thickness h of the fundamental waveguide is expressed by taking the domain inversion period Δ (μm) on the y-axis and the thickness h (μm) on the y-axis. In the X-y orthogonal coordinate system, each (x, y) coordinate point is (2,38,0,5), (3,
5,0,5), (4,46,0,16), (2,3
8゜0, 16) and (2, 38, 0, 5) are selected within the range connected by a straight line, and in this way 0
.. To make it possible to extract light having a wavelength of % of that of semiconductor laser light in the 8 μm band with high efficiency.
光第2高調波発生素子(以下SHG素子という)は、ω
の周波数の光を導入すると、2ωの周波数の第2高調波
の光を発生するもので、このSHG素子によって波長範
囲の拡大化がはかられ、これに伴いレーザーの利用範囲
のより拡大化と各技術分野でのレーザー光利用の最適化
をはかることができる。例えばレーザー光の短波長化に
よってレーザー光を用いた光記録再生、光磁気記録再生
等において、その記録密度の向上をはかることができる
。The optical second harmonic generation element (hereinafter referred to as SHG element) is ω
When light with a frequency of It is possible to optimize the use of laser light in each technical field. For example, by shortening the wavelength of laser light, it is possible to improve the recording density in optical recording/reproduction, magneto-optical recording/reproduction, etc. using laser light.
非線形単結晶基板上に線形先導波路を形成して、これに
近赤外光の基本波を入力し第2高調波の例えば緑、青色
光を放射モードとして基板側からとり出すチェレンコフ
放射型のSHGは、例えばアプライド・フィジックス・
レターズ(^ppliedPhysics Lette
rs)ll、 447 (1970)にも開示されてい
るところである。このSHGはZnO非線形単結晶基板
上にZnS多結晶先導波路を形成したもので1.06μ
mのNd:YAGレーザーを用い、0.53 、l/
Il+の第2高調波を得ている。しかしながら、この場
合その導波路が多結晶であるために伝搬損が大で、また
基板のZnSのd定数が小さく効率はかなり悪い、これ
に対して特開昭61−189524号公報及び第48回
法用物理講演会、19p−ZG−1,2,3,4に開示
されたSHO素子においては、例えば第8図に示すよう
にLiNbO3基板(1)を用い、これのプロント交換
による光導波路(2)を有する構成をとる。この場合、
0.84μmの半導体レーザーを基本波光源として用い
、100mW程度をもって入力し、1〜2mWのSHG
光が得られている。この方式のSHO素子は、自動位相
整合という大きな特徴がある。A Cerenkov radiation type SHG that forms a linear leading wave path on a nonlinear single crystal substrate, inputs the fundamental wave of near-infrared light, and extracts second harmonics, such as green and blue light, from the substrate side as radiation modes. For example, applied physics
Letters (^ppliedPhysics Lette)
rs)ll, 447 (1970). This SHG has a ZnS polycrystalline guiding waveguide formed on a ZnO nonlinear single crystal substrate, and has a thickness of 1.06μ.
m using a Nd:YAG laser, 0.53, l/
The second harmonic of Il+ is obtained. However, in this case, since the waveguide is polycrystalline, the propagation loss is large, and the d constant of the ZnS substrate is small, so the efficiency is quite low. In the SHO device disclosed in 19p-ZG-1, 2, 3, 4, a LiNbO3 substrate (1) is used as shown in Fig. 8, and an optical waveguide ( 2). in this case,
A 0.84 μm semiconductor laser is used as the fundamental wave light source, and the input power is about 100 mW, and the SHG of 1 to 2 mW is used.
Light is being obtained. This type of SHO element has a major feature of automatic phase matching.
ところが、これらはいずれのものも、そのSHG効率が
100mW入力に対し1〜2%以下であり、実用上必要
とする例えば10%の効率には到っていない。However, the SHG efficiency of all of these is 1 to 2% or less for an input of 100 mW, and does not reach the practically required efficiency of, for example, 10%.
