JPH0364815B2 - - Google Patents

Info

Publication number
JPH0364815B2
JPH0364815B2 JP61039715A JP3971586A JPH0364815B2 JP H0364815 B2 JPH0364815 B2 JP H0364815B2 JP 61039715 A JP61039715 A JP 61039715A JP 3971586 A JP3971586 A JP 3971586A JP H0364815 B2 JPH0364815 B2 JP H0364815B2
Authority
JP
Japan
Prior art keywords
optical fiber
measured
fiber
optical
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61039715A
Other languages
Japanese (ja)
Other versions
JPS62197740A (en
Inventor
Takashi Ide
Yasushi Ito
Hisao Maki
Hiroyuki Masuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3971586A priority Critical patent/JPS62197740A/en
Publication of JPS62197740A publication Critical patent/JPS62197740A/en
Publication of JPH0364815B2 publication Critical patent/JPH0364815B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光フアイバ特性の測定装置に関する
ものであり、更に詳述するならば、光フアイバの
多項目にわたる特性測定を順次高精度かつ能率的
に実施する光フアイバ特性の測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a measuring device for measuring optical fiber characteristics.More specifically, the present invention relates to a measuring device for measuring optical fiber characteristics. The present invention relates to an apparatus for measuring optical fiber characteristics.

従来技術 光フアイバの検査に必要な測定項目としてはフ
アイバの外径、コア径やその非円率、偏心率ある
いはモードフイールド径などの機何学的構造、ま
た屈折率分布などのフアイバパラメータ、さらに
光損失、伝送帯域などで代表される伝送特性があ
る。この中でたとえば特に光損失と伝送帯域は伝
送路を設計する上で重要である。
Prior art The measurement items necessary for inspection of optical fibers include the mechanical structure such as the outer diameter of the fiber, core diameter, its noncircularity, eccentricity, and mode field diameter, and fiber parameters such as refractive index distribution. There are transmission characteristics represented by optical loss, transmission band, etc. Among these, for example, optical loss and transmission band are especially important when designing a transmission path.

光損失については被測定光フアイバ中を伝搬す
る光の減衰量を直接測定する透過法や、フアイバ
中で発生するレイリー後方散乱光の減衰量を測定
する後方散乱法があり、また伝送帯域については
周波数領域で評価する掃引法や時間領域で評価す
るパルス法が代表的である。いずれの場合も測定
にあたつては被測定光フアイバ端と、測定器側の
光源からの光を伝える出射口および光検出器への
光を伝える入射口との接続を行わなくてはならな
い。
Regarding optical loss, there are two methods: the transmission method, which directly measures the amount of attenuation of light propagating in the optical fiber under test, and the backscattering method, which measures the amount of attenuation of Rayleigh backscattered light generated in the fiber. Typical examples include the sweep method, which evaluates in the frequency domain, and the pulse method, which evaluates in the time domain. In either case, for measurement, it is necessary to connect the end of the optical fiber to be measured to an output port for transmitting light from a light source on the measuring instrument side and an input port for transmitting light to a photodetector.

第2図は、透過法を使用した従来の光フアイバ
特性測定装置の構成を例示する概略構成図であ
る。
FIG. 2 is a schematic configuration diagram illustrating the configuration of a conventional optical fiber characteristic measuring device using a transmission method.

第2図において、調心台1A〜1Cおよび2A
〜2Cは、被測定光フアイバの両方の端部3,4
をそれぞれ保持し、該両端を測定器側光フアイバ
5A〜5C及び6A〜6Cの端面と突き合わせ、
かつ調心する。それら測定器側光フアイバ5A〜
5Cおよび6A〜6Cの一方の端は、ホルダ7A
〜7Cおよび8A〜8Cに保持されており、ま
た、測定器側光フアイバ5A〜5Cの他端は、光
検出器7′A〜7′Cに接続され、測定器側光フア
イバ6A〜6Cの他端は光源8′A〜8′Cに接続
されている。これらは普通、定盤(図示されてい
ない)に組込まれ一つの装置を形成している。な
お、参照番号9は被測定光フアイバを巻いたボビ
ンを示している。
In FIG. 2, alignment blocks 1A to 1C and 2A
~2C are both ends 3, 4 of the optical fiber to be measured
holding both ends of the optical fibers 5A to 5C and 6A to 6C on the measuring instrument side,
And align yourself. Those measuring instrument side optical fibers 5A~
One end of 5C and 6A to 6C is connected to holder 7A.
~7C and 8A~8C, and the other ends of the measuring instrument side optical fibers 5A~5C are connected to the photodetectors 7'A~7'C, and the measuring instrument side optical fibers 6A~6C are connected to the photodetectors 7'A~7'C. The other end is connected to light sources 8'A to 8'C. These are usually assembled into a surface plate (not shown) to form a unit. Note that reference number 9 indicates a bobbin around which the optical fiber to be measured is wound.

以上に説明した従来の装置は、次のように使用
して測定が行われる。
The conventional device described above is used to perform measurements as follows.

