JPH04118606A - Position recognition device - Google Patents

Position recognition device

Info

Publication number
JPH04118606A
JPH04118606A JP2237073A JP23707390A JPH04118606A JP H04118606 A JPH04118606 A JP H04118606A JP 2237073 A JP2237073 A JP 2237073A JP 23707390 A JP23707390 A JP 23707390A JP H04118606 A JPH04118606 A JP H04118606A
Authority
JP
Japan
Prior art keywords
optical
connector
fiber
optical connector
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2237073A
Other languages
Japanese (ja)
Other versions
JP2942328B2 (en
Inventor
Masaichi Mobara
政一 茂原
Takeo Komiya
健雄 小宮
Hisao Maki
久雄 牧
Nobuo Tomita
信夫 富田
Kazuhiko Arimoto
和彦 有本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumiden Opcom Ltd
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Sumiden Opcom Ltd
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumiden Opcom Ltd, Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Sumiden Opcom Ltd
Priority to JP2237073A priority Critical patent/JP2942328B2/en
Publication of JPH04118606A publication Critical patent/JPH04118606A/en
Application granted granted Critical
Publication of JP2942328B2 publication Critical patent/JP2942328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/385Accessories for testing or observation of connectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/389Dismountable connectors, i.e. comprising plugs characterised by the method of fastening connecting plugs and sockets, e.g. screw- or nut-lock, snap-in, bayonet type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3897Connectors fixed to housings, casing, frames or circuit boards

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)

Abstract

PURPOSE:To easily and accurately recognize the position of a connector regardless of whether the connector is a single-coated optical connector or multi-coated connector by composing an image pickup system of an image fiber which transmits an optical image of the connector and a position sensor which detects the position of a light spot. CONSTITUTION:The optical image which is picked up by an objective lens 109 is transmitted to the photodetecting element 111a of the position sensor 111 through the image fiber 110. The photodetecting element 11a detects the light spot which is formed with light projected from an optical fiber 103a. The processing part 11b of the position sensor 111 decides the position of the light spot in the surface of the photodetecting element 11a. The position of the objective lens 109, on the other hand, is found unequivocally from the position of a three-axis stage 105. Consequently, the decided position of the light spot and the position of the objective 109 are used to recognize the absolute center position of the core of the optical fiber 103a. The multi-unit optical connector 102 and a master multi-coated optical connector 107 can accurately be positioned and coupled.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、光線路網監視システムにおける心線選択装置
において、線路網側の多数の光フネクタの位置を認識す
る位置認識装置に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a position recognition device that recognizes the positions of a large number of optical fibers on the line network side in a fiber selection device in an optical line network monitoring system. .

〈従来の技術〉 光線l@網では数百心の多心光ファイバや、多数本のテ
ープファイバを束ねたバンドルテープファイバが用いら
れている。このような光線路網において、心線選択や測
定や監視等を行うには、−多心光ファイバでは1本づつ
光ファイバを選択して各光フアイバ毎に個別に測定等を
行い、バンドルテープファイバでは1本づつテープファ
イバを選択して各テープファイバ毎に個別に測定等を行
う。
<Prior Art> In the optical ray network, multi-core optical fibers having several hundred fibers and bundle tape fibers made by bundling a large number of tape fibers are used. In such an optical fiber network, in order to perform fiber selection, measurement, monitoring, etc., - In the case of multi-core optical fibers, select the optical fibers one by one, measure each optical fiber individually, and bundle tape. For fibers, tape fibers are selected one by one and measurements are performed individually for each tape fiber.

ここで、光線路網を監視することに関する従来技術を3
例あげて説明する。
Here, we will introduce three conventional techniques related to monitoring optical line networks.
Let me explain with an example.

第4図は、「大規模低損失IXN光スイッチ/NTT電
気通信研究所/電子情報通信学会総合全国大会(昭和6
2年)2073゜P9−156Jとして発表された光ス
ィッチを示す。同図に示すようにアダプタ盤1には多数
の光コネクタ2が装着されており、各光コネクタ2には
多心光ファイバの光ファイバ(心線)3が個別に取り付
けられている。
Figure 4 shows "Large-scale low-loss IXN optical switch/NTT Telecommunications Laboratories/IEICE General Conference (Showa 6)
2) Shows the optical switch announced as 2073°P9-156J. As shown in the figure, a large number of optical connectors 2 are attached to the adapter board 1, and optical fibers (core wires) 3 of multi-core optical fibers are individually attached to each optical connector 2.