このSHG効率の向上には、基本波導波モードとSHG
放射モードの界分布の重なりを良くすることが重要とな
る。ところが、通常の単一分域化(ポーリング)された
LiNbO3を用いる場合この界分布の重なりを良くす
るには限界があり、効率向上に限界がある。To improve this SHG efficiency, fundamental waveguide mode and SHG
It is important to improve the overlap of the field distributions of radiation modes. However, when using ordinary single-domained (poled) LiNbO3, there is a limit to improving the overlapping of this field distribution, and there is a limit to improving efficiency.
また第8図に示すように、放射されたSHG波は、横方
向の拡がり角θがlO°以上となり、そのスポットSも
三日月状を示し、集光特性上課題がある。Further, as shown in FIG. 8, the radiated SHG wave has a lateral spread angle θ of 10° or more, and the spot S also has a crescent shape, which poses a problem in terms of light collection characteristics.
本発明は、上述した課題の解決をはかって、光源すなわ
ち基本波として特に0.8μm帯の半導体レーザー光を
用いた場合に、5)IG効率を10%以上に高め、かつ
、SHG光の拡がり角が小さい集光特性にすぐれた5)
(G光を得ることができるSHG素子を得ることを目的
とする。In order to solve the above-mentioned problems, the present invention aims to 5) increase the IG efficiency to 10% or more and improve the spread of SHG light when a semiconductor laser light in the 0.8 μm band is used as the light source, that is, the fundamental wave. Excellent light-gathering characteristics with small corners 5)
(The purpose is to obtain a SHG element that can obtain G light.
本発明は例えば第1図に示すように、周期的ドメイン反
転周期(10)が表面に形成されたLiNbO3非線形
光学結晶基板(11)上にTi0zドープのTa、O,
薄膜による基本波導波路(12)を有してなる。For example, as shown in FIG. 1, the present invention provides TiOz-doped Ta, O,
It has a fundamental waveguide (12) made of a thin film.
このように、LiNbO5非線形結晶基板(11)上に
特にTiOxドープのTa、O,薄膜による基本波導波
路(12)を設けることの構成は、本出願人の出願に得
る特願昭63−265787号出願「光第2高調波発生
素子」で提案したところであり、この場合、導波路(1
2)と非線形基板(11)との屈折率差Δnを大に、か
つTiドープ量の選定によって変化させることができ名
。As described above, the structure of providing a fundamental waveguide (12) made of a TiOx-doped Ta, O, thin film on a LiNbO5 nonlinear crystal substrate (11) is disclosed in Japanese Patent Application No. 63-265787 filed by the present applicant. This was proposed in the application “Optical second harmonic generation device”, and in this case, the waveguide (1
2) and the nonlinear substrate (11) can be made large and varied by selecting the amount of Ti doping.
周期的ドメイン反転領域(10)のドメイン反転周期Δ
は、チェレンコフ放射条件内、つまり、とする(ここに
、n、zsはSHG先の波長における基板の屈折率、k
pはSHG先の波数、β9.は基本波の伝搬定数)が特
に本発明においては、上述の構成において、周期的ドメ
イン反転領域(10)のドメイン反転周期へと基本波導
波路の厚さhとの関係が、第2図に示すように、反転周
期Δ(μm)をy軸にとり、厚さh(μm)をy軸にと
るx−y直交座標系において、各(x、y)座標点で、
(2.38、0.5)のa点と、(3,5,0,5)の
b点と、(4,46゜0.16)の0点と、(2.38
、 0.16)のd点と、更に上記点aとを順次直線的
に結ぶ範囲内に選定する。Domain inversion period Δ of periodic domain inversion region (10)
is within the Cerenkov radiation condition, that is, where n, zs are the refractive indices of the substrate at the wavelength of the SHG destination, and k
p is the wave number of the SHG destination, β9. is the propagation constant of the fundamental wave). In particular, in the present invention, in the above configuration, the relationship between the domain inversion period of the periodic domain inversion region (10) and the thickness h of the fundamental waveguide is shown in FIG. In the x-y orthogonal coordinate system with the inversion period Δ (μm) on the y-axis and the thickness h (μm) on the y-axis, at each (x, y) coordinate point,
Point a of (2.38, 0.5), point b of (3,5,0,5), point 0 of (4,46°0.16), and (2.38
, 0.16) and the above-mentioned point a are selected within a range that linearly connects them one after another.
(13)は本発明によるSHG素子を全体として示す。(13) shows the SHG device according to the present invention as a whole.