すなわち、まず、被測定光フアイバの両端を処
理(被覆除去およびフアイバ切断)した後に、調
心台1A及び2Aにセツトする。次いで、被測定
光フアイバの両端3及び4の端面を、ホルダ7A
及び8Aにセツトされている測定側光フアイバ5
A及び6Aの端面に突き合わせ、軸心を調節す
る。この調節は、調心台1A及び2Aに備えられ
ている調心装置(図示されていない)により、被
測定光フアイバをその軸方向すなわちZ方向に微
小変位させ、また、被測定光フアイバをその軸方
向と直角な互いに直交した2方向すなわちXY方
向に微小変位させることにより行う、この調節
は、例えば、市販のXYZ3方向微動台で行う場合
と、これを自動的に行う場合がある。そして、そ
の調節が完了したら、光源8′Aからの光を被測
定光フアイバに入力させて、光検出器7′Aによ
り被測定光フアイバを伝播した光を測定させる。
かくして、1つの測定項目、例えば伝送損失をス
テーシヨンで測定し、次いで、ボビン9を人手
で移し替えて、ステーシヨン、ステーシヨン
で同様な操作を操作者が行つて、別の項目を順次
測定していく。
That is, first, after processing both ends of the optical fiber to be measured (removal of coating and cutting of the fiber), it is set on the alignment tables 1A and 2A. Next, the end faces of both ends 3 and 4 of the optical fiber to be measured are placed in the holder 7A.
and measurement side optical fiber 5 set to 8A.
Align it with the end faces of A and 6A and adjust the axis. This adjustment is performed by slightly displacing the optical fiber under test in its axial direction, that is, in the Z direction, by means of an alignment device (not shown) provided in the alignment tables 1A and 2A, and also moving the optical fiber under test into its position. This adjustment, which is performed by making minute displacements in two mutually orthogonal directions perpendicular to the axial direction, ie, the XY directions, may be performed, for example, with a commercially available XYZ three-direction fine movement table, or it may be performed automatically. When the adjustment is completed, the light from the light source 8'A is input to the optical fiber to be measured, and the light propagated through the optical fiber to be measured is measured by the photodetector 7'A.
In this way, one measurement item, for example, transmission loss, is measured at the station, and then the operator manually transfers the bobbin 9 and performs the same operation at the station to sequentially measure other items. .

上記従来の装置においては、1回すなわち1項
目の測定が終るたびに被測定光フアイバをとりか
え、接続をやり直さなくてはならず、さらに光フ
アイバどうしの接続は高精度であることを要する
ので、非常に労力がかかるという問題があつた。
In the conventional apparatus described above, the optical fiber to be measured must be replaced and reconnected each time one measurement of one item is completed, and the connection between the optical fibers must be highly accurate. The problem was that it was very labor intensive.

また、幾何学的構造については、計測用テレビ
による観察によつて測定するのが普通であるが、
テレビの光学系に対して被測定フアイバの位置決
め高精度に行う必要がある。光フアイバは、直径
100μm前後と非常に細いもので、この幾何学的構
造を精度良く測定するには高倍率で拡大をする必
要があるため、各ステーシヨンにおいて焦点深度
の非常に浅い光学系に対してフアイバ端面を狭い
視野内に位置決めしなくてはならない。
In addition, the geometric structure is usually measured by observation using a measuring television.
It is necessary to position the fiber to be measured with high precision with respect to the optical system of the television. Optical fiber diameter
The fiber is very thin, around 100 μm, and in order to accurately measure this geometric structure, it is necessary to use high magnification. Must be positioned within field of view.

従つて、伝送特性の測定におけるフアイバの接
続の労力と同等もしくはそれ以上の労力がかかる
という問題があつた。
Therefore, there is a problem in that measurement of transmission characteristics requires as much effort as or more effort than connecting fibers.

そこで、本件出願人は、特開昭60−225044号等
において、各ステーシヨンでの光フアイバの位置
付けを不要にした連続的な光フアイバ特性測定装
置を提案した。
Therefore, the applicant of the present invention proposed a continuous optical fiber characteristic measuring device that eliminates the need for positioning the optical fiber at each station in Japanese Patent Application Laid-Open No. 60-225044.

かかる光フアイバ特性の測定装置において特に
困難を伴うのは、いわゆるセツトステーシヨンに
おけるフアイバ端のフアイバ軸方向の位置決めで
ある。フアイバ軸に垂直な方向についてのキヤリ
ア上の固定に関しては、例えばフアイバ端近傍を
V溝上に固定する方法が既に公知であり、比較的
確実に位置決めが出来るため現在広く用いられて
いる。
What is particularly difficult in such an apparatus for measuring optical fiber properties is the positioning of the fiber end in the axial direction of the fiber at a so-called setting station. Regarding fixation on the carrier in the direction perpendicular to the fiber axis, for example, a method of fixing the vicinity of the fiber end onto a V-groove is already known, and is currently widely used because positioning can be done relatively reliably.

そしてさらに、精密な位置決めに関していえ
ば、被測定フアイバに光を一端より入射し、他端
より出射する光パワーをモニタしながら出射光パ
ワーが最大になるように、フアイバ端と光学測定
系入出射口とのフアイバ軸に垂直な方向の位置関
係を相対的に微調整することにより精度良く位置
合わせを行なう方法がある。前記入出射口と被測
定フアイバが測定に最適となる最も軸心の合つた
状態の時に、前記光パワーが、極大値をとるから
である。
Furthermore, when it comes to precise positioning, the light enters the fiber to be measured from one end, and while monitoring the optical power output from the other end, the fiber end and the optical measurement system There is a method of performing accurate positioning by relatively finely adjusting the positional relationship between the mouth and the fiber axis in the direction perpendicular to the fiber axis. This is because the optical power takes a maximum value when the input/output port and the fiber to be measured are in a state where their axes are aligned most optimally for measurement.

フアイバ軸方向についてのキヤリア上の固定に
関しては、フアイバ端面は光の入出射口であるた
め、これに直接機械的拘束を加えることは光の開
口をふさいでしまうことになりできない。またス
トツパ等につきあてて位置を決める方法も適切で
ない。
Regarding fixation on the carrier in the fiber axial direction, since the fiber end face is the light entrance/exit opening, applying direct mechanical restraint to it cannot block the light opening. Also, the method of determining the position by hitting a stopper or the like is not appropriate.

