JPH0365221B2 - - Google Patents

Info

Publication number
JPH0365221B2
JPH0365221B2 JP7292384A JP7292384A JPH0365221B2 JP H0365221 B2 JPH0365221 B2 JP H0365221B2 JP 7292384 A JP7292384 A JP 7292384A JP 7292384 A JP7292384 A JP 7292384A JP H0365221 B2 JPH0365221 B2 JP H0365221B2
Authority
JP
Japan
Prior art keywords
membrane
liquid
membranes
drying
dry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7292384A
Other languages
Japanese (ja)
Other versions
JPS60216811A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7292384A priority Critical patent/JPS60216811A/en
Publication of JPS60216811A publication Critical patent/JPS60216811A/en
Publication of JPH0365221B2 publication Critical patent/JPH0365221B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0095Drying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は気体分離膜、あるいは膜の複合化、変
性等の前段で必要な乾燥膜の製造方法に関し、そ
の目的とするところは透過性能の低下をきたすこ
となく膜を乾燥する方法を提供するにある。 〔従来技術〕 乾燥分離膜はいくつかの用途で必要とされてい
る。例えば混合ガスの分離、濃縮に用いられる気
体分離膜、人工肺用分離膜等液体と気体とを膜で
接触させ、気体の透過、交換を行う膜が知られて
いる。 また、薄層膜の機械強度付与を目的として膜を
複合化する事が逆浸透膜の場合によく利用されて
いる。あるいは膜の表面をグラフト重合その他で
修飾、変性する事も行なわれているが、いずれの
場合も、膜は一且乾燥させる必要がある。 その他通常の液体分離用限外過膜についても
ほとんどが湿式製膜により製膜され、湿潤状態の
まま取り扱われているが、モジユール化、衛生、
輸送、保存の面で問題を有しており、乾燥膜化が
望まれているところである。 ところが単に湿式製膜した膜を熱風等で乾燥さ
せたのでは、著るしく透水量あるいは気体透過量
が低下してしまう。そこで従来より乾燥膜の透水
性向上に関し乾燥、工程の前後に種々検討が加え
られている。 たとえば湿式製膜後、乾燥工程に入る前に界面
活性剤水溶液に浸漬する方法が知られている。し
かしこれは界面活性剤が処理後も残存する為、使
用前に長時間の洗浄が必要であり、また乾燥のま
までは残存する界面活性剤の為に前記した膜表面
の修飾、変性が困難となる。 界面活性剤の他に多価アルコールを用いる例も
あるが上記と同様の問題を有している。 また、湿式製膜後、乾燥工程に入る前に80℃以
上の温水による浸漬工程を加える方法が提示され
ている。しかしこの方法はアルコール水溶液によ
る乾燥膜の再湿潤化を行なつても、透水量は乾燥
前の値に回復するにとどまつている。特に前処理
を行なわずとも乾燥膜の再湿化にアルコール水溶
液を用いる例がポリスルホンの場合に報告されて
いるがこの場合も乾燥前の透水量に回復するにと
どまつている。従つて再度乾燥する場合には透過
量は低下するのでこの様な膜性能の回復方法は気
体分離用膜には不充分である。 アルコール、ケトン等の蒸気による処理も提示
されているが蒸気濃度のコントロールを厳密に行
なわないと膜の変形、劣化をきたす為作業は簡易
ではない。 また、膜を一且凝集性の小さい(例えば溶解性
パラメータが9.4以下の)溶剤で湿潤化した後乾
燥する事によつて膜の収縮を防ぎ透過量を保つ方
法も気体分離膜、限外過膜で提唱されている。 この方法だと一定の効果が得られるが工程が複
雑となる。すなわち凝固液として用いられる液が
水(溶解度パラメータ23.4)等の様に凝集性の大
きい液体であるので膜内での凝集性の大きな液と
凝集性の小さな液との交換は容易でなく、湿潤膜
をリフラツクスしている凝集性の小さな液に浸漬
するとか、途中にアルコール等の凝集性の適当な
液体に置換した後凝集性の小さな液に置換する等
の工夫が必要である。 〔発明の目的〕 発明者らは上記した問題に鑑み従来得られなか
つた透過性能の低下をきたす事のない、工程が簡
易な乾燥膜の製造方法を得んとする目的で研究を
開始し、膜の乾燥時の収縮を防ぐだけでなくその
前に膜を膨潤させておく事により所定の透過性能
の乾燥膜が得られるとの考えに基づき鋭意研究を
進めた結果本発明を完成するに至つたものであ
る。 〔発明の構成〕 本発明は、混合乾燥用液がジオキサン又は沸点
100℃以下の有機溶剤を3〜50重量%含む低級ア
ルコール混合溶液で、水と混和性を有し、かつ溶
解度パラメーターが9.5〜14.5に入るものであり、
分離膜を該混合乾燥用液にて湿潤化した後乾燥す
る事を特徴とする乾燥分離膜の製造方法である。 本発明が適用される分離膜について、素材高分
子重合体の種類は特に制限されない。セルロース
系の重合体の他にも例えばポリアミド、ポリイミ
ド、ポリエーテルイミド、ポリスルホン、ポリエ
ーテルスルホン、ポリアクリロニトリル等があ
る。 膜の形状についても平板状、管状、中空糸状等
いずれのものも利用出来る。 膜表面が変性されたものあるいは薄層との複合
膜化したものでもよい。 また湿潤状態のものでもあらかじめ乾燥状態に
ある膜でもよい。膜が既にスパイラル等のモジユ
ールとして組上つた後でも本発明を適用する事が
出来る。本発明で用いる混合乾燥用液はジオキサ
ン又は沸点100℃以下の有機溶剤を3〜50重量%
含む低級アルコール混合溶液である。 有機溶剤の沸点が100℃以上だと膜の乾燥が円
滑に進まない。但し、ジオキサンは沸点が100℃
より少し高いが、本発明で使用する有機溶剤とし
て好ましいものであることが確認された。有機溶
剤は膜素材高分子重合体に対し膨潤性あるいは溶
解性を示すものが好ましい。有機溶剤の量が3重
量%以下だと著るしい効果は認められなくなり逆
に50重量%以上だと有機溶剤の性質により種々の
問題が生じる。 すなわち有機溶剤が膜素材高分子重合体を溶解
するものであれば膜の変形、収縮が生じる。ある
いは有機溶剤が水に不溶性のものであれば、膜が
あらかじめ水で湿潤している場合、混合乾燥用液
との膜内での置換が円滑に進まなくなる。条件に
よつては膜内で液の相分離を生じ、これをそのま
ま乾燥したのでは膜の性能に不均一性が出る。 多くの場合、分離膜は湿式法で製造され、その
場合の凝固液はほとんどが水あるいは水溶液であ
る。従つてこれを乾燥膜とするのに本発明を適用
するなら水と混合乾燥用液との膜内での置換が円
滑に進行するかどうかは重要な問題である。 有機溶剤は単独でもまた複数種の混合物でもよ
い。例えばジエキサンの様なエーテル類あるいは
エステル類、ケトン類をあげる事が出来る。 本発明で用いる低級アルコールも沸点が100℃
以下である事が望ましく、単独でも、混合液でも
よい。例えばメチルアルコール、エチルアルコー
ルをあげる事が出来る。 混合乾燥用液は水との混和性を有する必要があ
る。本発明で言う混和性とは、前記した様に、相
分離を生じたり膜内での置換が円滑に進行しない
と言つた問題がない事を意味する。 混合乾燥用液の溶解度パラメーターは9.5〜
14.5に入る必要がある。 ここで言う溶解度パラメーターとは各溶剤の溶
解度パラメータを混合重量比で比例配分し、算出