方、ロボット4のハンド部には、1個の光コネクタ5が
装着されており、この光コネクタ5には測定器6から導
出した1本の光ファイバ7が取り付けられている。また
ロボット4はコンピュータ8により操縦制御される。そ
してコンピユー〉8の制御により、ロボット4のハンド
に備えた光コネクタ5を、多数の光コネクタ2のうち指
定したものの位置まて移動して指定した光コネクタ2に
接続する。
On the other hand, one optical connector 5 is attached to the hand portion of the robot 4, and one optical fiber 7 led out from a measuring instrument 6 is attached to this optical connector 5. Further, the robot 4 is operated and controlled by a computer 8. Then, under the control of the computer 8, the optical connector 5 provided on the hand of the robot 4 is moved to a specified position among the many optical connectors 2 and connected to the specified optical connector 2.

このように接続した状態て1本の光ファイバ3の測定・
監視等をする。
Measurement of one optical fiber 3 with this connection
Monitor etc.

第5図(a) fb)は、「10心−括1×1000光
スキーンスイッチ/古河電気工業株式会社/電子情報通
信学会春季全国大会(1989年)C−449,P4−
238 Jとして発表された光スキヤンスイッチである
。全体構成を示す第5図falおよび嵌合部を抽出して
示す第5図tb>かられかるように、マスタテープファ
イバ11が取り付けられたマスクコネクタ12は、XY
移動ステージ13に、若干の自在性(ガタ)を持たせて
備えられている。コネクタテーブル14には、1000
個(20X50の配列)のコネクタ15が平面的に備え
られている。各コネクタ15には、テープファイバが備
えられるとともに、一対のガイド穴15aが形成されて
いる。マスクコネクタ12には、ガイド穴15aに嵌入
する一対のガイドピン12aが形成されている。そして
、xY移動ステージ13により、マスクコネクタ12を
、指定したコネクタ15上に位置させ、しかる後にマス
クコネクタ12を押し下げると、ガイドピン12aがガ
イド穴15aに誘導されて嵌合する。この場合、マスタ
コネクタ12がガタを有しているのてこの嵌合はスムー
ズにでき、結果としてマスタテープファイバ11と指定
したコネクタ15側のテープファイバとを接続すること
ができる。
Figure 5 (a) fb) is a 10-core 1 x 1000 optical screen switch/Furukawa Electric Co., Ltd./IEICE Spring National Conference (1989) C-449, P4-
This is an optical scan switch announced as 238J. As can be seen from FIG. 5 fa showing the overall configuration and FIG. 5 t b extracting the fitting part, the mask connector 12 to which the master tape fiber 11 is attached is
The moving stage 13 is provided with some flexibility (backlash). The connector table 14 has 1000
(20×50 array) connectors 15 are provided on a plane. Each connector 15 is provided with a tape fiber and has a pair of guide holes 15a formed therein. A pair of guide pins 12a are formed in the mask connector 12 and fit into the guide holes 15a. Then, when the mask connector 12 is positioned on the specified connector 15 by the xY movement stage 13 and the mask connector 12 is pushed down, the guide pin 12a is guided and fitted into the guide hole 15a. In this case, since the master connector 12 has play, the lever fitting can be performed smoothly, and as a result, the master tape fiber 11 and the tape fiber on the designated connector 15 side can be connected.