この理由としては、一つには、ストツパによる
位置決めでは、ストツパのガタやフアイバ自体及
びフアイバを支持する部品のガタや弾性変形によ
つて位置決め誤差が大となること、もう一つには
フアイバを測定に供するに充分清浄なフアイバ端
面が得られないことが挙げられる。ストツパとの
接触によりフアイバの端面にゴミが付着する可能
性が高いこと及び接触によりフアイバ端面が傷つ
いてしまうからである。
One of the reasons for this is that when positioning using a stopper, positioning errors become large due to backlash in the stopper, backlash and elastic deformation of the fiber itself and the parts that support the fiber, and secondly, the positioning error of the stopper becomes large due to backlash and elastic deformation of the fiber itself and the parts that support the fiber. One problem is that it is not possible to obtain a fiber end face that is clean enough to be used for measurement. This is because there is a high possibility that dust will adhere to the end face of the fiber due to contact with the stopper, and the end face of the fiber will be damaged due to contact.

また、フアイバ軸方向の精密な位置決めに関し
ては、光学系入出射端に対するフアイバ端面の相
対距離を増減させれば、フアイバ中を通過する光
のパワーは増減するものの、その値はフアイバ端
が前記入出射口に接触するときに最大となるた
め、現実的に光パワーをモニタして位置決めを行
なうことは不可能であるといえる。
Regarding precise positioning in the fiber axial direction, if the relative distance of the fiber end face to the input/output end of the optical system is increased or decreased, the power of the light passing through the fiber will increase or decrease; Since the optical power is at its maximum when it comes into contact with the exit port, it can be said that it is impossible to actually monitor the optical power and perform positioning.

これを解決するために、非接触式によりフアイ
バ端を清浄に保つたまま、その位置を正確に検知
する光学式のセンサを用いてキヤリア上にセツト
された被測定フアイバ端の軸方向の位置を検出
し、その検出信号を用いて測定を行う方法が考案
されている。
To solve this problem, we used an optical sensor that accurately detects the position of the fiber end while keeping it clean using a non-contact method. Methods have been devised to detect and perform measurements using the detected signals.

これらのセンサは、レンズ系を用い撮像素子上
に被測定フアイバの像を結ばせ、その端面の像を
検出するいわゆるTVカメラ形式のものや、透過
形の光電スイツチの光ビームを細く絞り、微小な
フアイバの存在を検出するものなどである。
These sensors use a lens system to form an image of the fiber to be measured on an image sensor and detect the end face image of the fiber under test, or a so-called TV camera type sensor that focuses the light beam of a transmissive photoelectric switch into a thin beam. These include devices that detect the presence of fibers.

一般に、フアイバ位置を正確に検知するにはセ
ンサあるいはセンサを含む検出系の分解能を上げ
る必要が生じ視野がその分狭くなるため、フアイ
バ端位置を広い範囲から探し出して検出すること
は困難である。因みに光学レンズ系と撮像素子を
用いたセンサにおいて、0.5μm程度の分解能を有
するセンサで通常200μm程度の視野しかない。
Generally, in order to accurately detect the fiber position, it is necessary to increase the resolution of the sensor or the detection system including the sensor, and the field of view becomes narrower accordingly, making it difficult to locate and detect the fiber end position from a wide range. Incidentally, in a sensor using an optical lens system and an image sensor, a sensor with a resolution of about 0.5 μm usually has a field of view of only about 200 μm.

前記光電スイツチを用いる方法においては、
1μm程度の精度でフアイバ端の位置を検出するた
めには、センサとフアイバ端との位置を0.5μm程
度の分解能でゆつくりと相対移動させて検出を行
う。時間的制約や相対移動の機械精度維持の観点
から良好な検出を行うには、センサの視野の中心
とフアイバ端の位置ズレは200μm程度以下である
ことが望ましい。
In the method using the photoelectric switch,
In order to detect the position of the fiber end with an accuracy of about 1 μm, the position of the sensor and the fiber end is slowly moved relative to each other with a resolution of about 0.5 μm. In order to perform good detection from the viewpoint of time constraints and maintaining the mechanical accuracy of relative movement, it is desirable that the positional deviation between the center of the sensor's field of view and the fiber end be about 200 μm or less.

このような精度を満たすには、セツトステーシ
ヨンにおいてセツト位置を指示したマーキング等
に合わせ慎重にフアイバ端のセツテイングを行う
か、あるいは前記のようなフアイバ端位置検出の
ためのセンサと同等のものをセツトステーシヨン
においても重複してとりつけ、フアイバ端位置の
検出を行いながらフアイバ端のセツテイングを行
うしかなく、多大の労力及び時間がかかることに
なる。
To achieve this level of accuracy, the fiber end must be carefully set in line with the markings that indicate the set position at the set station, or a sensor equivalent to the one described above for detecting the fiber end position must be installed. At the station, there is no choice but to install the fibers redundantly and set the fiber ends while detecting the fiber end positions, which requires a great deal of labor and time.

発明が解決しようとする問題点 上記したように、従来の光フアイバ特性の測定
装置においては、被測定光フアイバを測定装置上
の所定の位置に固定し、これを光学測定系の入射
口に接続するのに、多大の労力と時間を要してい
た。
Problems to be Solved by the Invention As described above, in the conventional optical fiber characteristic measuring device, the optical fiber to be measured is fixed at a predetermined position on the measuring device, and this is connected to the entrance of the optical measurement system. It took a lot of effort and time to do so.

