JPH0365359A - Driving device for multi-bit heat generating circuit - Google Patents

Driving device for multi-bit heat generating circuit

Info

Publication number
JPH0365359A
JPH0365359A JP1202379A JP20237989A JPH0365359A JP H0365359 A JPH0365359 A JP H0365359A JP 1202379 A JP1202379 A JP 1202379A JP 20237989 A JP20237989 A JP 20237989A JP H0365359 A JPH0365359 A JP H0365359A
Authority
JP
Japan
Prior art keywords
signal
time
heat generating
delay
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1202379A
Other languages
Japanese (ja)
Inventor
Yutaka Yoshida
豊 吉田
Mitsuru Sato
満 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1202379A priority Critical patent/JPH0365359A/en
Publication of JPH0365359A publication Critical patent/JPH0365359A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To unify the calorific value of respective heat generating resistors by providing a feedback means, regulating the ON-times of respective switching means in accordance with the values of ON-resistances. CONSTITUTION:A drive control signal (a1), having a pulse width ta, is inputted into one terminal of a NOR gate 36i from a logic unit while a feedback signal (g1) is inputted into the other terminal of the same. Here, all of the gate delay times of logical operation circuits 31i, 32i, 36i, 37i are deemed equal to a value (tr). A delay signal (b1) is converted by an inverter 37i into a gate signal Ci. A transistor Ti becomes ON-state while synchronizing with the 'H' level of the gate signal Ci by the delay of a turn-ON period of time (tPHL) and becomes OFF-state by the delay of a turn-OFF period of time (tPLH). A delay time from the rise-up of the drive control signal (ai) until the transistor Ti becomes ON-state is 2tp+tPHL while the delay time from the breaking of the drive control signal (ai) until it becomes OFF-state is 4tp+tPLH+tp. Accordingly, a difference between TON and Ta becomes tp+tPLH-tPHL+2tp. According to this method, the ON-time is regulated automatically even when a variability exists in the ON-resistances, whereby valiability in concentration may be eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、サーマルヘッド駆動回路として好適な多ビッ
ト発熱回路の駆動装置に関し、各ビット間の発熱量を均
一化できる技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a drive device for a multi-bit heat generating circuit suitable as a thermal head drive circuit, and relates to a technique that can equalize the amount of heat generated between each bit.

〔従来の技術〕[Conventional technology]

従来、感熱紙に印字するサーマルヘッドプリンタのサー
マルヘッド駆動回路は、第6図に示すように、1ビット
発熱回路1,2,3.4〜の並列接続構造で、各1ビッ
ト発熱回路1,2,3.4〜は発熱抵抗R,,R2,R
,、R,〜とロジック部10で生成されるオン/オフ駆
動制御信号としてのゲート信号に基づいて高圧電源■□
□からその発熱抵抗に対する給電を継断するスイッチン
グ手段としての絶縁ゲート電界効果型トランジスタTT
2. Ts、 T−〜とから構成されている。 ロジッ
ク部10及び絶縁ゲート電界効果型トランジスタT1〜
は半導体集積回路として1チツプ化されており、これに
対して発熱抵抗R1−は外付けされている。
Conventionally, the thermal head drive circuit of a thermal head printer that prints on thermal paper has a parallel connection structure of 1-bit heat generating circuits 1, 2, 3, 4, etc., as shown in FIG. 2, 3.4 ~ is the heating resistance R,, R2, R
,,R,~ and the high voltage power supply ■□ based on the gate signal as an on/off drive control signal generated by the logic section 10
Insulated gate field effect transistor TT as a switching means for connecting and disconnecting the power supply from □ to the heating resistor
2. It is composed of Ts, T-~. Logic section 10 and insulated gate field effect transistor T1~
is integrated into a single chip as a semiconductor integrated circuit, and the heating resistor R1- is attached externally.