するものである。例えば混合乾燥用液中の低級ア
ルコールの溶解度パラメータの値がそれぞれa1
a2,……,anであり、その重量%の値がx1,x2
……,xn。 また有機溶剤の溶解度パラメータがb1,b2,…
…,boで重量%の値がy1,y2,……,yoである時
の混合乾燥用液の溶解度パラメータδは δ=(ni=1 aixioi=1 biyi)/100 で算出される。 混合乾燥用液の溶解度パラメータの値が9.5を
下回ると水との混和性が低下し、前記した膜内で
の水の交換の問題あるいは相分離の問題が生じて
しまう。14.5より大きいと、乾燥時膜の収縮が大
きく、気体あるいは液体の透過量の高い乾燥膜を
得る事が困難となる。 低級アルコールに混入する有機溶剤が、そのア
ルコールと共沸するものであれば、乾燥はよりス
ムーズに進行するので好適に利用される。 一般的に膜素材を膨潤または溶解させる有機溶
剤と膜素材の高分子重合体の溶解度パラメータは
近い値である。また一般に有機溶液の溶解度パラ
メーターが大きい程その有機溶剤で湿潤化した膜
を乾燥させる時、膜の収縮の程度は大きい。 乾燥膜の分画性あるいは孔径は、この膨潤と収
縮の差し引きで決まるので、膜素材により事情は
異なり、制限するものではないが、混合乾燥用液
の溶解度パラメータの最適値は膜素材高分子材料
の値と9.5との間にあると仮定し、探索すると良
い。 分離膜を混合乾燥用液にて湿潤化するには、特
別の方法を必要としない。膜が既に乾燥したもの
でもまたは湿式製膜後膜が凝固液により湿潤状態
となつているものでも、単に混合乾燥用液に常温
で浸漬すればよい。膜内があらかじめ混合乾燥用
液と混和性のない液で湿潤状態となつており、こ
れを取りのぞく必要のある場合は別として、特に
混合乾燥用液をリフラツクスさせた中に膜を浸漬
するとか、あらかじめ混合乾燥用液と混和性のあ
る他の液で膜内を置換しておく等の工夫をせずと
も、所望の効果を発現させる事が出来る。膜ある
いは膜モジユールの形状によつては、浸漬のみだ
と時間を要する場合があり、その様な時には、混
合乾燥用液を膜あるいは膜モジユール内に流通さ
せてやるのが効果的である。 また膜があらかじめ乾燥している場合は、混合
乾燥用液をスプレーで膜に導入してもよい。膜素
材および混合乾燥用液の組成により程度は異なる
が浸漬等により膜を混合乾燥用液で湿潤化する
際、湿潤状態に置く温度、時間により得られる膜
の特性が変化する事には充分の注意が必要であ
る。出来るだけ透過性を高めたい時に、特に注目
すべきは、浸漬時間に最適値の存在する場合であ
る。すなわち浸漬時間は短かすぎては効果が少
く、長く延長して行くと、得られる膜の透過性は
一且上昇するが、やがて下りある値に落ち着く傾
向を示す場合がある。 制限するものではないが、作業、工程を簡易に
する為にはこの最適時間を30分から1時間に入る
様混合乾燥用液を調整する事が望ましい。混合乾
燥用液で湿潤化した膜を乾燥させる方法について
も特別の工夫は要せず風乾でもよいが加熱、減圧
等を加へても良い。好適には熱風等の不活性気体
の流通化に乾燥する事が行なわれる。 〔発明の効果〕 本発明に従うと、簡易な工程で透過性能の低下
をきたす事なく膜の乾燥が行なえるので、工業的
な乾燥膜の製造方法として好適である。 本発明の方法は前述の様な種々の形状の膜に適
用出来るだけでなく、気体分離膜、液一気分離
膜、逆浸透膜あるいはその基材となる多孔質膜、
限外過膜等様々な用途のものに適用出来る。ま
た本発明は、他の方法との組合せにより高度な機
能を有する膜の製造に応用する事が出来る。例え
ば乾燥と同時に膜の化学的修飾あるいは膜表面に
他の化合物を付着または結合させる事も出来る。
この場合、混合乾燥溶液に特定の試薬あるいは化
合物が含まれる。その様な試薬として例えば硫酸
をあげる事が出来る。 複合膜を作る目的で乾燥と同時に膜内および膜
表面で他の化合物の重合あるいは架橋反応を行な
わしめる事も出来る。例えばポリエチレンイミン
の架橋をあげる事が出来る。 また本発明は、前述の様に乾燥した膜にも適用
出来るので湿式製法で作られた膜の乾燥だけでな
く、乾式法で作られた膜あるいは一且乾燥した膜
の分画分子量あるいは孔径の調節を目的としても
利用する事が出来る。 〔実施例〕 以下実施例により本発明の例を述べる。 実施例 1 芳香族ポリスルホンp−1700(ユニオンカーバ
イド社製)14重量部をN−メチル−2−ピロリド
ン86重量部に70℃4時間かけて加熱溶解させ、レ
ジン溶液を作る。脱泡後室温にてレジン溶液をガ
ラス板上に流延しさらに18℃の水に浸漬し凝固さ
せ、湿潤状態の厚さ11〜130μの平膜状分離膜を
得た。膜の透水量は1230(/hrm2atm)であつ
た。次にこれをエチルアルコール95重量部1,4
−ジオキサン5重量部よりなる18℃の混合乾燥用
液に湿潤状態のまま所定時間浸漬し80℃の熱風に
て15分〜30分乾燥し、乾燥膜を得た。膜の透水量
を第1表に示す。 (乾燥膜の測定方法) 乾燥をエチルアルコールに常温1分湿漬、水洗
し湿潤膜とした。この膜を18〜22℃、1Kg/cm2
条件下、イオン交換水を用い、透水開始5分後の
透水量を測定した。以下同様の方法を用いた。 比較例 1 実施例1と同じ湿潤芳香族ポリスルホン分離膜
をエチルアルコールに所定時間浸漬後、実施例1
と同様の方法で乾燥し乾燥膜を得た。膜の透水量
を第1表に示す。この様に、ポリスルホンの場合
はわずか5重量%の1,4−ジオキサンの添加に
より、透水率の向上速度がほぼ倍に改良されてい
る事が判る。
[Industrial Application Field] The present invention relates to a method for manufacturing gas separation membranes or dry membranes required in the first stage of membrane compositing, modification, etc., and its purpose is to manufacture membranes without deteriorating permeation performance. To provide a way to dry. BACKGROUND OF THE INVENTION Dry separation membranes are required in several applications. For example, gas separation membranes used for separating and concentrating mixed gases, separation membranes for artificial lungs, and other membranes are known that allow liquid and gas to come into contact with each other through the membrane to allow gas permeation and exchange. Further, in the case of reverse osmosis membranes, it is often used to compose membranes for the purpose of imparting mechanical strength to thin membranes. Alternatively, the surface of the membrane has been modified or modified by graft polymerization or other methods, but in either case, the membrane must be dried. Most other conventional ultrafiltration membranes for liquid separation are produced by wet membrane formation and are handled in a wet state.
