JPH036465B2 - - Google Patents

Info

Publication number
JPH036465B2
JPH036465B2 JP55161262A JP16126280A JPH036465B2 JP H036465 B2 JPH036465 B2 JP H036465B2 JP 55161262 A JP55161262 A JP 55161262A JP 16126280 A JP16126280 A JP 16126280A JP H036465 B2 JPH036465 B2 JP H036465B2
Authority
JP
Japan
Prior art keywords
electro
voltage
optical
measuring device
voltage measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55161262A
Other languages
Japanese (ja)
Other versions
JPS5784365A (en
Inventor
Miki Kuhara
Koji Tada
Masami Tatsumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP55161262A priority Critical patent/JPS5784365A/en
Publication of JPS5784365A publication Critical patent/JPS5784365A/en
Publication of JPH036465B2 publication Critical patent/JPH036465B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/241Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using electro-optical modulators, e.g. electro-absorption

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

【発明の詳細な説明】 本発明は光の偏光を応用した電圧の測定器に係
り、特に測定電圧を低電圧化する為に電気光学結
晶を多分割にする方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a voltage measuring device that applies polarization of light, and particularly provides a method of dividing an electro-optic crystal into multiple parts in order to lower the measurement voltage.

光による電圧測定器の構成例として第1図aに
示すものが挙げられる。この第1図aの構成は光
源1からの光の進行方向に沿い偏光子2、電気光
学結晶3、λ/4波長板4、検光子5が配設さ
れ、電気光学結晶3に被測定電圧を供給する被測
定源6を有する。このうち偏光子2は光源1から
の光を直線偏光とするものであり、電気光学結晶
3は直線偏光を楕円偏光に位相変調するものであ
る。即ち、電気光学結晶3としては、被測定電圧
が零ボルトで屈折率がnx,nY(X方向の直線偏
光、Y方向の直線偏光に対する屈折率)であり、
Vボルトの印加電圧に対しては屈折率がnx−
kV・nY+kV(k:定数)に変化する。x1方向の
直線偏光をX方向とY方向のペクトル成分に分割
して考えると、X,Y方向の屈折率が異なり、光
の進行速度が変化するため、直線偏光は位相変調
をうけ楕円偏光になる。検光子5は偏光子2に対
して直交状態に配置され、楕円偏光を強度変調す
るものである。
An example of the configuration of an optical voltage measuring device is shown in FIG. 1a. In the configuration shown in FIG. 1a, a polarizer 2, an electro-optic crystal 3, a λ/4 wavelength plate 4, and an analyzer 5 are arranged along the traveling direction of light from a light source 1, and a voltage to be measured is applied to the electro-optic crystal 3. It has a measured source 6 that supplies Of these, the polarizer 2 converts the light from the light source 1 into linearly polarized light, and the electro-optic crystal 3 phase modulates the linearly polarized light into elliptically polarized light. That is, the electro-optic crystal 3 has a refractive index of nx, ny (refractive index for linearly polarized light in the X direction and linearly polarized light in the Y direction) when the voltage to be measured is zero volts,
For an applied voltage of V volts, the refractive index is nx-
Changes to kV・nY+kV (k: constant). When linearly polarized light in the x1 direction is divided into spectral components in the X and Y directions, the refractive index in the become. The analyzer 5 is disposed orthogonal to the polarizer 2 and is used to intensity-modulate the elliptically polarized light.

さて、偏光子2に入射する光パワーをPinとし
測定部での損失をlとすると出力である光パワー
Poutと被測定電圧Vinの関係はλ/4波長板4が
無い場合(1)式のようになる。
Now, if the optical power incident on polarizer 2 is Pin, and the loss at the measurement part is l, then the output optical power
The relationship between Pout and the voltage to be measured Vin is as shown in equation (1) when the λ/4 wavelength plate 4 is not provided.