感熱紙への印字動作においては、第7図に示すように、
ロジック部10から対応するビットの絶縁ゲート電界効
果型トランジスタTIのゲートへ供給されるゲート信号
CIがHレベルになると、その絶縁ゲート電界効果型ト
ランジスタT、が導通して出力電圧(ドレイン電圧> 
 D+がLレベルとなり、これにより高圧電源VTHR
からその1ビット発熱回路の発熱抵抗R1に駆動電流T
tが流れ、そのジュール熱で感熱紙を感熱させる。
In the printing operation on thermal paper, as shown in Figure 7,
When the gate signal CI supplied from the logic unit 10 to the gate of the insulated gate field effect transistor TI of the corresponding bit becomes H level, the insulated gate field effect transistor T becomes conductive and the output voltage (drain voltage>
D+ goes to L level, which causes high voltage power supply VTHR
A drive current T is applied to the heating resistor R1 of the 1-bit heating circuit from
t flows, and the Joule heat sensitizes the thermal paper.

ところで、印字されるバクーン濃度は各発熱抵抗の発熱
量(ジュール熱量)で決まる。濃度むらをなくすために
は、各発熱抵抗に流れる駆動電流りの電流値と給電時間
(オン時間)  toMのバラツキを小さくする必要が
ある。電流値のバラツキ原因としては外付けの発熱抵抗
R4の抵抗値のバラツキよりも、IC化された絶縁ゲー
ト電界効果型トランジスタのオン抵抗のバラツキの方が
大きい。
By the way, the printing density is determined by the amount of heat generated (Joule heat amount) of each heating resistor. In order to eliminate density unevenness, it is necessary to reduce variations in the current value of the drive current flowing through each heating resistor and the power supply time (on time) toM. The cause of the variation in the current value is the variation in the on-resistance of the insulated gate field effect transistor integrated into an IC, which is larger than the variation in the resistance value of the external heating resistor R4.

一方、給電時間t。4.のバラツキの原因は絶縁ゲート
電界効果型l・ランジスタのゲート信号に対する遅れ時
間(ターンオン期間jpLuとターンオフ期間t□l)
のバラツキである。したがって濃度むらを低減するため
の有効な手段は、絶縁ゲート電界効果型トランジスタの
オン抵抗及び遅れ時間の値についてバラツキを抑制する
ことである。そこで、従来、濃度むらを極力低減する必
要のある多階調及びカラー用サーマルヘッド駆動回路に
おいては、オン抵抗のバラツキを低減させるために、絶
縁ゲート電界効果型トランジスタのデバイス寸法(素子
規模)を拡大すると共に、応答速度を高め遅れ時間のバ
ラツキを低減させるために、絶縁ゲート74界効果型ト
ランジスタのゲート信号をスイッチングさせる前段の素
子を大きくしていた。
On the other hand, power supply time t. 4. The cause of the variation in is the delay time for the gate signal of the insulated gate field effect transistor (turn-on period jpLu and turn-off period t□l).
This is the variation in Therefore, an effective means for reducing concentration unevenness is to suppress variations in the on-resistance and delay time values of insulated gate field effect transistors. Therefore, conventionally, in multi-gradation and color thermal head drive circuits where it is necessary to reduce density unevenness as much as possible, the device dimensions (element scale) of insulated gate field effect transistors have been reduced in order to reduce on-resistance variations. At the same time, in order to increase the response speed and reduce variation in delay time, the front-stage element that switches the gate signal of the insulated gate 74 field effect transistor has been made larger.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記のサーマルヘッド駆動回路にあって
は、次の問題点がある。
However, the above thermal head drive circuit has the following problems.

即ち、絶縁ゲート電界効果型トランジスタ及びその前段
の素子のデバイス面積を大きくした場合、オン抵抗のバ
ラツキは小さくなるものの、ゲート容量も大きくなるの
で、スイッチング速度が遅くなり、かえって遅れ時間の
バラツキが大きくなる。
In other words, when the device area of an insulated gate field effect transistor and its preceding element is increased, the variation in on-resistance becomes smaller, but the gate capacitance also increases, which slows down the switching speed and increases the variation in delay time. Become.