次に三次元測定器を利用して単心光コネクタの位置を認
識する方法を第6図及び第7図を参照して説明する。第
6図に示すように、光コネクタ架21には、n(個) 
Xm (偲)の配列で単心の光コネクタ22が平面的に
備えられている。光コネクタ架21は三次元測定M23
にセットされ、この三次元測定@#23により、光コネ
クタ架21における各光コネクタ22の位置を測定する
。このように光コネクタ22の位置測定がされた光コネ
クタ架21は、第7図に示すように、心線選択装置の三
軸ステージ24にセットされる。三軸ステージ24の移
動部にば単心のマスク光コネクタ25が備えられている
。この場合、三軸ステージ24のコント四−ラ(図示省
略)ば、三次元測定器23による測定結果を基に、ステ
ージの原点に対する各光コネクタ22の位置を校正をす
る。そしてマスク光コネクタ25を移動して、多くの光
コネクタ23のうちで指定したものに接続させる。
Next, a method of recognizing the position of a single-fiber optical connector using a three-dimensional measuring device will be explained with reference to FIGS. 6 and 7. As shown in FIG. 6, the optical connector rack 21 has n
Single-core optical connectors 22 are provided in a planar arrangement in an arrangement of Xm. Optical connector rack 21 is three-dimensionally measured M23
The position of each optical connector 22 on the optical connector rack 21 is measured by this three-dimensional measurement @#23. The optical connector rack 21 whose position of the optical connector 22 has been measured in this way is set on the three-axis stage 24 of the fiber selection device, as shown in FIG. A single-core mask optical connector 25 is provided at the moving portion of the three-axis stage 24. In this case, the controller (not shown) of the three-axis stage 24 calibrates the position of each optical connector 22 with respect to the origin of the stage based on the measurement results by the three-dimensional measuring device 23. Then, the mask optical connector 25 is moved and connected to a designated one of the many optical connectors 23.

〈発明が解決しようとする課題〉 ところで第4図に示す技術は、光コネクタ2に光コネク
タ5を嵌合する技術であり、第5図に示す技術はコネク
タユ5にマスタコネクタ12を嵌合する技術であり、光
s路網側の光コネクタ2 (第4図)やコネクタ15(
第5図)の正確な位置を認識することができない。した
がって両従来技術では、装置にIm械的なガタを付けて
おき、若干の位置ズレはガタにより吸収してコネクタ嵌
合を図っている。そして、光線路Il!側の光コネクタ
の位置El mはまったく行なっていない。さらに多心
光コネクタに関しては、従来例の嵌合方法では、ガイド
ピンとガイド穴の摩擦によるガイド穴の摩耗が激しいた
め、その位置E?jJ ’11装置を確立し′なければ
ならないという課題がある。
<Problems to be Solved by the Invention> By the way, the technique shown in FIG. 4 is a technique for fitting the optical connector 5 to the optical connector 2, and the technique shown in FIG. 5 is a technique for fitting the master connector 12 to the connector unit 5. technology, such as optical connector 2 (Figure 4) and connector 15 (on the optical S-path network side).
5) cannot be recognized accurately. Therefore, in both conventional techniques, a mechanical backlash is provided to the device, and slight positional deviation is absorbed by the backlash to achieve connector fitting. And optical line Il! The position of the optical connector on the side Elm has not been determined at all. Furthermore, regarding multi-fiber optical connectors, in the conventional fitting method, the guide holes are subject to severe wear due to friction between the guide pins and the guide holes. There is the issue of having to establish a JJ '11 device.

一方、第6図及び第7図に示す技術では、光線路網側の
光コネクタ22の位置認識を心線選択装置に組み込む前
に行なわなければならず、組み込む際に三軸ステージ2
4の原点との位置校正を行なわなければならないという
課題がある。
On the other hand, in the technology shown in FIGS. 6 and 7, the position of the optical connector 22 on the optical line network side must be recognized before it is installed in the fiber selection device, and when it is installed, the three-axis stage 22 must be recognized.
There is a problem in that the position must be calibrated with respect to the origin of No. 4.

本発明は、上記課題を解消し、単心光コネクタであって
も多心光コネクタであっても容易に正確な位置認識を行
うことのできる位置認識装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and provide a position recognition device that can easily and accurately recognize the position of both single-fiber and multi-fiber optical connectors.