There are problems in terms of transportation and storage, and dry film production is desired. However, if a wet-formed membrane is simply dried with hot air or the like, the amount of water permeation or gas permeation will be significantly reduced. Therefore, various studies have been made to improve the water permeability of dry membranes before and after the drying process. For example, a method is known in which the film is immersed in an aqueous surfactant solution after wet film formation and before entering the drying process. However, since the surfactant remains after treatment, a long period of cleaning is required before use, and if the membrane is left dry, the remaining surfactant makes it difficult to modify or modify the membrane surface. Become. There are also examples of using polyhydric alcohols in addition to surfactants, but these have the same problems as above. Furthermore, a method has been proposed in which a immersion process in hot water of 80° C. or higher is added after wet film formation and before the drying process. However, in this method, even if the dried membrane is re-wetted with an aqueous alcohol solution, the water permeation amount only recovers to the value before drying. In the case of polysulfone, an example in which an alcohol aqueous solution is used to rewet a dried membrane without any pretreatment has been reported, but in this case as well, the water permeability remains at the level before drying. Therefore, when drying again, the amount of permeation decreases, so this method of restoring membrane performance is insufficient for gas separation membranes. Treatment with vapors of alcohol, ketones, etc. has also been proposed, but this is not an easy process because the membrane will deform and deteriorate unless the vapor concentration is strictly controlled. In addition, gas separation membranes, ultrafiltration membranes and proposed for membranes. Although this method achieves certain effects, the process becomes complicated. In other words, since the liquid used as a coagulating liquid is a highly cohesive liquid such as water (solubility parameter 23.4), it is difficult to exchange a highly cohesive liquid with a low coagulant liquid within the membrane, and It is necessary to take measures such as immersing the membrane in a refluxing liquid with low cohesion, or replacing the membrane with a suitable liquid with low cohesion such as alcohol during the process, and then replacing it with a liquid with low cohesion. [Purpose of the Invention] In view of the above-mentioned problems, the inventors started research with the aim of finding a method for manufacturing a dry membrane with a simple process that does not cause a decrease in permeation performance that could not be obtained conventionally. The present invention was completed as a result of intensive research based on the idea that a dried membrane with a desired permeability can be obtained by not only preventing the membrane from shrinking during drying but also by allowing the membrane to swell before drying. It is ivy. [Structure of the invention] The present invention provides that the mixed drying liquid is dioxane or boiling point
A lower alcohol mixed solution containing 3 to 50% by weight of an organic solvent at 100°C or less, which is miscible with water and has a solubility parameter of 9.5 to 14.5,