〔作用]
本発明構成では、LiNbOx基板(11)上に特にT
iO□ドープのTazOs薄膜による基本波導波路(1
2)を設けるという構成をとることによって大きな屈折
率差を実現できることに加えて、表面に周期的ドメイン
反転領域(10)を形成することによって基本波導波モ
ードと、SHG放射モードの界分布を基板表面が−様な
均一なドメインを有する場合とは異なる性状を示すよう
にするものである。そして、更にこの高い屈折率の差の
下で上述した第2図のΔ−hの座標系において、点a
−dによって囲まれる範囲内にドメイン反転周期Δ(μ
m)と、基本波導波路(12)の厚さh(μm)を選定
することによって0.8μm帯半導体レーザー光に対し
10%以上の高いS HG効率、成る場合は30%にも
及ぶ高いSHG効率を得ることができるのである。[Function] In the configuration of the present invention, T is particularly formed on the LiNbOx substrate (11).
Fundamental waveguide (1
2), it is possible to realize a large refractive index difference. In addition, by forming periodic domain inversion regions (10) on the surface, the field distribution of the fundamental waveguide mode and the SHG radiation mode is This causes the surface to exhibit properties different from those in which the surface has uniform domains. Further, under this high difference in refractive index, in the coordinate system of Δ-h in FIG. 2 mentioned above, point a
The domain inversion period Δ(μ
m) and the thickness h (μm) of the fundamental waveguide (12), high SHG efficiency of 10% or more for 0.8 μm band semiconductor laser light, or as high as 30% in some cases, can be achieved. You can gain efficiency.
第3図を参照して本発明の一実施例を説明する。 An embodiment of the present invention will be described with reference to FIG.
この例では、基本波導波路かりッジ型を構成する場合で
ある。In this example, a fundamental waveguide is constructed as a carriage type.
LiNbO3板による非線形単結晶基板(11)が用意
され、その表面に、ドメインの向きを矢印a及びbをも
って模式的に示すように、周期的ドメイン反転領域(1
0)が形成される。この周期的ドメイン反転領域(10
)は、例えば基板(11)の−主面上にストライプ状に
Tiの蒸着膜を所定の幅及びピッチをもって、平行配列
するように被着形成して後、tooo°C〜1100°
C1例えば1050°Cに数時間の熱処理を行うことに
よって形成することができる。また、この周期的ドメイ
ン反転領域(10)は、第2図で示した厚さhと周期へ
を各点a −dによって囲まれる範囲内の関係となるよ
うに、すなわち、その厚さhを0.16〜0.5μmの
範囲としてこれに応じた周期Δ(μm)に選定される。A nonlinear single-crystal substrate (11) made of a LiNbO3 plate is prepared, and periodic domain inversion regions (1
0) is formed. This periodic domain inversion region (10
), for example, after forming a vapor deposited Ti film in stripes on the main surface of the substrate (11) so as to arrange them in parallel with a predetermined width and pitch, and then heating the film at temperatures of 1100°C to 1100°C.
C1 can be formed by heat treatment at, for example, 1050°C for several hours. Moreover, this periodic domain inversion region (10) has a relationship between the thickness h and the period shown in FIG. A period Δ (μm) corresponding to the range of 0.16 to 0.5 μm is selected.
そしてこの周期的ドメイン反転領域(10)が形成され
たLiNbO3基板(11)の表面上に、3次元加工さ
れた例えば幅Wが2μm程度以下、長さlが6mm程度
以下の基本波導波路(12)を形成する。ここに、導波
路(12)の幅Wを2μm以下とするのは、このように
するとき単一モードのSHG放射光が得やすいことにあ
り、長さ!を5mm以下とするのは、できるだけ小型に
形成することができるようにすることに因る。そして、
この導波路(12)は、例えばLiNbO3基板上にT
a205にTiO□がドープされたアモルファス薄膜を
CVD (化学的気相成長)法によって形成し、これを
フォトリソグラフィーを適用して例えばRIE(反応性
イオンエツチング)によって形成する。Then, on the surface of the LiNbO3 substrate (11) on which the periodic domain inversion region (10) is formed, a fundamental waveguide (12 ) to form. Here, the reason why the width W of the waveguide (12) is set to 2 μm or less is that when doing so, single mode SHG radiation light can be easily obtained. The reason why is set to 5 mm or less is to make it as small as possible. and,
This waveguide (12) is formed on a LiNbO3 substrate, for example.