一般に、光フアイバの検査に必要な測定項目と
しては、フアイバの外径、コア径やその非円率、
偏心率あるいはモードフイールド径などの幾何学
的構造、また屈折率分布などのフアイバパラメー
タ、さらに光損失、伝送帯域などで代表される伝
送特性がある。
In general, the measurement items required for inspection of optical fibers include the fiber's outer diameter, core diameter, and its noncircularity.
There are geometric structures such as eccentricity and mode field diameter, fiber parameters such as refractive index distribution, and transmission characteristics such as optical loss and transmission band.

このように多項目にわたる光フアイバ特性を順
次測定する特性測定装置では、セツトステーシヨ
ンでの光フアイバ位置精度が不十分であると、各
測定ステーシヨンごとに被測定光フアイバの位置
調整を繰り返されなければならず、その労力と時
間はさらに増大し、検査の高精度化及び高能率化
の要請に充分応えることはできなかつた。
In a characteristic measuring device that sequentially measures optical fiber characteristics over many items, if the optical fiber position accuracy at the set station is insufficient, the position of the optical fiber under test must be repeated at each measurement station. However, the labor and time involved further increased, and it was not possible to fully meet the demands for higher precision and higher efficiency of inspection.

そこで、本発明は、被測定光フアイバを測定装
置上に一度セツトするだけで、光フアイバの上記
多項目にわたる特性の測定を、順次高精度かつ能
率的に実施する光フアイバ特性の測定装置を提供
せんとするものである。
SUMMARY OF THE INVENTION Therefore, the present invention provides an optical fiber characteristic measuring device that sequentially measures the above-mentioned characteristics of an optical fiber in a highly accurate and efficient manner by simply setting the optical fiber to be measured on the measuring device once. This is what I am trying to do.

問題点を解決するための手段 すなわち、本発明によるならば、第1図に示す
ようにキヤリア18上に被測定光フアイバ12,
14,16をセツトするセツトステーシヨンA
と、光学的測定系入出射端30A,32Aを有し
且つ前記キヤリア上の被測定光フアイバの特性測
定を行なう測定ステーシヨンB,Cとが、キヤリ
アの移動方向28に沿つて順次設けられており、
前記キヤリア上にセツトされた被測定光フアイバ
をキヤリアごと順次各測定ステーシヨンに移動し
て、該各測定ステーシヨンにおいて前記光学的測
定系入出射端に対し被測定光フアイバ端を位置決
めして所定の特性測定を行なう光フアイバ特性の
測定装置において、 前記セツトステーシヨンAに、被測定光フアイ
バ切断端面を監視する焦点深度の浅い監視装置8
0,81を具備することを特徴とする光フアイバ
特性の測定装置が提供される。
Means for Solving the Problems According to the present invention, as shown in FIG.
Set station A for setting 14 and 16
and measurement stations B and C, which have optical measurement system input and output ends 30A and 32A and measure the characteristics of the optical fiber to be measured on the carrier, are sequentially provided along the carrier movement direction 28. ,
The optical fiber to be measured set on the carrier is sequentially moved along with the carrier to each measurement station, and at each measurement station, the end of the optical fiber to be measured is positioned with respect to the input/output end of the optical measurement system to obtain a predetermined characteristic. In the optical fiber characteristic measuring device that performs measurements, the set station A includes a monitoring device 8 with a shallow depth of focus that monitors the cut end face of the optical fiber to be measured.
There is provided an optical fiber characteristic measuring device characterized in that the optical fiber has an optical fiber characteristic of 0.0.81.

作用 以上のような本発明による光フアイバ特性の測
定装置は、第1図に示すように、基本構成要素と
してセツトステーシヨンAを具備する。
Operation The apparatus for measuring optical fiber characteristics according to the present invention as described above includes a set station A as a basic component, as shown in FIG.

被測定光フアイバの両端14及び16は、キヤ
リア18上の所定の位置にホルダ20及び22に
て保持される。セツトステーシヨンAは、上記被
測定光フアイバ端面を監視する焦点深度の浅い監
視装置80,81を備えている。監視装置80,
81により被測定フアイバ両端14,16は、フ
アイバ軸に垂直な面内において所定の位置にセツ
トされる。
Both ends 14 and 16 of the optical fiber to be measured are held in predetermined positions on the carrier 18 by holders 20 and 22. The set station A is equipped with monitoring devices 80 and 81 having a shallow depth of focus for monitoring the end face of the optical fiber to be measured. monitoring device 80,
81, both ends 14 and 16 of the fiber to be measured are set at predetermined positions in a plane perpendicular to the fiber axis.

上記のようにセツトされた被測定光フアイバは
ホルダ20及び22にキヤリア18上の位置を保
たれたまま各測定ステーシヨン(不図示)へ移動
して、各測定ステーシヨンにおいてそれぞれ測定
が行なわれる。
The optical fiber to be measured, which has been set as described above, is moved to each measurement station (not shown) while being held in position on the carrier 18 by the holders 20 and 22, and measurements are performed at each measurement station.

以上のように、本発明による光フアイバ特性の
測定装置においては、セツトステーシヨンAで焦
点深度の浅い監視装置によつて、被測定光フアイ
バ端を観察しながら光フアイバ端を監視装置に対
して光フアイバ軸方向に移動させる。その結果、
ピントが合つて鮮明な光フアイバ端が観察できる
ようになれば、光フアイバ端は浅い焦点深度の範
囲に位置したことになり、結果として、軸方向の
位置決めができる。このように、セツトステーシ
ヨンAにおいて、被測定光フアイバをキヤリア上
に一度セツトすれば、後はキヤリアを被測定光フ
アイバ端の軸方向位置情報ともに順次各測定ステ
ーシヨンに送るだけで、多項目にわたる光フアイ
バ特性の測定がなされることになる。
As described above, in the optical fiber characteristic measuring device according to the present invention, the optical fiber end is exposed to the monitoring device while observing the end of the optical fiber to be measured by the monitoring device having a shallow depth of focus at the set station A. Move the fiber in the axial direction. the result,
When the end of the optical fiber is in focus and can be clearly observed, it means that the end of the optical fiber is located within a shallow depth of focus range, and as a result, positioning in the axial direction can be performed. In this way, once the optical fiber to be measured is set on the carrier at the set station A, all that is required is to send the carrier along with the axial position information of the end of the optical fiber to be measured to each measuring station in sequence, and the optical fiber for many items can be measured. Measurements of fiber properties will be made.