く課題を解決するための手段〉 上記課題を解決する本発明は、 光フネクタと、a対端が前記光コネクタに取り付けられ
た光ファイバの入射端に光を入射する光源と、前記光フ
ァイバの出射端面に平行な少なくとも2軸方向に移動可
能な移動手段と、この移動手段に搭載した撮像系とを備
えた位置認識装置において、 前記撮像系を、前記光コネクタを撮像する対物レンズと
、この対物レンズにより撮像した光学像を伝送するイメ
ージファイバと、このイメージファイバで伝送されてき
た光学像を受光しこの光学像のうち光ファイバの出射端
面から出射された光により形成された光スポットの位置
を検出するポジションセンサとで構成したことを特徴と
する。
Means for Solving the Problems> The present invention for solving the above problems comprises: an optical connector; a light source that inputs light into an input end of an optical fiber whose opposite end is attached to the optical connector; A position recognition device comprising a moving means movable in at least two axial directions parallel to an output end face, and an imaging system mounted on the moving means, the imaging system including an objective lens for imaging the optical connector, and an objective lens for imaging the optical connector; An image fiber that transmits an optical image captured by an objective lens, and a position of a light spot formed by light emitted from the output end face of the optical fiber, which receives the optical image transmitted by this image fiber, and is formed by light emitted from the output end face of the optical fiber. The present invention is characterized in that it is configured with a position sensor that detects.

く作   用〉 光コネクタに備えた光ファイバから出射した光を撮像し
、撮像した光スポツト位置をポジションセンサで検出す
ることにより、光コネクタ位置を認識する。
Function> The position of the optical connector is recognized by capturing an image of the light emitted from the optical fiber provided in the optical connector and detecting the position of the imaged light spot with a position sensor.

く実 施 例〉 息下に本発明に実施例を図面に基づき詳細に説明する。Example of implementation Embodiments of the present invention will now be described in detail with reference to the drawings.

第1図は本発明に係る位置vg識装置を適用した心線選
択装置を示し、第2図は本措置のコネクタ嵌合部を示す
。両図に示すように、光コネクタ架101には光線路網
側の多数の多心光コネクタ102が備えられている。各
多心光コネクタ102には、多心光ファイバ103の光
ファイバ103aが取り付けられるとともに、一対のガ
イド穴102aが形成されている。そして、指定した多
心光コネクタ102に取り付けた任意の1本の光ファイ
バ103aからは、光源104から送られてきた光が出
射する。
FIG. 1 shows a fiber selection device to which a position VG recognition device according to the present invention is applied, and FIG. 2 shows a connector fitting portion of this measure. As shown in both figures, the optical connector rack 101 is equipped with a large number of multi-core optical connectors 102 on the optical line network side. Each multi-core optical connector 102 has an optical fiber 103a of a multi-core optical fiber 103 attached thereto, and a pair of guide holes 102a are formed therein. Then, the light sent from the light source 104 is emitted from any one optical fiber 103a attached to the designated multi-core optical connector 102.

一方、心線選択装置の三軸ステージ105は、三軸コン
トローラ106の制御により作動する。マスク多心光;
ネクタ107は、三軸ステージ105の作動により、多
心光コネクタ102に取り付けた光ファイバ103aの
出射端面に平行な面(xy平面)内で上下・左右に動く
とともに、多心光コネクタ102に向い前後進(2方向
移動)する。マスク多心光コネクタ107には、多心光
ファイバ108が取り付けられるとともに、一対のガイ
ドビン107aが備えられている。
On the other hand, the three-axis stage 105 of the fiber selection device is operated under the control of the three-axis controller 106. Mask polycentric light;
Due to the operation of the three-axis stage 105, the connector 107 moves vertically and horizontally in a plane (xy plane) parallel to the output end surface of the optical fiber 103a attached to the multi-core optical connector 102, and also moves toward the multi-core optical connector 102. Moves forward and backward (moves in two directions). A multi-core optical fiber 108 is attached to the mask multi-core optical connector 107, and a pair of guide bins 107a are provided.

更に本実施例では、三軸ステージ105に対物レンズ(
屈折率分布型ロッドレンズ)109が搭載されている。
Furthermore, in this embodiment, an objective lens (
A gradient index rod lens) 109 is mounted.