An amorphous thin film in which a205 is doped with TiO□ is formed by CVD (chemical vapor deposition), and this is formed by photolithography, for example, by RIE (reactive ion etching).
このTiO□ドープのTaz05アモルファス薄膜のC
VDは、例えばタンクルペンタエトキシドTa (OC
zHs) s及びチタンテトライソプロポキシドTi、
(0−1−CJ7) 4を原料ガスと、して用いて基
板温度600°Cの下で基板(11)上に行うことがで
きる。C of this TiO□-doped Taz05 amorphous thin film
VD is, for example, tankurpentaethoxide Ta (OC
zHs) s and titanium tetraisopropoxide Ti,
(0-1-CJ7) 4 can be used as a raw material gas on the substrate (11) at a substrate temperature of 600°C.
或いは、例えば光CVDの適用により、基板温度を低め
るときは、アモルファス膜におけるTiのドープ量をよ
り大とすることができる。Alternatively, when lowering the substrate temperature by applying photo-CVD, for example, the amount of Ti doped in the amorphous film can be increased.
導波路(12)を形成するTiO□ドープのTatOs
薄膜は、そのTaとTiの原子の総和に対するTi原
子の割合(Ti/Ta+Tt (原子%))が15〜6
0原子%になるように選定する。つまり、例えば波長0
.84μmにおけるその組成Ti/Ta+Ti (原子
%)と屈折率nの関係を測定すると、第4図に示す結果
が得られ、これによれば、屈折率nは、Ti量に比例し
て増大するがTi量(Ti+Ta) >60 (原子%
)では結晶化が起り、伝tltMは急激に増大する。す
なわち、0くTi量 (Ti + Ta)≦60(原子
%)の範囲で、またより好ましくは15<Ti量(Ti
+Ta) <60 (原子%)で良好なアモルファス膜
が生成され、かつその屈折率nが2.165〜2.36
5に選定できた。ここで、LiNb0i基板(11)の
屈折率ne(異常光に対する屈折率)は、2、165程
度であることから、側屈折率の差Δnは0くΔn<0.
2の範囲でTiのドープ量によって選定できることにな
る。また、0.4μm帯でも0くΔn≦0.3で可変で
きることが確かめられた。TiO□-doped TatOs forming the waveguide (12)
The thin film has a ratio of Ti atoms to the sum of Ta and Ti atoms (Ti/Ta+Tt (atomic %)) of 15 to 6.
Select so that it is 0 atomic %. In other words, for example, wavelength 0
.. When we measured the relationship between the composition Ti/Ta+Ti (atomic %) and the refractive index n at 84 μm, we obtained the results shown in Figure 4. According to this, the refractive index n increases in proportion to the amount of Ti; Ti amount (Ti+Ta) >60 (atomic%
), crystallization occurs and the transmission tltM increases rapidly. That is, in the range of 0 less Ti amount (Ti + Ta)≦60 (atomic %), and more preferably in the range of 15<Ti amount (Ti
+Ta) <60 (atomic %), a good amorphous film is produced, and its refractive index n is 2.165 to 2.36.
I was able to select 5. Here, since the refractive index ne (refractive index for extraordinary light) of the LiNb0i substrate (11) is about 2,165, the difference Δn in the side refractive index is 0, Δn<0.
It can be selected within the range of 2 depending on the amount of Ti doped. Furthermore, it was confirmed that even in the 0.4 μm band, it can be varied within Δn≦0.3.
そして、本発明では、基本波光源として、0.8μm帯
の半導体レーザーを用いる。In the present invention, a 0.8 μm band semiconductor laser is used as the fundamental wave light source.