つまり素子面積の物理的拡大はオン抵抗の絶対値を下げ
るが、相反的にスイッチング速度の増大を招くので、濃
度むらを実質的に低減することができない。
In other words, although physical expansion of the element area lowers the absolute value of the on-resistance, it reciprocally increases the switching speed, making it impossible to substantially reduce concentration unevenness.

そこで、本発明の課題は、絶縁ゲート電界効果型トラン
ジスタのオン抵抗とスイッチング速度の低減により濃度
むらを解消するのではなく、ビノト毎のオン抵抗とオン
時間との間に相関性を与えろことにより、素子規模を太
き(せずに9、ビ7)間の発熱量を均一化して濃度むら
をなくした多ビット発熱回路の駆動装置を提供すること
にある。
Therefore, the problem of the present invention is not to eliminate concentration unevenness by reducing the on-resistance and switching speed of an insulated gate field effect transistor, but to provide a correlation between on-resistance and on-time for each transistor. Another object of the present invention is to provide a driving device for a multi-bit heat generating circuit that eliminates density unevenness by equalizing the amount of heat generated between elements with a large element size (without 9 and 7).

「課題を解決するための手段〕 上記課題を解決するために、本発明の講じた手段は、各
ビットの発熱回路において、オン制御信号の入来による
絶縁ゲート電界効果型■ランジスタ等のスイッチング手
段のオン状態におけるオン電圧値に相応して、当該オン
制御信号の持続時間を遅延せ(7める帰還制御手段を設
けたものである。
"Means for Solving the Problems" In order to solve the above problems, the means taken by the present invention is to use a switching means such as an insulated gate field effect type transistor by inputting an ON control signal in the heating circuit of each bit. Feedback control means is provided for delaying the duration of the on-control signal in accordance with the on-voltage value in the on-state of the on-state.

「作用〕 かかる手段によれば次の作用を果す。ビット間のスイッ
チング手段のオン抵抗にはバラツキが存在し、オン抵抗
の高いスイッチング手段はオン電圧が高く、オン抵抗の
低いスイッチング手段はオン電圧が低いが、オン電圧と
発熱抵抗に流れる駆動電流どは逆比例関係がある。今、
オン制御信号があるスイッチング手段に印加されろと、
そのスイッチング手段はオン状態になり、その発熱抵抗
に対する給電が開始されろ。こ、二でそのスイッチング
手段1:7 (−=1帯する帰還側(和手段はそのスイ
ッチング手段のオン電圧値を検出17、その値に応じて
当該スイッチング手段に印加しているオン制御信号の持
続期間を遅延させる。これによりオン抵抗即ち発熱抵抗
に流れる駆動電流値にバラツキが存在していても、オン
時間が自動的に長短補正されるので、各発熱抵抗のジュ
ール熱量が均一化され、濃度むらをなくすことができる
[Function] This means achieves the following effect. There is variation in the on-resistance of the switching means between bits, and switching means with high on-resistance has a high on-voltage, and switching means with a low on-resistance has a high on-voltage. Although the on-state voltage is low, there is an inversely proportional relationship between the on-voltage and the drive current flowing through the heating resistor.
an on-control signal is applied to the switching means;
The switching means is turned on and power supply to the heating resistor is started. In this case, the switching means 1:7 (-=1 band feedback side) (the sum means detects the on-voltage value of the switching means 17, and depending on that value, controls the on-control signal applied to the switching means). The duration is delayed.As a result, even if there are variations in the on-resistance, that is, the value of the drive current flowing through the heat-generating resistors, the on-time is automatically corrected, so the Joule heat amount of each heat-generating resistor is equalized. Density unevenness can be eliminated.

「実施例〕 次に、本発明の一実施例を添付図面に基づい丁説明する
Embodiment Next, an embodiment of the present invention will be described based on the accompanying drawings.