対物レンズ109は、マスク多心光コネクタ107の動
きに伴なって動くとともに、多心光コネクタ102を撮
像する。対物レンズ109で撮像した光学像は、イメー
ジファイバ110を通してポジションセンサ111の受
光素子(非分割型受光素子)ll1mに伝送される。受
光素子111aは、光ファイバ103aから出射された
光により形成された光スポットを検出する。そしてポジ
ションセンサ111の処理部111bは、受光素子11
1aの面内での光スポットの位置を判定する。一方、対
物レンズ109の位置は、三軸ステージ105の位置か
ら一義的に求められる。このため判定した光スポットの
位置と、対物レンズ109の位置とを用いて、ステージ
原点から見た光ファイバ103aのコアの絶対的中心位
置を認識することができる。
The objective lens 109 moves along with the movement of the mask multi-core optical connector 107 and images the multi-core optical connector 102 . The optical image captured by the objective lens 109 is transmitted to the light receiving element (non-divided light receiving element) ll1m of the position sensor 111 through the image fiber 110. The light receiving element 111a detects a light spot formed by light emitted from the optical fiber 103a. The processing section 111b of the position sensor 111 then processes the light receiving element 11.
The position of the light spot within the plane of 1a is determined. On the other hand, the position of the objective lens 109 is uniquely determined from the position of the three-axis stage 105. Therefore, using the determined position of the light spot and the position of the objective lens 109, it is possible to recognize the absolute center position of the core of the optical fiber 103a viewed from the stage origin.

さらLこ、求めた光ファイバ103mの中心位置は、対
物レンズ109が基準になっているため、対物レンズ1
09とマスタ多心光コネクタ107との位置関係をあら
かじめ測定しておけば、両者の位置ズレ分だけ位置補正
すれば、マスク多心光コネクタ107を基準とした光フ
ァイバ103aの中心位置を求めることができる。こう
してマスク多心光コネクタ107を基準として光ファイ
バ103aの中心位置がわかれば、多心光コネクタ10
2とマスク多心光コネクタ107とを正確に位置合せし
て嵌合することができる。
Furthermore, since the obtained center position of the optical fiber 103m is based on the objective lens 109,
If the positional relationship between 09 and the master multi-fiber optical connector 107 is measured in advance, the center position of the optical fiber 103a with respect to the mask multi-fiber optical connector 107 can be found by correcting the position by the amount of positional deviation between the two. I can do it. In this way, if the center position of the optical fiber 103a is known with respect to the mask multi-fiber optical connector 107, the multi-fiber optical connector 107 can be
2 and the mask multi-core optical connector 107 can be accurately aligned and fitted.

このように本実施例では、光ファイバ103aのコア部
の位置、ひいては光コネクタ架101に備えた多心光シ
ネフタ102の位置を正確に認識することができるので
、各多心光コネクタ102とマスク多心光コネクタ10
7とを精度良く位置合せして接続することができる。具
体的には測定再現性は、ステージ105の分解能の1/
l0JJ下であった。このように位置精度が良いのでガ
イドピン107aがガイド穴102aに挿入していく際
にも*擦はきわめて少なく、スムーズな嵌入ができる。
As described above, in this embodiment, since the position of the core portion of the optical fiber 103a and, in turn, the position of the multi-fiber optical fiber cover 102 provided on the optical connector rack 101 can be accurately recognized, each multi-fiber optical connector 102 and the mask can be accurately recognized. Multi-core optical connector 10
7 can be aligned and connected with high precision. Specifically, the measurement reproducibility is 1/1 of the resolution of the stage 105.
It was under 10JJ. Since the positional accuracy is thus high, there is very little friction when the guide pin 107a is inserted into the guide hole 102a, and the guide pin 107a can be inserted smoothly.

もちろん、光コネクタ架を心線選択装置Zζ組み込む際
にステージ原点との位置校正をする操作(第6図及び第
7図に示す従来技術に行っていた操作)は、不要になる
Of course, when installing the optical connector rack into the fiber selection device Zζ, the operation of calibrating the position with respect to the stage origin (the operation performed in the prior art shown in FIGS. 6 and 7) becomes unnecessary.