実施例1
上述の第3図で説明した構成によるSHG素子を構成す
る。この場合基本波波長を0.84μmとし、基本波導
波路(12)のTiO□ドープの選定によって、導波路
(12)とLiNb0a基板(11)との基本波に対す
る屈折率差Δn’ =0.15に選定し、その2次高調
波SHO光の波長0.42μmに対す・る同様の屈折率
差Δn5NG=0.22とした。そして、この場合に1
00mWの半導体レーザー光(基本波入力)に対、して
10IllW以上のSHG光が得られる導波路(12)
の厚さh(μm)とドメイン反転周期A(μm)との関
係を測定すると、第5図中斜線を付して示す実線(51
)で囲まれた範囲となった。そして、今この実線(51
)で囲まれた範囲内の1点の条件、h=0.3μm。Example 1 A SHG element having the configuration described in FIG. 3 above is constructed. In this case, the fundamental wave wavelength is 0.84 μm, and by selecting the TiO□ doping of the fundamental waveguide (12), the refractive index difference Δn' with respect to the fundamental wave between the waveguide (12) and the LiNb0a substrate (11) is 0.15. The same refractive index difference Δn5NG with respect to the wavelength of 0.42 μm of the second harmonic SHO light was set as 0.22. And in this case 1
Waveguide (12) that can obtain SHG light of 10IllW or more for 00mW semiconductor laser light (fundamental wave input)
When measuring the relationship between the thickness h (μm) and the domain inversion period A (μm), the solid line (51
) is the range surrounded by. And now this solid line (51
), h = 0.3 μm.
Δ=3.27μmでの本発明によるSHG素子の基本波
導波モードと、SHG放射モードの界分布をみると第6
図に示すようになる。Looking at the field distribution of the fundamental waveguide mode of the SHG element according to the present invention and the SHG radiation mode at Δ=3.27 μm, the 6th
The result will be as shown in the figure.
比較例1 実施例1と同様の構成とするも、h =0.80μm。Comparative example 1 Although the configuration was the same as in Example 1, h = 0.80 μm.
A=15μmとした。A=15 μm.
比較例1の場合の基本波導波モードと、SHG放射モー
ドの界分布をみると、第7図に示すようになる。The field distributions of the fundamental waveguide mode and the SHG radiation mode in Comparative Example 1 are as shown in FIG.
第6図及び第7図において曲線(61)及び(71)は
それぞれ基本波導波モードの界分布で、曲線(62)及
び(12)はそれぞれそのSHG放射モードの界分布を
示す。各図において縦軸は、S HG素子(13)の厚
さ方向の位置を示すもので、0点が導波路(12)と基
板(11)の界面を示し、各1目盛が0.1μmの厚さ
に相当する。横軸は、磁界の振幅の大きさを示し、基本
波導波モードについては、その振幅ピークの2乗を1に
規格化し、SHG放射モードについてはその振幅のピー
クを1に規格化して示した。第6図をみて明らかなよう
に実施例1の本発明によるSHG素子では、基板(11
)の導波路(12)との界面近傍で、基本波導波モード
の振幅の2乗と、SHG放射モードの界振幅とが良く重
なり合っている。つまり、その相互作用が大きく高いS
HO効率が得られる。そして、この場合のSHGは約3
0%にも及ぶものであり、これに伴い相互作用長、すな
わち導波路(12)の長さlは、小さくすることができ
、上述したように、その長さ2を6mm以下とすること
ができる。尚、この場合のチェレンコフ放射角は約1″
である。これに対し、比較例1の場合、そのチェレンコ
フ放射角は約2@という小さい角度であるが、第7図を
みて明らかなように、基板(11)の導波路(12)と
の界面近傍では、上述した界分布の重なりがみられない
ことからそのSHG効率は約104%という小さいもの
である。In FIGS. 6 and 7, curves (61) and (71) represent the field distribution of the fundamental waveguide mode, respectively, and curves (62) and (12) represent the field distribution of the SHG radiation mode, respectively. In each figure, the vertical axis indicates the position in the thickness direction of the SHG element (13), where the 0 point indicates the interface between the waveguide (12) and the substrate (11), and each division is 0.1 μm. Corresponds to thickness. The horizontal axis indicates the magnitude of the amplitude of the magnetic field, and the square of the amplitude peak of the fundamental waveguide mode is normalized to 1, and the peak of the amplitude of the SHG radiation mode is normalized to 1. As is clear from FIG. 6, in the SHG element according to the present invention of Example 1, the substrate (11
), the square of the amplitude of the fundamental waveguide mode and the field amplitude of the SHG radiation mode overlap well near the interface with the waveguide (12). In other words, the interaction is large and high S
HO efficiency is obtained. And the SHG in this case is about 3
Accordingly, the interaction length, that is, the length l of the waveguide (12) can be reduced, and as mentioned above, the length 2 can be made 6 mm or less. can. In addition, the Cerenkov radiation angle in this case is approximately 1″
It is. On the other hand, in the case of Comparative Example 1, the Cherenkov radiation angle is as small as about 2@, but as is clear from FIG. 7, near the interface between the substrate (11) and the waveguide (12), , the SHG efficiency is as small as about 104% because the above-mentioned overlap of field distributions is not observed.