第1図は本発明に係る多ビ7)発熱回路の駆動装置を適
用したサーマルヘッド駆動回路の実施例における1ビッ
ト発熱回路の回路構成図である。
FIG. 1 is a circuit configuration diagram of a 1-bit heat generating circuit in an embodiment of a thermal head drive circuit to which the multi-bit heat generating circuit drive device according to the present invention is applied.

この1ビット発熱回路1は、発熱抵抗R1と、ゲート信
号CIに基づいて高圧電源V T II nから発熱抵
抗R8に苅ずろ給電をスイッチングする絶縁ゲート7界
効果型トランジスタT、と、ゲート信EC1のオン持続
期間を遅z屯調整する帰還制御回路30 i 、:!−
から大略構成されている。
This 1-bit heat generating circuit 1 includes a heat generating resistor R1, an insulated gate 7 field effect transistor T that switches the power supply from the high voltage power supply V T II n to the heat generating resistor R8 based on a gate signal CI, and a gate signal EC1. Feedback control circuit 30 i, :! −
It is roughly composed of.

帰還制御回路301は、図示しないロジンク部から供給
される駆動制御信号alとゲート信号C1とに基づいて
絶縁ゲート電界効果型トランジスタTIのオン状態を検
出してオン状態信号diを得るNANDゲート31iと
、このオン状態信号d、とインバータ32iの出力信号
elとに基づき、絶縁ゲート電界効果型トランジスタT
Iの出力電圧(ドレイン電圧)fIを導き入れるトラン
スファーゲート331と、出力電圧fIのステップ波形
を時定数CRで充放電する並列接続のコンデンサ34i
及び抵抗35】と、その充放電電圧をフィードバック信
号g1として駆動制御信号a、から遅延信号blを得る
NORゲート361と、その遅延信号す、を反転させて
ゲート信号CIを作成するインバータ371とから構成
されている。
The feedback control circuit 301 includes a NAND gate 31i that detects the on state of the insulated gate field effect transistor TI and obtains an on state signal di based on a drive control signal al and a gate signal C1 supplied from a logic section (not shown). , based on this on-state signal d and the output signal el of the inverter 32i, the insulated gate field effect transistor T
A transfer gate 331 that introduces the output voltage (drain voltage) fI of I, and a parallel-connected capacitor 34i that charges and discharges the step waveform of the output voltage fI with a time constant CR.
and a resistor 35], a NOR gate 361 which obtains a delay signal bl from a drive control signal a using the charge/discharge voltage as a feedback signal g1, and an inverter 371 which inverts the delay signal S to create a gate signal CI. It is configured.

次に、上記実施例の動作につき第2図を参照しつつ説明
する。まず、ロジック部よりパルス幅T、の駆動制御信
号a、がNORゲート36iの一方の端子に人力される
と共に、その他方の端子には後述するフィードバック信
号giが入力される。
Next, the operation of the above embodiment will be explained with reference to FIG. First, a drive control signal a having a pulse width T is input from the logic section to one terminal of the NOR gate 36i, and a feedback signal gi, which will be described later, is input to the other terminal.

NORゲート36iから出力される遅延信号す、の立下
りは駆動制御信号alの立上りで決定され、遅延信号b
lの立上りはフィードバック信号g+の放電波形の推移
で決定される。この実施例においてはNORゲート36
jが比較回路として兼用されており、NORゲート36
】のしきい値電圧をV、、とすると、フィードバック信
号g+の電圧がしきい値V、fまで降下したとき、遅延
信号す、の立上りが決まる。
The falling edge of the delayed signal S outputted from the NOR gate 36i is determined by the rising edge of the drive control signal al, and the falling edge of the delayed signal b
The rise of l is determined by the transition of the discharge waveform of feedback signal g+. In this embodiment, NOR gate 36
j is also used as a comparison circuit, and the NOR gate 36
], the rise of the delay signal S is determined when the voltage of the feedback signal g+ drops to the threshold V, f.