This method of producing a dry separation membrane is characterized in that the separation membrane is moistened with the mixed drying liquid and then dried. Regarding the separation membrane to which the present invention is applied, the type of material polymer is not particularly limited. In addition to cellulose polymers, there are, for example, polyamide, polyimide, polyetherimide, polysulfone, polyethersulfone, polyacrylonitrile, and the like. Regarding the shape of the membrane, any shape such as a flat plate, a tube, or a hollow fiber can be used. It may be a membrane whose surface has been modified or a composite membrane with a thin layer. Further, the membrane may be in a wet state or may be in a dry state in advance. The present invention can be applied even after the membrane has already been assembled into a module such as a spiral. The mixed drying liquid used in the present invention contains 3 to 50% by weight of dioxane or an organic solvent with a boiling point of 100°C or less.
It is a mixed solution of lower alcohol containing. If the boiling point of the organic solvent is 100°C or higher, the film will not dry smoothly. However, the boiling point of dioxane is 100℃
It was confirmed that it is a preferable organic solvent for use in the present invention, although it is slightly more expensive. The organic solvent is preferably one that exhibits swelling or solubility with respect to the membrane material polymer. If the amount of organic solvent is less than 3% by weight, no significant effect will be observed, and if it is more than 50% by weight, various problems will occur depending on the nature of the organic solvent. That is, if the organic solvent dissolves the membrane material polymer, deformation and shrinkage of the membrane will occur. Alternatively, if the organic solvent is insoluble in water and the membrane is previously wetted with water, replacement within the membrane with the mixed drying liquid will not proceed smoothly. Depending on the conditions, phase separation of the liquid may occur within the membrane, and if this is dried as is, the performance of the membrane will be non-uniform. In many cases, separation membranes are manufactured by a wet method, and the coagulating liquid in that case is mostly water or an aqueous solution. Therefore, if the present invention is applied to make this into a dry membrane, it is an important issue whether or not the replacement of water and mixed drying liquid within the membrane proceeds smoothly. The organic solvent may be used alone or in combination. Examples include ethers such as diexane, esters, and ketones. The lower alcohol used in the present invention also has a boiling point of 100℃
The following is desirable, and it may be used alone or as a mixture. For example, methyl alcohol and ethyl alcohol can be mentioned. The mixed drying liquid must be miscible with water. Miscibility in the present invention means, as described above, that there are no problems such as phase separation or substitution that does not proceed smoothly within the membrane. The solubility parameter of the mixed drying liquid is 9.5 ~
Must be in 14.5. The solubility parameter referred to herein is calculated by proportionally distributing the solubility parameters of each solvent based on the mixing weight ratio. For example, the solubility parameter values of lower alcohol in the mixed drying liquid are a 1 and
a 2 , ..., a n , and the weight percent values are x 1 , x 2 ,
..., x n . Also, the solubility parameters of the organic solvent are b 1 , b 2 ,...