実施例 以下添付図面を参照して、本発明による光フア
イバ特性の測定装置の実施例を説明する。
Embodiments Hereinafter, embodiments of the optical fiber characteristic measuring device according to the present invention will be described with reference to the accompanying drawings.

第3図は、本発明を実施した光フアイバ特性の
測定装置の1実施例の構成を示した図である。特
性測定装置は、セツトステーシヨンAとフアイバ
軸方向位置検出ステーシヨンA′と例えば4つの
測定ステーシヨンB〜Eとで構成され、被測定光
フアイバはセツトステーシヨンAにおいて、移動
台10にセツトされる。
FIG. 3 is a diagram showing the configuration of one embodiment of an optical fiber characteristic measuring apparatus according to the present invention. The characteristic measuring apparatus is composed of a set station A, a fiber axial position detection station A', and, for example, four measurement stations B to E. The optical fiber to be measured is set on a movable table 10 at the set station A.

移動台10の後方には、被測定光フアイバのボ
ビン12が、図示しない方法で台車に積み込まれ
ており、そのボビンに巻かれている被測定光フア
イバの両端部分14及び16は、移動台10の前
部のキヤリア18で延びており、キヤリア18上
に設けられているホルダ20及び22に保持され
る。上記したホルダへの装着は、移動台がセツト
ステーシヨンAにあるときになされる。
At the rear of the moving table 10, a bobbin 12 of the optical fiber to be measured is loaded onto a cart by a method not shown. and is held in holders 20 and 22 provided on the carrier 18. The above-mentioned attachment to the holder is performed when the movable table is at the set station A.

セツトステーシヨンAは、光の入出射端である
被測定フアイバ端面を監視する監視装置80,8
1をフアイバ端の軸方向前方に備えている。監視
装置80,81は、例えば焦点深度が極めて浅い
撮像用光学系と、撮像素子と、撮像素子の信号の
処理を行なう電気系から構成される。この場合
に、監視装置にモニタ用のデイスプレイを付属さ
せることが好ましい。
Set station A includes monitoring devices 80 and 8 that monitor the end face of the fiber to be measured, which is the light input and output end.
1 at the front end of the fiber in the axial direction. The monitoring devices 80 and 81 each include, for example, an imaging optical system with an extremely shallow depth of focus, an imaging device, and an electrical system that processes signals from the imaging device. In this case, it is preferable to attach a monitor display to the monitoring device.

フアイバ軸方向位置検出ステーシヨンA′はセ
ツトステーシヨンAとほぼ同じ構成をとつている
が、監視装置80,81の代わりに測定範囲は狭
いが分解能の高い非接触式センサ24,26を備
えている。
The fiber axial position detection station A' has almost the same configuration as the set station A, but instead of the monitoring devices 80 and 81, it is equipped with non-contact sensors 24 and 26 which have a narrow measurement range but high resolution.

各測定ステーシヨンB〜Eには、光源30及び
光検知器32が配置され、光源30及び光検知器
32から延びた光フアイバ30A及び32Aは、
ホルダ30B及び32Bに保持されている。ホル
ダ30B及び32Bは光フアイバ30A及び32
Aの間隔を、キヤリア18のホルダ20及び22
に保持されている被測定光フアイバの両端部14
及び16の間隔と等しくなるように保持し、且
つ、光フアイバ30A及び32Aの端面を同一平
面内に位置づけている。
A light source 30 and a photodetector 32 are arranged in each measurement station B to E, and optical fibers 30A and 32A extending from the light source 30 and the photodetector 32 are
It is held by holders 30B and 32B. Holders 30B and 32B hold optical fibers 30A and 32
A distance between the holders 20 and 22 of the carrier 18
Both ends 14 of the optical fiber to be measured are held in
and 16, and the end faces of the optical fibers 30A and 32A are positioned in the same plane.

以上のように構成される光フアイバ特性の測定
装置は、次のように動作する。
The optical fiber characteristic measuring device configured as described above operates as follows.

まず、被測定光フアイバの両端14及び16
は、キヤリア18上にホルダ20及び22にて保
持される 監視装置80,81により光フアイバ端は軸方
向前方から監視され、その切断角度や欠けの状
態、あるいはゴミの付着の有無等清浄度に関する
端面状態がチエツクされると共に、フアイバ軸に
垂直な方向の光フアイバ端の位置情報が得られ、
ホルダ20,22の上の所定の位置にセツトされ
ているか否か確認される。その際、光フアイバ端
にピントがあつていないとき、光フアイバ端をホ
ルダ上において軸方向に変位させて、ピントが合
つたときに静止させ、ホルダで固定する。このよ
うなピンボケ及びピントの一致は、モニタデイス
プレイにより十分に目視観察できる。
First, both ends 14 and 16 of the optical fiber to be measured are
is held by holders 20 and 22 on carrier 18. Monitoring devices 80 and 81 monitor the optical fiber end from the front in the axial direction, and check the cleanliness such as the cutting angle, the state of chipping, and the presence or absence of dust. The end face condition is checked, and position information of the optical fiber end in the direction perpendicular to the fiber axis is obtained.
It is confirmed whether it is set at a predetermined position on the holders 20, 22. At that time, when the optical fiber end is not in focus, the optical fiber end is displaced in the axial direction on the holder, and when the optical fiber end is in focus, it is held still and fixed with the holder. Such out-of-focus and out-of-focus can be fully visually observed on a monitor display.