Pout=l・Pin Sin2(π/2Vin/Vπ) ……(1) ここにVπは半波長電圧と呼ばれる結晶及びそ
の使用する方位によつて定まる値である。(1)式の
直線性の良い領域を使用するため、第1図bに示
す如く、λ/4の点を得るべく、λ/4波長板4
は光バイアスとして機能する。(1)式にてλ/4波
長板4を挿入すると次式が得られる。
Pout=l·Pin Sin 2 (π/2Vin/Vπ) (1) Here, Vπ is a value determined by the crystal and its used orientation, which is called a half-wave voltage. In order to use the region of equation (1) with good linearity, the λ/4 wavelength plate 4 is used to obtain the λ/4 point as shown in Figure 1b.
functions as an optical bias. When the λ/4 wavelength plate 4 is inserted in equation (1), the following equation is obtained.

Pout=l・Pin Sin2(π/2・Vin/Vπ+π/4) 1/2l・Pin〔1+Sin(πVin/Vπ)〕 πVin/Vπ≪1の領域では(2)式となる。 Pout=l·Pin Sin 2 (π/2·Vin/Vπ+π/4) 1/2l·Pin [1+Sin (πVin/Vπ)] In the region of πVin/Vπ<<1, equation (2) is obtained.

Pout≒1/2l・Pin〔1+πVin/Vπ〕 ……(2) この(2)式の関係を第2図に示す。検光子より出
力された光信号はPINフオトダイオードなどの素
子を用いて電気信号に変換される。
Pout≒1/2l・Pin [1+πVin/Vπ] ...(2) The relationship of equation (2) is shown in FIG. The optical signal output from the analyzer is converted into an electrical signal using an element such as a PIN photodiode.

以上の如き原理に基き電圧測定を行うのである
が、この場合電気光学結晶3としてはKDP,
ADP LiNbC3,LiTaO3,Bi12SiO20,Bi12GeO20
などが使用可能である。そして自然複屈折を持た
ないこと、分極処理や不要こと。吸湿性の悪いこ
と、温度安定性の良いことの故にBi12SiO20(ビス
マスシリコンオキサイド)及びBi12GeO20(ビス
マスゲルマニユウムオキサイド)が最も適してい
る。その一例を第3図において示す。
Voltage measurement is performed based on the principle described above, and in this case, the electro-optic crystal 3 is KDP,
ADP LiNbC 3 , LiTaO 3 , Bi 12 SiO 20 , Bi 12 GeO 20
etc. are available. And it has no natural birefringence, no polarization processing or unnecessary. Bi 12 SiO 20 (bismuth silicon oxide) and Bi 12 GeO 20 (bismuth germanium oxide) are most suitable because of their poor hygroscopicity and good temperature stability. An example is shown in FIG.

第3a図はBi12SiO20の3mm厚の単結晶板を1
枚用いて従来の光による電圧測定器を構成した時
の入力電圧対出力電圧の特性を示すものであり、
5V〜80Vまで良い直線性を示し、測定範囲が5V
〜80Vとなる。
Figure 3a shows a single crystal plate of Bi 12 SiO 20 with a thickness of 3 mm.
This shows the characteristics of input voltage versus output voltage when a conventional optical voltage measuring device is constructed using
Shows good linearity from 5V to 80V, measurement range is 5V
~80V.

しかし、この電圧測定器の最低測定可能電圧
(出力感度)は、1〜5V程度である。これは一般
に光による電圧測定器に用いられている電気光学
結晶板の半波長電圧が数千Vと高いためである。
これに対し低電圧を測定できないという問題点を
解決するために電気光学結晶を多数枚積層するこ
とにより、測定感度を向上させる方法が考えられ
るが、単に枚数を増大させただけでは吸収や反射
及び光束の広がりによる光の損失の増大や、構造
の大型化などの欠点が生じるため、各電気光学結
晶板を薄くして積層する必要がある。しかし、薄
い電気光学結晶板を可及的接近させて配置する
と、各結晶板の電極やリード線が狭いスペースで
接近することにより高い電圧が印加された時に沿
面放電を生じたり、あるいはシヨートしたりする
異なつた問題を生じるため、第3b図に示すよう
に低入力電圧領域の測定しかできなかつた。
However, the lowest measurable voltage (output sensitivity) of this voltage measuring device is about 1 to 5V. This is because the half-wave voltage of an electro-optic crystal plate generally used in an optical voltage measuring device is as high as several thousand volts.
On the other hand, in order to solve the problem of not being able to measure low voltages, it is possible to improve the measurement sensitivity by stacking a large number of electro-optic crystals, but simply increasing the number of electro-optic crystals will not cause absorption or reflection. There are disadvantages such as an increase in light loss due to the spread of the luminous flux and an increase in the size of the structure, so it is necessary to make each electro-optic crystal plate thin and stack it. However, if thin electro-optic crystal plates are placed as close as possible, the electrodes and lead wires of each crystal plate will be close together in a narrow space, which may cause creeping discharge or shoot out when a high voltage is applied. Due to different problems caused by this, it was only possible to measure the low input voltage region as shown in FIG. 3b.