..., b o and the weight percent values are y 1 , y 2 , ..., y o , the solubility parameter δ of the mixed drying liquid is δ = ( ni=1 a i x i + oi =1 b i y i )/100. If the value of the solubility parameter of the mixed drying liquid is less than 9.5, the miscibility with water decreases, resulting in the above-mentioned problem of water exchange or phase separation within the membrane. If it is larger than 14.5, the shrinkage of the membrane during drying will be large, making it difficult to obtain a dry membrane with a high permeation rate of gas or liquid. If the organic solvent mixed with the lower alcohol is one that is azeotropic with the alcohol, drying will proceed more smoothly, so it is preferably used. Generally, the solubility parameters of the organic solvent that swells or dissolves the membrane material and the high molecular weight polymer of the membrane material are close to each other. In general, the larger the solubility parameter of the organic solution, the greater the degree of shrinkage of the film when drying the film moistened with the organic solvent. The fractionation or pore size of the dry membrane is determined by subtracting this swelling and shrinkage, so the situation differs depending on the membrane material and is not limited, but the optimal value of the solubility parameter of the mixed drying liquid depends on the membrane material polymer material. Assuming that the value is between 9.5 and 9.5, it is a good idea to search. No special method is required to moisten the separation membrane with the mixed drying liquid. Even if the membrane has already been dried or the membrane has been moistened with the coagulating liquid after wet membrane formation, it may be simply immersed in the mixed drying liquid at room temperature. Unless the inside of the membrane is already wet with a liquid that is immiscible with the mixed drying liquid and needs to be removed, do not immerse the membrane in a refluxed mixed drying liquid. It is possible to achieve the desired effect without taking measures such as replacing the inside of the membrane with another liquid that is miscible with the mixed drying liquid in advance. Depending on the shape of the membrane or membrane module, dipping alone may take time; in such cases, it is effective to circulate the mixed drying liquid through the membrane or membrane module. If the membrane is already dry, the mixed drying liquid may be introduced into the membrane by spraying. Although the extent varies depending on the membrane material and the composition of the mixed drying liquid, it is sufficient that when the membrane is moistened with the mixed drying liquid by immersion, etc., the properties of the obtained membrane change depending on the temperature and time at which it is left in the wet state. Caution must be taken. When it is desired to increase the permeability as much as possible, it is particularly important to pay attention to the case where there is an optimum value for the immersion time. That is, if the immersion time is too short, the effect will be small, and if the immersion time is prolonged, the permeability of the obtained membrane will increase once, but may eventually tend to decline and settle to a certain value. Although not limited to this, in order to simplify the work and process, it is desirable to adjust the mixing and drying liquid so that the optimum time falls within 30 minutes to 1 hour. As for the method of drying the membrane moistened with the mixed drying liquid, no special