上記のようにセツトされた被測定光フアイバは
ホルダ20及び22にキヤリア18上の位置を保
たれたまま、次のフアイバ軸方向位置検出ステー
シヨンA′に移動する。キヤリア18は所定の位
置に位置決めされ、測定範囲は狭いが分解能の高
い非接触式センサ24,26により、フアイバ端
の軸方向位置を読みとる。例えば、測定範囲は□
200μm×200μmで分解能02μmの計測用テレビを
上記位置センサとして用いることができる。
The optical fiber to be measured set as described above is moved to the next fiber axial position detection station A' while its position on the carrier 18 is maintained by the holders 20 and 22. The carrier 18 is positioned at a predetermined position, and the axial position of the fiber end is read by non-contact sensors 24 and 26, which have a narrow measurement range but high resolution. For example, the measurement range is □
A measurement television with a size of 200 μm×200 μm and a resolution of 02 μm can be used as the position sensor.

位置測定がなされた被測定光フアイバは、ホル
ダ20及び22によりキヤリア18上の位置を保
たれたまま矢印28の方向に移動し、各測定ステ
ーシヨンB〜Eでとまる。
The optical fiber to be measured, whose position has been measured, moves in the direction of arrow 28 while being held in position on carrier 18 by holders 20 and 22, and stops at each of measurement stations B to E.

各測定ステージB〜Eでは、各移動台10即ち
各キヤリア18は一定位置に位置決めされて被測
定光フアイバの両端14及び16と測定器側光フ
アイバ30A及び32Aとの粗軸合せが行われ
る。次に、フアイバ軸方向位置検出ステーシヨン
A′において読みとられた位置情報により測定器
側光フアイバホルダ30B及び32Bを光フアイ
バ軸方向に移動させ、フアイバ両端14,16を
測定に必要な位置に位置決めする。
In each measurement stage B to E, each movable stage 10, that is, each carrier 18, is positioned at a fixed position, and rough axis alignment between the ends 14 and 16 of the optical fiber to be measured and the measuring instrument side optical fibers 30A and 32A is performed. Next, the fiber axial position detection station
Based on the position information read at A', the measuring instrument side optical fiber holders 30B and 32B are moved in the optical fiber axial direction to position the fiber ends 14 and 16 at the positions required for measurement.

次いで、光源30から被測定光フアイバを介し
て光検知器32が受ける受光量が最大となるよう
に、測定器側の光フアイバのホルダ30B及び3
2Bを、光フアイバの軸と垂直な面に位置する互
いに直行する二方向に微少量動かして調心を行
う。なお、このとき、ホルダ20及び22の方を
動かしてもよい。
Next, the optical fiber holders 30B and 3 on the measuring instrument side are set so that the amount of light received by the photodetector 32 from the light source 30 via the optical fiber to be measured is maximized.
2B is aligned by slightly moving it in two mutually perpendicular directions located in a plane perpendicular to the axis of the optical fiber. Note that at this time, the holders 20 and 22 may be moved.

調心が終了すると、各測定ステーシヨンにおい
て、その測定ステーシヨンに割当てられた特性の
測定が実施され、その特性の測定が終了すると次
の測定ステーシヨンに順次送られる。このように
して、すべての測定が終了すると、移動台10か
ら被測定光フアイバは取り除かれ、その移動台1
0は、セツトステーシヨンAに戻され、次の被測
定光フアイバがセツトされる。
When alignment is completed, each measurement station measures the characteristic assigned to that measurement station, and when the measurement of that characteristic is completed, the measurement is sequentially sent to the next measurement station. In this way, when all measurements are completed, the optical fiber to be measured is removed from the moving table 10, and the optical fiber to be measured is removed from the moving table 10.
0 is returned to set station A, and the next optical fiber to be measured is set.

上記監視装置は、浅い焦点深度をもつているの
で、上記端面状態やセツト状態を監視装置からの
信号によつて監視する際、光フアイバ端が最も鮮
明に見えるようにセツテイング動作を行つてやれ
ば、フアイバ端を監視装置に対し充分狭い範囲内
にセツトすることができる。
Since the above-mentioned monitoring device has a shallow depth of focus, when monitoring the above-mentioned end face condition and setting condition using signals from the monitoring device, it is necessary to perform the setting operation so that the end of the optical fiber can be seen most clearly. , the fiber end can be set within a sufficiently narrow range for the monitoring device.

焦点深度は監視する対象にピントが合つた状態
が得られる光軸に対し垂直な方向の位置範囲をい
うものであり、レンズ系でいえば総合的には人間
の画像認識力等を含めた種々のパラメータで決ま
るものであるが、主としてレンズの開口数や倍率
などのパラメータで決まるものである。従つて、
レンズの上記パラメータを適宜に選ぶことにより
光フアイバ端の位置決めに必要な焦点深度を選ぶ
ことができる。
Depth of focus refers to the positional range in the direction perpendicular to the optical axis in which the object to be monitored is in focus, and when it comes to lens systems, it generally depends on various factors including human image recognition ability, etc. It is determined mainly by parameters such as the numerical aperture and magnification of the lens. Therefore,
By appropriately selecting the above parameters of the lens, the depth of focus required for positioning the end of the optical fiber can be selected.

監視系における焦点深度を浅くすることは、監
視作業が行うことを考えれば作業上合理的である
といえる。
It can be said that reducing the depth of focus in the monitoring system is operationally reasonable considering the monitoring work performed.