本発明は、このような欠点の無い低電圧から高
電圧まで幅広い電圧範囲を安定して測定できる光
による電圧測定器を提供するものである。
The present invention provides an optical voltage measuring instrument that is free from such drawbacks and can stably measure a wide voltage range from low voltages to high voltages.

以下本発明について詳細を図に基づいて説明す
る。第4図は本発明の具体例の一つを示すもので
ある。第4図において薄く光学研磨された電気光
学結晶3の両面に透明電極7,7′(たとえば
In2O3)を形成した後リード8,8′を導電性ペー
ストで接着する。この後全体を透明な樹脂9で被
覆する。このようにして製造した電気光学素子1
0を密着して積層するためには樹脂9はできるだ
け薄くかつ均一な厚みに形成させる必要がある。
このような樹脂薄膜の形成法にはデイツピング
法、スピナーによる回転塗布法及び蒸着法がある
が、デイツピング法や回転法は面内での膜厚分布
が生じたり薄い結晶板を破損したりする欠点があ
る。
The present invention will be explained in detail below based on the drawings. FIG. 4 shows one specific example of the present invention. In FIG. 4, transparent electrodes 7, 7' (for example,
After forming In 2 O 3 ), the leads 8 and 8' are bonded with conductive paste. After that, the entire structure is covered with a transparent resin 9. Electro-optical element 1 manufactured in this way
In order to closely stack the resin 9, it is necessary to form the resin 9 as thin as possible and have a uniform thickness.
Methods for forming such thin resin films include the dipping method, the spin coating method using a spinner, and the vapor deposition method, but the dipping method and the rotary method have the drawbacks of producing in-plane film thickness distribution and damaging the thin crystal plate. There is.

しかるに蒸着法によつて形成されるポリパラキ
シリレンは原料であるジパラキシリレンを蒸発、
熱分解させてモノマーとし、その後常温の基板上
に付着形成する方法であり、厚さ1〜数10μmの
均一な膜が形成できるとともに基板に何ら外力を
かけないため本発明の電気光学素子を製造するの
に最も適した方法である。さらにポリパラキシリ
レンは絶縁抵抗が高く(1016〜1017Ωcm)耐破壊
電圧も高く(800V/μm〜2kV/10μm)、かつ透
湿率が非常に小さい(〜1g/(mi1)(100in2
(24hr))という特長を有するため、本発明のよう
に狭いスペースで近接した電極やリード間の洩れ
電流の低減、沿面放電やシヨートの防止に最も適
したものである。
However, polyparaxylylene formed by vapor deposition is produced by evaporating the raw material diparaxylylene.
This is a method in which the monomer is thermally decomposed and then deposited on a substrate at room temperature.A uniform film with a thickness of 1 to several tens of micrometers can be formed, and no external force is applied to the substrate, so the electro-optical element of the present invention can be manufactured. This is the most suitable way to do so. Furthermore, polyparaxylylene has high insulation resistance (10 16 - 10 17 Ωcm), high breakdown voltage (800V/μm - 2kV/10μm), and extremely low moisture permeability (~1g/(mi1) (100in). 2 )
(24 hours)), it is most suitable for reducing leakage current between adjacent electrodes and leads in a narrow space, and for preventing creeping discharge and shot, as in the present invention.

このようにして製造した素子10を第5図のよ
うに光による電圧測定器として組立てる。第5図
において、11は発光素子12,12′は光フア
イバー13,13′は光を平行光束にするロツド
レンズである。
The element 10 thus manufactured is assembled as an optical voltage measuring device as shown in FIG. In FIG. 5, reference numeral 11 indicates light emitting elements 12 and 12', and optical fibers 13 and 13' indicate rod lenses that convert light into parallel beams.