なお、ここで論理回路31 i 、 32 i 、 3
6 i 、 37 iのゲート遅延時間は簡単のためす
べて等しいとみなし、それをt、と記しである。後述す
るように、フィードバック信号gIは絶縁ゲート電界効
果型トランジスタTIのオン電圧(ドレイン電圧)VO
Nから しきい値電圧V r @f以下に下降する放電
期間を有するが、オン電圧V。Nからしきい値電圧V 
f @ Iまで下がるに要する放電時間をt、とすると
、この放電時間t、はオン電圧V。、の高低によって長
短変化する。
Note that here, the logic circuits 31 i , 32 i , 3
For simplicity, the gate delay times of 6 i and 37 i are all assumed to be equal, and are denoted as t. As described later, the feedback signal gI is the on-voltage (drain voltage) VO of the insulated gate field effect transistor TI.
Although the on-voltage V has a discharge period in which it drops from N to below the threshold voltage V r @f. N to threshold voltage V
If the discharge time required to drop to f@I is t, then this discharge time t is the on-voltage V. The length changes depending on the height of .

遅延信号blはインバータ371によって反転され、ゲ
ート信号Crに変換される。そして絶縁ゲート電界効果
型トランジスタTIはこのゲート信号C8のHレベルに
同期してターンオン期間t PMLだけ遅れてオン状態
となり、ターンオフ期間t PLI+だけ遅れてオフ状
態となる。絶縁ゲート電界効果型トランジスタT、の出
力電圧f、はドレイン電圧を示し、ToMはオン時間を
示す。絶縁ゲート電界効果型トランジスタT、がオフ状
態のとき、出力電圧fIは発熱抵抗R8に給電すべき高
圧電源電圧VTIII(20〜30V) ニ等しく、1
ン状態ノドきハオン抵抗の如何によって数V程度のオン
電圧V。、となる。一方、NANDゲート311のオン
状態信号d+は駆動制御信号aiとゲート信号CIに基
づいて得られ、 これはその反転信号elと共にトラン
スファーゲート33iのオン/オフ制御信号に用いられ
る。トランスファーゲート331は絶縁ゲート電界効果
型トランジスタT1がオン状態のときオン状態となり、
出力電圧fIをコンデンサ34i側へ通過させる。トラ
ンスファーゲート331がオン状態となると、オン電圧
VOI+がコンデンサCに印加され、コンデンサCが充
電される。コンデンサCの充電電圧は絶縁ゲート電界効
果型トランジスタT1のオン期間T。fI内にオン電圧
V。Hの定常電圧に達する。
The delayed signal bl is inverted by an inverter 371 and converted into a gate signal Cr. The insulated gate field effect transistor TI is synchronized with the H level of the gate signal C8, turns on after a turn-on period t PML, and turns off after a turn-off period t PLI+. The output voltage f of the insulated gate field effect transistor T indicates the drain voltage, and ToM indicates the on-time. When the insulated gate field effect transistor T is in the off state, the output voltage fI is equal to the high voltage power supply voltage VTIII (20 to 30 V) that should be supplied to the heating resistor R8, and 1
The on-state voltage is approximately several volts depending on the on-state resistance. , becomes. On the other hand, the on-state signal d+ of the NAND gate 311 is obtained based on the drive control signal ai and the gate signal CI, and is used together with its inverted signal el as an on/off control signal for the transfer gate 33i. The transfer gate 331 is in an on state when the insulated gate field effect transistor T1 is in an on state,
The output voltage fI is passed to the capacitor 34i side. When the transfer gate 331 is turned on, the on-voltage VOI+ is applied to the capacitor C, and the capacitor C is charged. The charging voltage of the capacitor C is the on-period T of the insulated gate field effect transistor T1. On-voltage V within fI. A steady voltage of H is reached.

駆動制御信号a、が立上ってから、絶縁ゲート電界効果
型トランジスタTIがオン状態になるまでの遅延時間は
2tp+tpHtで、駆動制御信号a、が立下ってから
、オフ状態になるまでの遅延時間は4 tpl tpL
n+ toである。 したがってTONとTaの差はt
pl tpt++  tpl(L+ 2 tpとなる。
The delay time from the rise of the drive control signal a until the insulated gate field effect transistor TI turns on is 2tp+tpHt, and the delay from the fall of the drive control signal a until it turns off. Time is 4 tpl tpL
n+to. Therefore, the difference between TON and Ta is t
pl tpt++ tpl (L+ 2 tp.