従つて、セツトステーシヨンAにおいて各キヤ
リア18を監視装置80,81に対して一定の位
置に位置決めするならば、各キヤリア18上のフ
アイバ端の位置を各キヤリア18に対して、その
焦点深度の範囲で一定に保つことができる。
Therefore, if each carrier 18 is positioned at a fixed position with respect to the monitoring devices 80 and 81 at the set station A, the position of the fiber end on each carrier 18 is determined for each carrier 18 in the range of its focal depth. can be kept constant.

本実施例においては、セツトステーシヨンAで
ホルダ上の一定位置に被測定光フアイバ端を位置
決めした後にフアイバ軸方向位置検出ステーシヨ
ンA′で検出した被測定光フアイバ端の位置情報
により再度測定ステーシヨンで位置合わせする例
を示したが、監視装置の焦点深度を非常に浅くす
るとこれを省略することもできる。例えば、被測
定フアイバ及び測定器側フアイバをコア径50μm
として伝送特性の測定を行なう際、監視装置の総
合的な焦点深度を20μm以下とし、キヤリアの位
置決め精度を極めて高精度とした場合、フアイバ
軸方向位置検出ステーシヨンA′、測定ステーシ
ヨンB〜Eでの再検出、再位置決めは省略して
も、充分な精度の測定結果が得られた。
In this example, after the end of the optical fiber to be measured is positioned at a fixed position on the holder at the set station A, the end of the optical fiber to be measured is positioned again at the measurement station based on the position information of the end of the optical fiber to be measured detected by the fiber axial position detection station A'. Although we have shown an example in which this is done, this can be omitted if the depth of focus of the monitoring device is made very shallow. For example, the fiber to be measured and the fiber on the measuring instrument side have a core diameter of 50 μm.
When measuring transmission characteristics, if the overall depth of focus of the monitoring device is 20 μm or less and the carrier positioning accuracy is extremely high, the fiber axial position detection station A' and measurement stations B to E Even if re-detection and re-positioning were omitted, measurement results with sufficient accuracy were obtained.

また本実施例においては、セツテイング作業は
人間が行うような表現としたが、ロボツト等の機
械を用いても同様の効果が得られる。この場合、
人間が行なうのと同様に、フアイバ端像のシヤー
プさなどの一般的なオートフオーカス装置に用い
られるような画像認識法によつて、光学系の焦点
深度を利用した位置決めを、画像認識して行えば
良い。
Further, in this embodiment, the setting work is expressed as being performed by a human, but the same effect can be obtained by using a machine such as a robot. in this case,
In the same way as humans do, positioning using the depth of focus of the optical system is performed by image recognition, such as the sharpness of the fiber end image, using image recognition methods used in general autofocus devices. Just go.

また本実施例においては、4つの測定ステーシ
ヨンB〜Eと限定して説明を行つたが、測定ステ
ーシヨンの数は、検査項目数と対応して随意に設
定することができる。
Further, in this embodiment, the explanation has been limited to four measurement stations B to E, but the number of measurement stations can be arbitrarily set in accordance with the number of inspection items.

発明の効果 以上の説明から明らかなように、本発明による
光フアイバ特性の測定装置は、被測定光フアイバ
を測定装置上に一度セツトするだけで、光フアイ
バの多項目にわたる特性の測定を、順次高精度か
つ能率的に実施する。従つて本発明による光フア
イバ特性の測定装置は、広い範囲にわたつて活性
することができる。
Effects of the Invention As is clear from the above description, the optical fiber characteristic measuring device according to the present invention can sequentially measure various characteristics of an optical fiber by simply setting the optical fiber to be measured on the measuring device once. Execute with high precision and efficiency. The device for measuring optical fiber properties according to the invention can therefore be used over a wide range of applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による光フアイバ特性の測定
装置の基本構成を示す概略図である。第2図は、
従来の透過法による光フアイバ特性の測定装置の
構成を説明する概略構成図である。第3図は、本
発明を実施する光フアイバ特性測定装置の構成を
示す概図である。 主な参照番号、A……セツトステーシヨン、
A′……フアイバ軸方向位置検出ステーシヨン、
B,C,D,E……測定ステーシヨン、1A〜1
C,2A〜2C……被測定光フアイバホルダ、
3,4……被測定光フアイバの端部、7A〜7
C、8A〜8C……測定器側フアイバホルダ、
7′A〜7′C……光検出器、8′A〜8′C……光
源、9……被測定光フアイバボビン、10……移
動台、12……ボビン、14,16……被測定光
フアイバ、18……キヤリア、20,22,30
B,32B……ホルダ、24,26……非接触式
センサ、30……光源、32……光検出器、8
0,81……監視装置。
FIG. 1 is a schematic diagram showing the basic configuration of an optical fiber characteristic measuring device according to the present invention. Figure 2 shows
1 is a schematic configuration diagram illustrating the configuration of an optical fiber characteristic measuring device using a conventional transmission method. FIG. 3 is a schematic diagram showing the configuration of an optical fiber characteristic measuring device implementing the present invention. Main reference number: A...Set station;
A′...Fiber axial position detection station,
B, C, D, E...Measurement station, 1A~1
C, 2A to 2C... Optical fiber holder to be measured,
3, 4... end of optical fiber to be measured, 7A~7
C, 8A to 8C...Measuring instrument side fiber holder,
7'A to 7'C...Photodetector, 8'A to 8'C...Light source, 9...Optical fiber bobbin to be measured, 10...Moving table, 12...Bobbin, 14, 16...To be measured Optical fiber, 18...Carrier, 20, 22, 30
B, 32B...Holder, 24, 26...Non-contact sensor, 30...Light source, 32...Photodetector, 8
0,81...Monitoring device.