ここでリードの極性は、各素子の隣接する面が
同一極性となるように配線する。このような極性
においても結晶板の光学軸(フアスト軸とスロー
軸)が交互に、逆になるように配置すれば、積層
枚数に比例した感度向上が可能である。
Here, the polarity of the leads is wired so that adjacent surfaces of each element have the same polarity. Even with such polarity, if the optical axes (fast axis and slow axis) of the crystal plates are arranged alternately and oppositely, sensitivity can be improved in proportion to the number of laminated plates.

第6図a,bは他の具体例を示したものであ
る。電気光学結晶3の両面に透明電極7,7′を
形成したものを多数枚導電性かつ接着性のペース
ト14(たとえばAg,Au,Pt等のペースト)
で、金属性の支持体15,15′にa図のように
各々も密着するように接着する。b図は、これを
上方から見た図である。ここで各結晶板の間隔を
一定に保つために支持体に溝を切つてもよい。電
圧印加用のリード8,8′は支持体15,15′よ
り取り出す。第6図では、各結晶板間の間隔が大
きく描かれているが実際には100μm以下の狭いギ
ヤツプとなる。
FIGS. 6a and 6b show other specific examples. A large number of electro-optic crystals 3 with transparent electrodes 7, 7' formed on both sides are made of a conductive and adhesive paste 14 (for example, a paste of Ag, Au, Pt, etc.).
Then, each of them is adhered to metal supports 15 and 15' so that they are in close contact with each other as shown in Fig. a. Figure b is a view of this from above. Here, grooves may be cut in the support in order to keep the distance between each crystal plate constant. Leads 8, 8' for voltage application are taken out from supports 15, 15'. In Fig. 6, the gap between each crystal plate is drawn large, but in reality it is a narrow gap of less than 100 μm.

次に全体を真空チヤンバー内に入れ、ポリパラ
キシリレンをコーテイングすれば全ての間隙や導
電性の部分を完全に被覆されてしまうため、これ
を第5図の光学系で用いれば、第4図でしめした
具体例と全く同様の効果を得ることができる。な
お第4〜第6図は、具体例の一部であり、これら
図面に限定されるものではなく、要は透明電極を
有し、かつ絶縁性樹脂で被覆された電気光学結晶
板を積層することに、特にポリパラキシレンを用
いることに本発明がある。
Next, if the whole is placed in a vacuum chamber and coated with polyparaxylylene, all gaps and conductive parts will be completely covered, so if this is used in the optical system shown in Fig. 5, It is possible to obtain exactly the same effect as in the specific example shown in . Note that FIGS. 4 to 6 are some specific examples, and the invention is not limited to these drawings; the point is that electro-optic crystal plates having transparent electrodes and coated with an insulating resin are laminated. In particular, the invention lies in the use of polyparaxylene.

以下Bi12SiO20を用いた場合について発明の実
施例を説明する。なおBi12GeO20についても同様
の効果を得た。
Examples of the invention using Bi 12 SiO 20 will be described below. Note that a similar effect was obtained with Bi 12 GeO 20 .

Bi12SiO20単結晶を厚み200μm、面積5×5mm2
に両面光学研磨し、In2O2の透明電極を両面に形
成した。これを3組にわけ第4図のリード(Al
箔)を取りつけてから10μm厚にポリパラキシリ
レンをコーテイングした素子を10枚積層した電圧
測定器A,Cu製の支持体にAgペーストで10枚接
着した後、全体を10μm厚にポリパラキシリレン
をコーテイングした素子を用いた電圧測定器Bお
よびポリパラキシリレンをコーテイングを全く施
さない素子を約300μm厚のエポキシ製スペーサー
を介して10枚積層した電圧測定器Cとを試作し
た。
Bi 12 SiO 20 single crystal with a thickness of 200 μm and an area of 5 × 5 mm 2
Both sides were optically polished and transparent electrodes of In 2 O 2 were formed on both sides. Divide this into three groups and lead (Al) as shown in Figure 4.
Voltage measuring device A, which is made by laminating 10 elements coated with polyparaxylylene to a thickness of 10 μm after attaching the foil). After gluing the 10 elements to a Cu support with Ag paste, the whole is coated with polyparaxylylene to a thickness of 10 μm. A voltage measuring device B using an element coated with polyparaxylylene and a voltage measuring device C comprising 10 elements not coated with polyparaxylylene were laminated via an epoxy spacer with a thickness of about 300 μm.