measures are required and air drying may be used, but heating, reduced pressure, etc. may also be applied. Drying is preferably carried out by circulating an inert gas such as hot air. [Effects of the Invention] According to the present invention, the membrane can be dried in a simple process without deteriorating the permeation performance, so it is suitable as an industrial method for producing a dry membrane. The method of the present invention can be applied not only to membranes of various shapes as described above, but also to gas separation membranes, liquid separation membranes, reverse osmosis membranes, or porous membranes serving as their base materials.
It can be applied to various applications such as ultrafiltration membranes. Furthermore, the present invention can be applied to the production of membranes with advanced functions by combining with other methods. For example, the membrane can be chemically modified or other compounds can be attached or bonded to the membrane surface simultaneously with drying.
In this case, the mixed dry solution contains specific reagents or compounds. An example of such a reagent is sulfuric acid. For the purpose of producing a composite membrane, it is also possible to carry out polymerization or crosslinking reactions of other compounds within the membrane and on the membrane surface at the same time as drying. For example, crosslinking of polyethyleneimine can be mentioned. Furthermore, as mentioned above, the present invention can be applied to dried membranes, so it can be used not only to dry membranes made by a wet process, but also to improve the molecular weight cutoff or pore size of a membrane made by a dry process or a dry membrane. It can also be used for adjustment purposes. [Example] Examples of the present invention will be described below with reference to Examples. Example 1 A resin solution was prepared by heating and dissolving 14 parts by weight of aromatic polysulfone P-1700 (manufactured by Union Carbide) in 86 parts by weight of N-methyl-2-pyrrolidone at 70°C for 4 hours. After defoaming, the resin solution was cast onto a glass plate at room temperature and further immersed in water at 18°C to solidify, thereby obtaining a wet flat membrane separation membrane with a thickness of 11 to 130 μm. The water permeability of the membrane was 1230 (/hrm 2 atm). Next, add 95 parts by weight of ethyl alcohol to 1.4 parts by weight.
- It was immersed in a wet state for a predetermined time in a mixed drying liquid at 18°C consisting of 5 parts by weight of dioxane, and dried with hot air at 80°C for 15 to 30 minutes to obtain a dry film. Table 1 shows the water permeability of the membrane. (Method for measuring dry film) After drying, the film was soaked in ethyl alcohol at room temperature for 1 minute and washed with water to obtain a wet film. The amount of water permeated through this membrane was measured 5 minutes after the start of water permeation using ion-exchanged water under conditions of 18 to 22°C and 1 Kg/cm 2 . The same method was used below. Comparative Example 1 After soaking the same wet aromatic polysulfone separation membrane as in Example 1 in ethyl alcohol for a predetermined time, Example 1
A dry film was obtained by drying in the same manner as above. Table 1 shows the water permeability of the membrane. In this way, it can be seen that in the case of polysulfone, the rate of improvement in water permeability is almost doubled by adding only 5% by weight of 1,4-dioxane.