ここで、上記遅延時間の実際の値を用いて考察する。高
圧電源の電圧VT□を20■1発熱抵抗R。
Here, consideration will be given using the actual value of the above delay time. The voltage VT□ of the high voltage power supply is 20■1 heat generating resistor R.

をlkΩとし、各ビットに約20mA流すこととする。is lkΩ, and approximately 20 mA is applied to each bit.

絶縁ゲート電界効果型トランジスタTIのオン抵抗は約
50〜80Ωの間でバラツキ変動し、その結果、オン電
圧V。は1.0〜1.5Vの間でバラツキ変動する。フ
ィードバック信号す、の立下りを決定するコンデンサ3
41の容量Cを2pF、抵抗351の抵抗値Rを500
にΩとすれば、時定数CRは1μsとなる。
The on-resistance of the insulated gate field effect transistor TI fluctuates between about 50 and 80 Ω, and as a result, the on-voltage V. fluctuates between 1.0 and 1.5V. Capacitor 3 that determines the fall of the feedback signal
The capacitance C of 41 is 2 pF, and the resistance value R of resistor 351 is 500.
If Ω is assumed, the time constant CR is 1 μs.

NORゲート36]のしきい値電圧V r e (は0
.5Vとする。第3図は一般的に絶縁ゲート電界効果型
トランジスクTIのドレイン電圧V。、lと ドレイン
電流の特性を示すグラフ図で、この図から明らかなよう
に、オン電圧V。Nが1.0〜1.5Vの間でバラツキ
があれば、オン電流は約3%のバラツキを示す。
NOR gate 36] threshold voltage V r e (is 0
.. Set it to 5V. FIG. 3 generally shows the drain voltage V of an insulated gate field effect transistor TI. , l is a graph showing the characteristics of drain current.As is clear from this figure, on-voltage V. If N varies between 1.0 and 1.5 V, the on-current shows a variation of about 3%.

この差は印字品質に大きく影響する。第4図はオン電圧
V。、と放電立下り時間tpとの関係を示すグラフ図で
あり、本例においては放電立上り時開t。は600ns
以上となろ。各論罪回路のゲート遅延時間t、は数nS
で、また絶縁ゲート電界効果型トランジスタTIの立上
り時間と立下り時間の差t PLHt PIILは数I
nn5であるため、これらは放電立下り時間tDに対し
て無視できる。したがって、絶縁ゲー)IE界効果型ト
ランジスタTIのオン時間T。Nは駆動制御信号a、の
Hレベルのパルス幅Taに対]5、To、I= Ta 
+ t nの関係がある。第5図はオン電圧V。Mと駆
動電流X Towとの関係を示すグラフ図である。但し
、Ta=20mとする。ここで、破線は従来の特性を示
し、約3%のバラツキを有しているが、実線で示す本例
ではオン電圧VONが1.0〜1.3Vではバラツキが
殆どなく、オン電圧ν。1.Iが1.3−1.5Vでは
約1%以内のバラツキがあるにすぎない。
This difference greatly affects print quality. Figure 4 shows the on-voltage V. , and the discharge fall time tp, in this example, the opening time t at the discharge rise time. is 600ns
That's all. The gate delay time t of each logic circuit is several nS
Also, the difference between the rise time and fall time of the insulated gate field effect transistor TI, t PLHt PIIL, is a number I
Since nn5, these can be ignored with respect to the discharge fall time tD. Therefore, the on-time T of the insulating game) IE field effect transistor TI. N is the H level pulse width Ta of the drive control signal a] 5, To, I = Ta
There is a relationship of + t n. FIG. 5 shows the on-voltage V. FIG. 3 is a graph diagram showing the relationship between M and drive current X Tow. However, Ta=20m. Here, the broken line shows the conventional characteristics and has a variation of about 3%, but in this example shown by the solid line, there is almost no variation when the on-voltage VON is 1.0 to 1.3V, and the on-voltage ν. 1. When I is 1.3-1.5V, there is only a variation within about 1%.