A,B,Cいずれの測定器とも感度が従来の1
〜5Vに対して100〜500mVまで測定可能となつ
た。そして最高測定電圧は、ポリパラキシリレン
をコーテイングによる絶縁特性の向上によりAと
Bの測定器では500Vであつた。またBSOの占め
る光路長も3mm程度に収めることができた。さら
に入力抵抗DCに対して1010Ω以上あり、信号源
を乱さない測定器として有効に動作することが確
認された。
The sensitivity of all A, B, and C measuring instruments is 1 compared to the conventional one.
It became possible to measure up to 100-500mV for ~5V. The maximum measured voltage was 500 V with measuring instruments A and B due to the improved insulation properties due to the polyparaxylylene coating. Furthermore, the optical path length occupied by BSO could be kept to about 3 mm. Furthermore, it was confirmed that the input resistance was 10 10 Ω or more relative to DC, and that it operated effectively as a measuring instrument that did not disturb the signal source.

これに対して、ポリパラキシリレンをコーテイ
ングを施さない従来タイプの素を積層したC測定
器では、約300μmのスペーサーを介しているた
め、全長が6mm以上になり透過光の広がりによる
損失がA,Bよりも5倍程度増大した。逆にスペ
ーサーを50μm程度のマイラーで作つた場合、損
失は減少するが、透明電極、リード部分が完全に
は絶縁されていないため、安定に測定できる電圧
は高々100V程度であつた。また湿度が高いと洩
れ電流が増大し入力抵抗が108Ω程度に低下する
欠点があつた。
On the other hand, in the case of conventional C measuring instruments in which polyparaxylylene is not coated, the total length is more than 6 mm and the loss due to the spread of transmitted light is A. , B increased about 5 times. On the other hand, if the spacer was made of Mylar with a thickness of about 50 μm, the loss would be reduced, but since the transparent electrode and lead parts were not completely insulated, the voltage that could be stably measured was at most about 100 V. Another drawback was that when humidity was high, leakage current increased and the input resistance decreased to about 10 8 Ω.

以上の述べた如く本発明による光による電圧測
定器によれば多数枚の電気光学結晶を積層する方
法として、ポリパラキシリレンを用いることによ
り全長を増大させずに光の損失を押さえ高入力イ
ンピーダンスで低電圧から高電圧まで安定して測
定できる。
As described above, the optical voltage measuring device according to the present invention uses polyparaxylylene as a method of laminating a large number of electro-optic crystals, thereby suppressing optical loss without increasing the overall length and achieving high input impedance. This enables stable measurements from low to high voltages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは光による電圧測定器の原理図で
あり、第1図aは構成、第1図bは特性を示し、
第2図は時間的に変化する電圧入力Vinに対する
光出力Poutの図であり、第3図a、第3図bは
従来の光による電圧測定器の入力電圧対出力電圧
の高電圧型及び低電圧型の関係図であり、第4図
は本発明による電気光学効果素子の構成例であ
り、第5図は本発明による電圧測定器の構成例で
あり、第6図は本発明による電気光学効果素子の
他の構成例であり第6図aは側面図、第6図bは
平面図を示す。 1……光源からの光、2……偏光子、3……結
晶板、4……波長板、5……検光子、6……電
源、7,7′……透明電極、8,8′……リード、
9……透明絶縁膜、10……電気光学素子、11
……光源、12,12′……光フアイバー、13,
13′……ロツドレンズ、14……導電性接着材、
15,15′……金属性支持体。
Figures 1a and 1b are diagrams of the principle of an optical voltage measuring device, with Figure 1a showing the configuration and Figure 1b showing the characteristics.
Fig. 2 is a diagram of the optical output Pout with respect to the voltage input Vin which changes over time, and Figs. 4 shows a configuration example of an electro-optic effect element according to the present invention, FIG. 5 shows a configuration example of a voltage measuring device according to the present invention, and FIG. 6 shows an example of the configuration of an electro-optic effect element according to the present invention. FIG. 6a shows a side view and FIG. 6b shows a plan view of another example of the structure of the effect element. 1... Light from a light source, 2... Polarizer, 3... Crystal plate, 4... Wave plate, 5... Analyzer, 6... Power supply, 7, 7'... Transparent electrode, 8, 8' ...Reed,
9...Transparent insulating film, 10...Electro-optical element, 11
...Light source, 12,12'...Optical fiber, 13,
13'... Rod lens, 14... Conductive adhesive,
15,15'...metallic support.