また本発明は単心光コネクタにも適用できる。つまり第
3図に示すように、光コネクタ架101′に多数の単心
光:ネクタ102′を備えるとともに、単心光ファイバ
108′を備えたマスク単心光コネクタ107′を三軸
ステージ105で移動させる場合には、任意の1つの単
心光コネクタ102′に取り付けた光ファイバ103a
’から光を出射させれば、前述した第1図の実施例と同
様な手法により各単心光コネクタ102′の絶対位置を
認識することができる。
The present invention can also be applied to single-core optical connectors. In other words, as shown in FIG. 3, an optical connector rack 101' is equipped with a large number of single-core optical connectors 102', and a masked single-core optical connector 107' equipped with a single-core optical fiber 108' is mounted on a three-axis stage 105. When moving, the optical fiber 103a attached to any one single-core optical connector 102'
By emitting light from ', the absolute position of each single-fiber optical connector 102' can be recognized using the same method as in the embodiment shown in FIG. 1 described above.

なお、対物レンズ109を通常の凸レンズで構成したり
、受光素子111aを分割型受光素子で構成するように
してもよい。
Note that the objective lens 109 may be configured with a normal convex lens, or the light receiving element 111a may be configured with a split type light receiving element.

〈発明の効果〉 以上実施例とともに具体的に説明したように本発明によ
れば、単心光コネクタであっても多心光コネクタであっ
てもこれを光コネクタ架に組み込んだ後に、光コネクタ
の位置を正確に認識することができる。このため本発明
を心線選択装置の製造調整に適用すると、光コネクタの
位置認識が正確にできコネクタの接続スムーズ且つ正確
にできる。
<Effects of the Invention> As specifically explained above in conjunction with the embodiments, according to the present invention, whether it is a single-fiber optical connector or a multi-fiber optical connector, after it is assembled into an optical connector rack, the optical connector The location of the object can be recognized accurately. Therefore, when the present invention is applied to the manufacturing adjustment of a fiber selection device, the position of the optical connector can be recognized accurately, and the connector can be connected smoothly and accurately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を示す斜視図、第2図は
心線選択装置の嵌合部を示す斜視図、第3図は本発明の
第2の実施例を示す斜視図、第4図及び第5図は従来の
嵌合装置を示す斜視図、第6図及び第7図は従来の位置
認識装置を示す斜視図である。 図  面  中、 101.101’ は光コネクタ架、 102は多心光コネクタ、 102′は単心光コネクタ、 103は多心光ファイバ、 104は光源、 105は三輪ステージ、 106は三軸コントローラ、 107はマスク多心光コネクタ、 107′はマスク単心光コネクタ、 108は多心光ファイバ、 108′は単心ファイバ、 109は対物レンズ、 110はイメージファイバ、 111はポジションセンサ、 111aは受光素子、 111bは処理部である。
FIG. 1 is a perspective view showing a first embodiment of the present invention, FIG. 2 is a perspective view showing a fitting part of a fiber selection device, and FIG. 3 is a perspective view showing a second embodiment of the present invention. , FIGS. 4 and 5 are perspective views showing a conventional fitting device, and FIGS. 6 and 7 are perspective views showing a conventional position recognition device. In the figure, 101 and 101' are optical connector racks, 102 is a multi-core optical connector, 102' is a single-core optical connector, 103 is a multi-core optical fiber, 104 is a light source, 105 is a three-wheeled stage, 106 is a three-axis controller, 107 is a masked multi-core optical connector, 107' is a masked single-core optical connector, 108 is a multi-core optical fiber, 108' is a single-core fiber, 109 is an objective lens, 110 is an image fiber, 111 is a position sensor, and 111a is a light receiving element , 111b is a processing unit.