次の各実施例2〜7は、それぞれ第3図で示したTiO
□ドープのTa、0.薄膜導波路(12)において、T
i0zのドープ量を変えて上述のΔnt(基本波0.8
4 a m)及びΔn ”’ (S HG波0.42
pm)を変えた例である。The following Examples 2 to 7 are based on the TiO
□ Doped Ta, 0. In the thin film waveguide (12), T
By changing the doping amount of i0z, the above Δnt (fundamental wave 0.8
4 a m) and Δn'' (S HG wave 0.42
This is an example of changing pm).
実施例2
実施例1と同様の構成とするが、Δnf=0.10゜Δ
n ”’=0.15とした。Example 2 Same configuration as Example 1, but Δnf=0.10°Δ
n'''=0.15.
実施例3
実施例1と同様の構成とするが、Δn ’=0.075
+Δn!NG=0.13とした。Example 3 Same configuration as Example 1, but Δn'=0.075
+Δn! NG=0.13.
実施例4
実施例1と同様の構成とするが、Δn’=0.06゜Δ
n”’−0,11とした。Example 4 Same configuration as Example 1, but Δn'=0.06°Δ
n"'-0.11.
実施例5
実施例1と同様の構成とするが、Δnf=0.04゜Δ
n”’=0.09とした。Example 5 Same configuration as Example 1, but Δnf=0.04°Δ
n'''=0.09.
実施例6
実施例1と同様の構成とするが、Δn ’=0.020
+Δn・s′(0=0.30とした。Example 6 Same configuration as Example 1, but Δn'=0.020
+Δn·s' (0=0.30.
これら実施例2〜6において、その導波路(2)の厚さ
h(μm)−ドメイン反転周期A(μm)は、それぞれ
第5図中実線(52)〜(57)でそれぞれ囲まれた範
囲内に選定し、このときS HG効率を10%以上とな
し得た。In these Examples 2 to 6, the thickness h (μm) of the waveguide (2)−domain inversion period A (μm) is the range surrounded by solid lines (52) to (57) in FIG. 5, respectively. At this time, the SHG efficiency was achieved at 10% or more.
尚、上述した各側では、導波路(12)の表面のクラッ
ド層がn=1.0(空気)としたものであるか、クラッ
ド層が例えばnf=1.9.n■0=2.2である場合
は、実施例1のSHO効率10%以上のhΔの範囲は第
5図中実線(57)で囲まれる範囲になる。また、上述
した実施例では、0.8μm帯半導体レーザーの、特に
その波長すなわち基本波の波長が0.84μmの場合で
ありこのときのSHO効率が10%以上となるh−Δ範
囲は、第2図中実線(21)で囲んで示す領域■となる
が、0.8μm半導体レーザーで波長が、これより長い
例えば0.88μmのときは、第2図中実線(22)で
囲んで示す領域■であり、波長が0.78μmであると
きは、第2図中実線(23)で囲んで示す領域■となる
。しかしながら第2図の点a −dで囲まれる範囲内の
関係で導波路の厚さh(μm)とドメイン反転周!tl
IA(μm)を選定すれば、クラッド層そのほかの諸条
件の設定によって少なくともSHG効率を10%以上に
することができる。そして、また、この時チェレンコフ
放射角は、5°以下にとどめられた。In each of the above-mentioned sides, the cladding layer on the surface of the waveguide (12) has n=1.0 (air), or the cladding layer has nf=1.9. When n■0=2.2, the range of hΔ in which the SHO efficiency of Example 1 is 10% or more is the range surrounded by the solid line (57) in FIG. In addition, in the above embodiment, the h-Δ range in which the SHO efficiency is 10% or more is the case where the wavelength of the 0.8 μm band semiconductor laser, that is, the wavelength of the fundamental wave is 0.84 μm. This is the area (2) surrounded by the solid line (21) in Figure 2. However, if the wavelength of a 0.8 μm semiconductor laser is longer than this, for example 0.88 μm, the area surrounded by the solid line (22) in Figure 2 will be the area (2). (2), and when the wavelength is 0.78 μm, the region (2) is shown surrounded by a solid line (23) in FIG. However, within the range surrounded by points a-d in FIG. 2, the waveguide thickness h (μm) and the domain inversion circumference! tl
If IA (μm) is selected, the SHG efficiency can be made at least 10% or more by setting the cladding layer and other conditions. Also, at this time, the Cherenkov radiation angle was kept below 5°.