なお、」二記実施例におけるビット発熱回路における発
熱抵抗R1と絶縁ゲート電界効果型トランジスタT、は
直列接続されているが、両者が並列接続されていた場合
も同様にオン時間を制御することができる。
Note that although the heat generating resistor R1 and the insulated gate field effect transistor T in the bit heat generating circuit in the second embodiment are connected in series, the on-time can be controlled in the same way even when both are connected in parallel. can.

〔発明の効果」 以上説明したように、本発明は各スイッチング手段のオ
ン抵抗の値に応じてそのオン時間を長短調整する帰還手
段を設けた点に特徴を有するものであるから、各スイッ
チング手段のオン抵抗にバラツキがあっても、そのバラ
ツキ分布に応じてオン時間が補正されるので、デバイス
面積を大規模化せずに、各発熱抵抗の発熱量が均一化さ
れ、サーマルヘッドの場合においてはa度むらを抑制す
ることができる。
[Effects of the Invention] As explained above, the present invention is characterized in that it is provided with a feedback means that adjusts the on-time of each switching means according to the value of the on-resistance of each switching means. Even if there is variation in the on-resistance of the on-resistance, the on-time is corrected according to the dispersion distribution, so the amount of heat generated by each heat-generating resistor is equalized without increasing the device area. can suppress unevenness to a degree.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る多ビット発熱回路の駆動装置を適
用したサーマルヘッド駆動回路の実施例における1ビッ
ト発熱回路の回路構成図でああ。 第2図は同実施例における各信号のタイミングチャート
図である。 第3図は一般的に絶縁ゲート電界効果型トランジスタの
ドレイン電圧対ドレイン電流の特性を示すグラフ図であ
る。 第4図は同実施例におけるオン電圧V。Nと立下り放電
時間t、との関係を示すグラフ図である。 第5図は、オン電圧V。Nと駆動電流×Toイとの関係
を示すグラフ図である。 第6図は従来のサーマルヘッド駆動回路の構成を示す回
路図である。 第7図は同従来例における各信号波形の関係を示すタイ
ミングチャート図である。 R3発熱抵抗、T、 絶縁ゲート電界効果型トランジス
タ、V 7 M R高圧N源、301 帰還制御回路、
31 i −N A N Dゲート、32i、37i 
 インバータ、33トランスフアーゲート、341 コ
ンデンサ、35]  抵抗、36i−NORゲート、t
。 放電時間、voll  オン電圧、v rflr ””
” Lきい値VTHR高圧電源 駆動電流X TON 1.5 ドレイン電圧(V) 図 VON(〕 図 ゲート信号CI 図
FIG. 1 is a circuit configuration diagram of a 1-bit heat generating circuit in an embodiment of a thermal head drive circuit to which a multi-bit heat generating circuit drive device according to the present invention is applied. FIG. 2 is a timing chart of each signal in the same embodiment. FIG. 3 is a graph diagram generally showing the drain voltage versus drain current characteristic of an insulated gate field effect transistor. FIG. 4 shows the on-voltage V in the same embodiment. FIG. 2 is a graph diagram showing the relationship between N and falling discharge time t. FIG. 5 shows the on-voltage V. FIG. 3 is a graph diagram showing the relationship between N and drive current×Toi. FIG. 6 is a circuit diagram showing the configuration of a conventional thermal head drive circuit. FIG. 7 is a timing chart showing the relationship between signal waveforms in the conventional example. R3 heating resistor, T, insulated gate field effect transistor, V 7 MR high voltage N source, 301 feedback control circuit,
31i-NAND gate, 32i, 37i
Inverter, 33 Transfer gate, 341 Capacitor, 35] Resistor, 36i-NOR gate, t
. Discharge time, vol on voltage, v rflr ””
” L threshold VTHR High voltage power supply drive current X TON 1.5 Drain voltage (V) Figure VON () Figure Gate signal CI Figure