【表】【table】

【表】 (a) エチルアルコール溶液中の濃度
実施例 2 非晶性熱可塑性ポリエーテルイミドウルテム−
1000(ゼネラルエレクトリツク社製)20重量部を
N−メチル−2ピロリドン80重量部に95℃4時間
かけて加熱溶解し、レジン溶液を作る。脱泡後実
施例と同様の方法を用い湿潤状態の厚さ110〜
130μの平膜状分離膜を得た。膜の透水量は670
(/hrm2atm)であつた。次に、所定の有機溶
剤を所定量エチルアルコールに溶解し混合乾燥用
液を調整した。このものに湿潤膜を18℃で所定時
間浸漬し、実施例(1)と同様の方法で乾燥し乾燥膜
を得た。膜の透水量を第2表に示す。 比較例 2 実施例2と同じ湿潤ポリエーテルイミド分離膜
をエチルアルコールに所定時間浸漬後、実施例1
と同様の方法で乾燥膜を得た。膜の透水量を第2
表に示す。この様に、ポリエーテルイミドの場合
合、1,4−ジオキサンの添加量はポリスルホン
に比較しかなり多い所で透水量向上に効果の表わ
れているのがわかる。 ここで1,4−ジオキサンはポリエーテルイミ
ドの良溶媒であるがジエチルエーテルはそうでは
ない。 また、あまり長時間浸漬しても逆に透水が低下
する。
[Table] (a) Example of concentration in ethyl alcohol solution 2 Amorphous thermoplastic polyetherimide ultem
1000 (manufactured by General Electric Company) was dissolved in 80 parts by weight of N-methyl-2-pyrrolidone by heating at 95°C for 4 hours to prepare a resin solution. After defoaming, use the same method as in the example to reduce the wet thickness to 110~
A 130μ flat membrane separation membrane was obtained. The water permeability of the membrane is 670
(/hrm 2 atm). Next, a predetermined amount of a predetermined organic solvent was dissolved in ethyl alcohol to prepare a mixed drying liquid. The wet membrane was immersed in this material at 18° C. for a predetermined time and dried in the same manner as in Example (1) to obtain a dry membrane. The water permeability of the membrane is shown in Table 2. Comparative Example 2 After immersing the same wet polyetherimide separation membrane as in Example 2 in ethyl alcohol for a predetermined time, Example 1
A dried film was obtained in the same manner as above. The water permeability of the membrane is the second
Shown in the table. In this way, it can be seen that in the case of polyetherimide, the effect of increasing the amount of water permeation appears when the amount of 1,4-dioxane added is considerably larger than that of polysulfone. Here, 1,4-dioxane is a good solvent for polyetherimide, but diethyl ether is not. Also, if the product is immersed for too long, water permeability will decrease.

【表】 (a) エチルアルコール溶液中の濃度
比較例 3 透水量測定の前処理として行なつているエチル
アルコール浸漬、水洗による膜の再湿潤化につい
て、得られる透水値の妥当性を確認する為に次の
実験を行なつた。実施例1および2と同様の方法
で湿潤ポリマルホン膜およびポリエーテルイミド
膜を作り、これをそのまま80℃の熱風で1時間乾
燥し、乾燥膜とした。これらの膜をそれぞれ実施
例1と同じ方法で再湿潤化し、透水量を測定した
所いずれも10以下と低いものであつた。 従つて再湿潤化により透水性は向上するが得ら
れた数値は乾燥膜の透水性の相対的評価として充
分使用出来る事が判る。
[Table] (a) Concentration comparison example in ethyl alcohol solution 3 To confirm the validity of the obtained water permeability value regarding rewetting of the membrane by immersion in ethyl alcohol and washing with water, which is performed as a pretreatment for water permeation measurement. The following experiment was conducted. Wet polymalphone membranes and polyetherimide membranes were prepared in the same manner as in Examples 1 and 2, and dried as they were with hot air at 80° C. for 1 hour to obtain dry membranes. Each of these membranes was rewetted in the same manner as in Example 1, and the water permeability was measured and found to be as low as 10 or less. Therefore, it can be seen that although the water permeability improves by rewetting, the obtained values can be sufficiently used as a relative evaluation of the water permeability of the dry membrane.