[発明の効果]
本発明構成では、LiNbO3基板(11)上に特にT
ie。[Effects of the Invention] In the configuration of the present invention, T is particularly formed on the LiNbO3 substrate (11).
ie.
ドープのTazOs薄膜による基本波導波路(12)を
設けるという構成をとることによって大きな屈折率差を
実現できることに加えて、表面に周期的ドメイン反転領
域(10)を形成し、更に導波路(12)の厚さh(μ
m)及びドメイン反転周期へ(μm)の相互関係を特定
することによって、基本波導波モードと、SHG放射モ
ードの界分布の重なりを良好にすることができ、SHO
効率を10%以上に、しかも相互作用長、したがって導
波路長iを6mm以下にとどめることが可能となる。In addition to realizing a large refractive index difference by providing a fundamental waveguide (12) made of a doped TazOs thin film, a periodic domain inversion region (10) is formed on the surface, and the waveguide (12) The thickness h(μ
m) and the domain inversion period (μm), it is possible to improve the overlap of the field distributions of the fundamental waveguide mode and the SHG radiation mode, and SHO
It is possible to keep the efficiency at 10% or more and the interaction length, and thus the waveguide length i, at 6 mm or less.
また、その界分布の重なりを基板(11)と導波路(1
2)との界面近傍で生ぜしめ得ること、チェレンコフ角
を小さくできることから、基板(11)の厚さを小さく
でき、小型化の向上と共に、SMC先の放射角が小さく
なり、これに伴い第8図で説明した面方向の拡がり角θ
を小さくできることから集光特性の向上、すなわち、こ
のSHG素子の実際の利用における光学系の簡易化がは
かられるなど多くの利益をもたらす。In addition, the overlap of the field distributions is calculated between the substrate (11) and the waveguide (1).
2), and the Cerenkov angle can be reduced, the thickness of the substrate (11) can be reduced, and along with the improvement of miniaturization, the radiation angle of the SMC tip is reduced, and along with this, the Spread angle θ in the plane direction explained in the figure
Since it can be made smaller, it brings about many benefits such as improved light condensing characteristics, that is, simplification of the optical system in actual use of this SHG element.
第1図及び第3図はそれぞれ本発明による光第2高調波
発生素子(SHO素子)の路線的拡大斜視図、第2図及
び第5図はそれぞれ導波路の厚さhとドメイン反転周期
への選定範囲を示す図、第4図は導波路の屈折率とTi
ドープ量との関係を示す図、第6図及び第7図はそれぞ
れ界分布曲線図、第8図は従来のSHO素子の斜視図で
ある。
(10)は周期的ドメイン反転領域、(11)は基板、
(12)は基本波導波路である。1 and 3 are respectively enlarged perspective views of the optical second harmonic generating device (SHO device) according to the present invention, and FIGS. 2 and 5 are respectively the waveguide thickness h and the domain inversion period. Figure 4 shows the selection range of waveguide refractive index and Ti
6 and 7 are field distribution curve diagrams, respectively, and FIG. 8 is a perspective view of a conventional SHO element. (10) is a periodic domain inversion region, (11) is a substrate,
(12) is a fundamental waveguide.