Claims (1)

【特許請求の範囲】 1)発熱抵抗とオン/オフ制御信号に基づいて定圧電源
から該発熱抵抗に対する給電を継断するスイッチング手
段とを1ビット発熱回路とする多ビット発熱回路の駆動
装置であって、 各発熱回路は、当該スイッチング手段のオン状態におけ
るオン電圧値に応じて当該オン制御信号の持続時間を遅
延せしめる帰還制御手段を備えることを特徴とする多ビ
ット発熱回路の駆動装置。
[Scope of Claims] 1) A driving device for a multi-bit heat generating circuit in which a heat generating resistor and a switching means for connecting and disconnecting power supply to the heat generating resistor from a constant voltage power source based on an on/off control signal constitute a 1-bit heat generating circuit. A driving device for a multi-bit heat generating circuit, characterized in that each heat generating circuit is provided with feedback control means for delaying the duration of the ON control signal according to the ON voltage value in the ON state of the switching means.
JP1202379A 1989-08-04 1989-08-04 Driving device for multi-bit heat generating circuit Pending JPH0365359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1202379A JPH0365359A (en) 1989-08-04 1989-08-04 Driving device for multi-bit heat generating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1202379A JPH0365359A (en) 1989-08-04 1989-08-04 Driving device for multi-bit heat generating circuit

Publications (1)

Publication Number Publication Date
JPH0365359A true JPH0365359A (en) 1991-03-20

Family

ID=16456523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1202379A Pending JPH0365359A (en) 1989-08-04 1989-08-04 Driving device for multi-bit heat generating circuit

Country Status (1)

Country Link
JP (1) JPH0365359A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2696978A1 (en) * 1992-10-19 1994-04-22 Sca Gemplus Control process for print head in thermal printer - involves application of two different pulse patterns to lessen overheating and wear of print head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2696978A1 (en) * 1992-10-19 1994-04-22 Sca Gemplus Control process for print head in thermal printer - involves application of two different pulse patterns to lessen overheating and wear of print head

Similar Documents

Publication Publication Date Title
KR900005460B1 (en) Low noise - high output buffer
JP6649845B2 (en) Semiconductor device
US8299988B2 (en) Pulse signal delay circuit and LED drive circuit
US4829199A (en) Driver circuit providing load and time adaptive current
US7113412B2 (en) Drive circuit and power supply apparatus
EP0936509B1 (en) Driving circuit and led head with constant turn-on time
JP3167915B2 (en) Delay circuit that can withstand process fluctuations
EP0735676B1 (en) Predriver circuit for low-noise switching of high currents in a load
US4628218A (en) Driving circuit suppressing peak value of charging current from power supply to capacitive load
US20030231034A1 (en) Driver circuit connected to pulse shaping circuitry and method of operating same
JP2004266368A (en) Method and device for driving semiconductor apparatus
JP3116886B2 (en) Piezo drive circuit
US4785262A (en) Pulse generator producing pulses having a width free from a power voltage and a threshold voltage of an inverter used therein
US5311084A (en) Integrated circuit buffer with controlled rise/fall time
US7847622B2 (en) Electric circuit device
EP0848868B1 (en) Resonant driver circuit with reduced power consumption
EP0433724A2 (en) Voltage regulator with power boost system
US20090102890A1 (en) Inkjet print head
US5124595A (en) Gate drive bias circuit for MOSFET power switches
KR20000029131A (en) Voltage booster circuit apparatus
JPH0365359A (en) Driving device for multi-bit heat generating circuit
US20170288661A1 (en) Gate Driver That Drives With A Sequence Of Gate Resistances
US7514963B2 (en) Semiconductor integrated circuit device
US6008686A (en) Power consumption control circuit for CMOS circuit
JPS63164708A (en) Gate controller