Claims (1)

【特許請求の範囲】 1 光の進行方向に沿い偏光子、積層された電気
光学結晶板、波長板及び検光子が配列されたもの
において、該電気光学結晶板がそれぞれ透明電極
を有し、かつポリパラキシリレンで被覆されてい
ることを特徴とする光による電圧測定器。 2 上記電気光学結晶板がビスマスシリコンオキ
サイド(Bi12SiO20)もしくはビスマスゲルマニ
ユウムオキサイド(Bi12GeO20)よりなる特許請
求の範囲第1項記載の光による電圧測定器。
[Scope of Claims] 1. A polarizer, a laminated electro-optic crystal plate, a wavelength plate, and an analyzer arranged along the traveling direction of light, each of which has a transparent electrode, and An optical voltage measuring device characterized by being coated with polyparaxylylene. 2. The optical voltage measuring device according to claim 1, wherein the electro-optic crystal plate is made of bismuth silicon oxide (Bi 12 SiO 20 ) or bismuth germanium oxide (Bi 12 GeO 20 ).
JP55161262A 1980-11-14 1980-11-14 Light-employing voltage measuring apparatus Granted JPS5784365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55161262A JPS5784365A (en) 1980-11-14 1980-11-14 Light-employing voltage measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55161262A JPS5784365A (en) 1980-11-14 1980-11-14 Light-employing voltage measuring apparatus

Publications (2)

Publication Number Publication Date
JPS5784365A JPS5784365A (en) 1982-05-26
JPH036465B2 true JPH036465B2 (en) 1991-01-30

Family

ID=15731748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55161262A Granted JPS5784365A (en) 1980-11-14 1980-11-14 Light-employing voltage measuring apparatus

Country Status (1)

Country Link
JP (1) JPS5784365A (en)

Also Published As

Publication number Publication date
JPS5784365A (en) 1982-05-26

Similar Documents

Publication Publication Date Title
US4563093A (en) Voltage and electric field measuring device using light
CN102426281B (en) Longitudinal modulation optical voltage sensor
Jaeger et al. High-voltage sensor employing an integrated optics Mach-Zehnder interferometer in conjunction with a capacitive divider
JPS5897669A (en) Magnetic field-light converter
JPS6212894B2 (en)
KR100297951B1 (en) Optical fiber sensor and method for making same
US4904038A (en) Guided wave optical frequency shifter
KR100293295B1 (en) Method for making a second-order nonlinear optical material, the material obtained by the method, and an optical modulation device comprising the material
US4379620A (en) Light modulator employing electrooptic crystals
US5059894A (en) Electro-optic voltage measuring appartaus with single ended optics
JPH036465B2 (en)
JPH041883B2 (en)
JPH10132864A (en) Photo voltage sensor
US5085503A (en) Spatial light modulating element using uniaxial single crystal of oxide as insulating layer
RU2723238C1 (en) Faraday cell for current meters in high-voltage networks
JPH0445813B2 (en)
CN113466568A (en) Manufacturing process of electric field sensor probe
JPH09211035A (en) Electric field-measuring apparatus
JP2004020348A (en) Measuring instrument of measuring photoelectric voltage, method of measuring electric power or electric energy, and protection system for electric equipment
JPH0617928B2 (en) Optical element composite
JPH0424665B2 (en)
JP3235301B2 (en) Light voltage sensor
JPH0222621A (en) Optical element and optical parts using this element
Yoshino et al. Design and application of fiber-optic electric and magnetic field sensors for high voltage electric system
JPS5875046A (en) Method for measuring difference of equivalent refractive index between te and tm waves