Claims (1)
_3非線形光学結晶基板上にTiO_2ドープのTa_
2O_5薄膜による基本波導波路を有して成り、 上記周期的ドメイン反転領域のドメイン反転周期Λと上
記基本波導波路の厚さhとの関係が、上記ドメイン反転
周期Λ(μm)をx軸にとり、上記厚さh(μm)をy
軸にとるx−y直交座標系において、各(x、y)座標
点の点(2.38、0.5)、(3.5、0.5)、(
4.46、0.16)、(2.38、0.16)、(2
.38、0.5)を順次直線で結ぶ範囲内に選定される
ことを特徴とする光第2高調波発生素子。[Claims] LiNbO with periodic domain inversion regions formed on the surface
_3 TiO_2-doped Ta_ on a nonlinear optical crystal substrate
It has a fundamental waveguide made of a 2O_5 thin film, and the relationship between the domain inversion period Λ of the periodic domain inversion region and the thickness h of the fundamental waveguide is such that the domain inversion period Λ (μm) is taken as the x-axis, The above thickness h (μm) is y
In the x-y orthogonal coordinate system, each (x, y) coordinate point is (2.38, 0.5), (3.5, 0.5), (
4.46, 0.16), (2.38, 0.16), (2
.. 38, 0.5) within a range sequentially connected by a straight line.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1141946A JPH036540A (en) | 1989-06-02 | 1989-06-02 | Optical second harmonic wave generating element |
US07/424,768 US5022729A (en) | 1988-10-21 | 1989-10-20 | Optical waveguide and second harmonic generator |
EP89119535A EP0365039B1 (en) | 1988-10-21 | 1989-10-20 | Optical waveguide and second harmonic generator |
DE68914240T DE68914240T2 (en) | 1988-10-21 | 1989-10-20 | Optical waveguide and generator for generating the second harmonic. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1141946A JPH036540A (en) | 1989-06-02 | 1989-06-02 | Optical second harmonic wave generating element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH036540A true JPH036540A (en) | 1991-01-14 |
Family
ID=15303816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1141946A Pending JPH036540A (en) | 1988-10-21 | 1989-06-02 | Optical second harmonic wave generating element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH036540A (en) |
-
1989
- 1989-06-02 JP JP1141946A patent/JPH036540A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5022729A (en) | Optical waveguide and second harmonic generator | |
US5170460A (en) | Quasi-phase-matched optical waveguides and method of making same | |
Chen et al. | Guided-wave electro-optic beam deflector using domain reversal in LiTaO/sub 3 | |
US5274727A (en) | Second harmonic generator and method of fabrication thereof | |
JP2002250949A (en) | Optical waveguide element, optical wavelength converting element and method for manufacturing optical waveguide element | |
JP4119508B2 (en) | Optical wavelength conversion element and manufacturing method thereof, light generation apparatus and optical pickup using the element, and manufacturing method of polarization inversion unit | |
US7170671B2 (en) | High efficiency wavelength converters | |
US5521750A (en) | Process for forming proton exchange layer and wavelength converting element | |
JPH11326966A (en) | Second harmonic generator | |
US5205904A (en) | Method to fabricate frequency doubler devices | |
JPH036540A (en) | Optical second harmonic wave generating element | |
JP4613358B2 (en) | Optical wavelength conversion element and manufacturing method thereof | |
JPH11335199A (en) | Production of single crystal membrane | |
JP3296500B2 (en) | Wavelength conversion element and method of manufacturing the same | |
US5339190A (en) | Optical waveguide second harmonic generating element and method of making the same | |
JPH05313033A (en) | Optical waveguide, manufacture thereof and optical element | |
JPH03191332A (en) | Production of optical waveguide and optical wavelength converting element | |
JP2010078639A (en) | Wavelength conversion element and manufacturing method thereof | |
JP2973963B2 (en) | Short wavelength light source | |
JPH04335329A (en) | Production of second harmonic generating element having dielectric polarization inversion grating | |
JP2973463B2 (en) | Optical waveguide device | |
JP3086239B2 (en) | Proton exchange optical waveguide, method of manufacturing the same, and optical deflector using this waveguide | |
JPH028823A (en) | Production of nonlinear optical element | |
JP3203003B2 (en) | Optical wavelength conversion element | |
JPH04116629A (en) | Wavelength conversion element and production thereof |