Claims (1)

【特許請求の範囲】 1 キヤリヤ上に被測定光フアイバをセツトする
セツトステーシヨンと、光学的測定系入出射端を
有し且つ前記キヤリヤ上の被測定光フアイバの特
性測定を行なう測定ステーシヨンとが、キヤリヤ
の移動方向に沿つて順次設けられており、前記キ
ヤリヤ上にセツトされた被測定光フアイバをキヤ
リヤごと順次各測定ステーシヨンに移動して、該
各測定ステーシヨンにおいて前記光学的測定系入
出射端に対し被測定光フアイバ端を位置決めして
所定の特性測定を行なう光フアイバ特性の測定装
置において、 前記セツトステーシヨンに、被測定光フアイバ
切断端面を監視する焦点深度の浅い監視装置を具
備することを特徴とする光フアイバ特性の測定装
置。 2 前記監視装置の光学系の焦点深度は、20μm
以下であることを特徴とする特許請求の範囲第1
項記載の光フアイバ特性の測定装置。
[Scope of Claims] 1. A setting station for setting an optical fiber to be measured on a carrier, and a measuring station for measuring the characteristics of the optical fiber to be measured on the carrier, having an input/output end of an optical measurement system, The optical fibers to be measured are sequentially provided along the moving direction of the carriers, and the optical fibers to be measured set on the carriers are sequentially moved together with the carriers to the respective measurement stations, and are connected to the input/output ends of the optical measurement system at each measurement station. On the other hand, in an optical fiber characteristic measuring apparatus for positioning the end of an optical fiber to be measured and performing predetermined characteristic measurements, the set station is equipped with a monitoring device having a shallow depth of focus for monitoring the cut end face of the optical fiber to be measured. A device for measuring optical fiber characteristics. 2 The depth of focus of the optical system of the monitoring device is 20 μm.
Claim 1 characterized in that:
An apparatus for measuring optical fiber characteristics as described in .
JP3971586A 1986-02-25 1986-02-25 Optical fiber property measuring apparatus Granted JPS62197740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3971586A JPS62197740A (en) 1986-02-25 1986-02-25 Optical fiber property measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3971586A JPS62197740A (en) 1986-02-25 1986-02-25 Optical fiber property measuring apparatus

Publications (2)

Publication Number Publication Date
JPS62197740A JPS62197740A (en) 1987-09-01
JPH0364815B2 true JPH0364815B2 (en) 1991-10-08

Family

ID=12560682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3971586A Granted JPS62197740A (en) 1986-02-25 1986-02-25 Optical fiber property measuring apparatus

Country Status (1)

Country Link
JP (1) JPS62197740A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60039778D1 (en) * 1999-11-17 2008-09-18 Corning Inc METHOD AND DEVICE FOR AUTOMATING THE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119304A (en) * 1980-11-28 1982-07-24 Pirelli Cavi Spa Slender matter containing one or more optical fibers
JPS6061703A (en) * 1983-09-16 1985-04-09 Nippon Telegr & Teleph Corp <Ntt> Method for detecting core shaft shift of fiber
JPS6085351A (en) * 1983-08-29 1985-05-14 Sumitomo Electric Ind Ltd Characteristic measuring apparatus of optical fiber
JPS60225044A (en) * 1984-04-24 1985-11-09 Sumitomo Electric Ind Ltd Apparatus for measuring characteristic of optical fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119304A (en) * 1980-11-28 1982-07-24 Pirelli Cavi Spa Slender matter containing one or more optical fibers
JPS6085351A (en) * 1983-08-29 1985-05-14 Sumitomo Electric Ind Ltd Characteristic measuring apparatus of optical fiber
JPS6061703A (en) * 1983-09-16 1985-04-09 Nippon Telegr & Teleph Corp <Ntt> Method for detecting core shaft shift of fiber
JPS60225044A (en) * 1984-04-24 1985-11-09 Sumitomo Electric Ind Ltd Apparatus for measuring characteristic of optical fiber

Also Published As

Publication number Publication date
JPS62197740A (en) 1987-09-01

Similar Documents

Publication Publication Date Title
EP1148363A2 (en) System and method for aligning and attaching optical fibers to optical waveguides, and products obtained thereby
US20030063288A1 (en) Measurement method and apparatus of an external digital camera imager assembly
JPS6113130A (en) Inspector for optical fiber assembly
EP0486272A2 (en) Method for inspecting axis dislocation of multifiber connector
JPH0364815B2 (en)
EP0179183A2 (en) Optical fiber characteristic measuring method and apparatus
US5265179A (en) Method of manufacturing fiber-optic collimators
JP2002511575A (en) Method and coordinate measuring instrument for point-scan contour determination of material surfaces by the principle of auto-focusing
JPH0534646B2 (en)
JP3641502B2 (en) MT connector core misalignment measurement method
EP0427692A2 (en) A contactless measuring probe
US11543289B1 (en) Optical fiber center and field of view detection
JPS60225044A (en) Apparatus for measuring characteristic of optical fiber
JPS6168532A (en) Spot size measurement for optical fiber
JP2990431B1 (en) Shape measuring method with shape measuring device
JP2877501B2 (en) Coupling position adjustment method for optical connector coupling device
JP2529526Y2 (en) Alignment device for optical components
US6919955B2 (en) Low force optical fiber auto-alignment system
JPS63311139A (en) Characteristic measuring apparatus for optical fiber
JPH1047939A (en) Detection of axis displacement quantity of optical fiber with different diameter
JPH033176B2 (en)
JP3574714B2 (en) Optical element connection method
JPH05283489A (en) Wafer probing device
JPH04118606A (en) Position recognition device
JPS61118705A (en) Aligning device for optical fiber