Claims (1)

【特許請求の範囲】[Claims] 1 混合乾燥用液がジオキサン又は沸点100℃以
下の有機溶剤を3〜50重量%含む低級アルコール
混合溶液であつて、水と混和性を有し、かつ溶解
度パラメータが9.5〜14.5に入るものであり、分
離膜を該混合乾燥用液にて湿潤化した後、乾燥す
ることを特徴とする乾燥分離膜の製造方法。
1. The mixed drying liquid is a lower alcohol mixed solution containing 3 to 50% by weight of dioxane or an organic solvent with a boiling point of 100°C or lower, is miscible with water, and has a solubility parameter of 9.5 to 14.5. . A method for producing a dry separation membrane, which comprises moistening the separation membrane with the mixed drying liquid and then drying the separation membrane.
JP7292384A 1984-04-13 1984-04-13 Manufacture of dry separation membrane Granted JPS60216811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7292384A JPS60216811A (en) 1984-04-13 1984-04-13 Manufacture of dry separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7292384A JPS60216811A (en) 1984-04-13 1984-04-13 Manufacture of dry separation membrane

Publications (2)

Publication Number Publication Date
JPS60216811A JPS60216811A (en) 1985-10-30
JPH0365221B2 true JPH0365221B2 (en) 1991-10-11

Family

ID=13503355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7292384A Granted JPS60216811A (en) 1984-04-13 1984-04-13 Manufacture of dry separation membrane

Country Status (1)

Country Link
JP (1) JPS60216811A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0761425B2 (en) * 1986-05-30 1995-07-05 松下電器産業株式会社 Method for producing composite membrane for gas separation
MX2019004895A (en) 2016-11-08 2019-06-20 Ngk Insulators Ltd Method for drying separation membrane and method for producing separation membrane structure.

Also Published As

Publication number Publication date
JPS60216811A (en) 1985-10-30

Similar Documents

Publication Publication Date Title
KR101132731B1 (en) Acetylated methyl cellulose, Membrane for water treatment using that and Preparing method thereof
JPS624422A (en) Anisotropic film for separating gas and manufacture thereof
JPH0556181B2 (en)
GB2198739A (en) Microporous membrane
CA1073822A (en) Ethylene-vinyl alcohol copolymer membranes with improved permeability characteristics and a method for producing the same
JP2010155204A (en) Method of producing composite hollow fiber membrane
CN113893691A (en) Method for preparing nanofiltration membrane by interfacial polymerization modified poly (amino) sulfate
JPS6238205A (en) Semi-permeable membrane for separation
JPS6138208B2 (en)
JPH0365221B2 (en)
CN1124175C (en) Preparation method of dry type polyacrylointrile ultrafiltration membrane
JPH10309449A (en) Organic material separating polymer film and its manufacture
JPH05184887A (en) Production of high performance asymmetrical membrane
JP2713294B2 (en) Method for producing polysulfone-based resin semipermeable membrane
KR100418859B1 (en) Composition for producing polyethersulfone membrane and method for preparing microfilteration membrane using the same
JP2882658B2 (en) Method for producing polysulfone-based semipermeable membrane
JPH03174233A (en) Production of aromatic polysulfone hollow-fiber membrane
JPH0554375B2 (en)
JPS6064602A (en) Dried translucent membrane and its manufacture
JPS6146203A (en) Composite semipermeable membrane and its manufacture
JPS61409A (en) Preparation of dry semipermeable membrane
JPS6058210A (en) Preparation of cellulose ester type hollow yarn membrane
JPS59139902A (en) Preparation of permselective membrane
JPS6253414A (en) Production of aromatic polysulfone hollow fiber membrane
JPH0451219B2 (en)