Claims (1)

【特許請求の範囲】 光コネクタと、出射端が前記光コネクタに取り付けられ
た光ファイバの入射端に光を入射する光源と、前記光フ
ァイバの出射端面に平行な少なくとも2軸方向に移動可
能な移動手段と、この移動手段に搭載した撮像系とを備
えた位置認識装置において、 前記撮像系を、前記光コネクタを撮像する対物レンズと
、この対物レンズにより撮像した光学像を伝送するイメ
ージファイバと、このイメージファイバで伝送されてき
た光学像を受光しこの光学像のうち光ファイバの出射端
面から出射された光により形成された光スポットの位置
を検出するポジションセンサとで構成したことを特徴と
する位置認識装置。
[Scope of Claims] An optical connector, a light source whose output end inputs light into an input end of an optical fiber attached to the optical connector, and a light source movable in at least two axial directions parallel to the output end surface of the optical fiber. A position recognition device comprising a moving means and an imaging system mounted on the moving means, wherein the imaging system includes an objective lens for imaging the optical connector, and an image fiber for transmitting an optical image taken by the objective lens. , and a position sensor that receives the optical image transmitted by the image fiber and detects the position of the light spot formed by the light emitted from the output end face of the optical fiber in the optical image. location recognition device.
JP2237073A 1990-09-10 1990-09-10 Position recognition device Expired - Fee Related JP2942328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2237073A JP2942328B2 (en) 1990-09-10 1990-09-10 Position recognition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2237073A JP2942328B2 (en) 1990-09-10 1990-09-10 Position recognition device

Publications (2)

Publication Number Publication Date
JPH04118606A true JPH04118606A (en) 1992-04-20
JP2942328B2 JP2942328B2 (en) 1999-08-30

Family

ID=17010017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2237073A Expired - Fee Related JP2942328B2 (en) 1990-09-10 1990-09-10 Position recognition device

Country Status (1)

Country Link
JP (1) JP2942328B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113295632A (en) * 2021-05-24 2021-08-24 三门峡职业技术学院 Environmental pollution monitoring devices based on big data and artificial intelligence

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101672937B1 (en) * 2015-07-03 2016-11-04 한국전력기술 주식회사 Appratus for detecting position of a Control Rod

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113295632A (en) * 2021-05-24 2021-08-24 三门峡职业技术学院 Environmental pollution monitoring devices based on big data and artificial intelligence

Also Published As

Publication number Publication date
JP2942328B2 (en) 1999-08-30

Similar Documents

Publication Publication Date Title
JP2977863B2 (en) Method and apparatus for aligning two fiber ends
US8699012B2 (en) Optical fiber alignment measurement method and apparatus
JPH09288221A (en) Method for observing butt part of ribbon type optical fiber and observing device therefor
US20060078264A1 (en) Apparatus and methods for estimating optical insertion loss
JPH09126725A (en) Balanced focal-point system and method for focusing optimal focal point in different region of simultaneously imaged object
WO2017200222A1 (en) Precision measurement system using interferometer and image
JPH04362906A (en) Axial misalignment inspecting method for multiple connector
US20030231834A1 (en) Optical element alignment device using an electronic camera
JPH04118606A (en) Position recognition device
JP3613209B2 (en) Optical connector measuring device and measuring method thereof
WO2023055617A1 (en) Relative mode transmission loss measurement of a connectorized fiber optic cable
JP2749711B2 (en) Location recognition method
JP3641502B2 (en) MT connector core misalignment measurement method
JP3418296B2 (en) Detecting the amount of misalignment of optical fibers of different diameters
KR960001997B1 (en) Method for measuring the dimension of an optical connector
EP3121581A1 (en) A measurement arrangement to determine a quality of an optical cable and an optical connector in an assembled condition
US20240060851A1 (en) Precision non-contact measurement of core-to-ferrule offset vectors for fiber optic assemblies
US20220377231A1 (en) Precision non-contact core imaging of fiber optic assemblies
JP3613210B2 (en) Optical connector measurement method
JP3788894B2 (en) Three-dimensional position detection sensor and positioning method
JP2577031B2 (en) Optical fiber misalignment detector
JP2877501B2 (en) Coupling position adjustment method for optical connector coupling device
KR0160374B1 (en) Method of deciding optical ferrule location and apparatus of detecting optical fiber for repairing optical line
JPH0868720A (en) Shaft deviation inspection device of multi-fiber connector
JPH01121806A (en) Method and instrument for measuring structural parameter of optical connector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees