JPH0364577A - Aggregate of high-functionality ultrafine conjugate fiber and its production - Google Patents

Aggregate of high-functionality ultrafine conjugate fiber and its production

Info

Publication number
JPH0364577A
JPH0364577A JP19711189A JP19711189A JPH0364577A JP H0364577 A JPH0364577 A JP H0364577A JP 19711189 A JP19711189 A JP 19711189A JP 19711189 A JP19711189 A JP 19711189A JP H0364577 A JPH0364577 A JP H0364577A
Authority
JP
Japan
Prior art keywords
aggregate
fiber
fibers
fiber aggregate
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19711189A
Other languages
Japanese (ja)
Inventor
Kazuo Nagoshi
名越 一夫
Masaji Asano
浅野 正司
Jiro Okamoto
次郎 岡本
Takanobu Sugo
高信 須郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Kuraray Trading Co Ltd
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Kuraray Co Ltd
Kuraray Trading Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, Kuraray Co Ltd, Kuraray Trading Co Ltd filed Critical Japan Atomic Energy Research Institute
Priority to JP19711189A priority Critical patent/JPH0364577A/en
Publication of JPH0364577A publication Critical patent/JPH0364577A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

PURPOSE:To obtain an aggregate of high-functionality ultrafine conjugate fiber capable of collecting metallic ion in high efficiency and composed of a nonwoven fabric having a specific apparent density by introducing a specific graft part having amidoximated functional group into a skeleton fiber having a specific diameter. CONSTITUTION:A fiber aggregate having an apparent density of 0.1-0.5g/m<3> and composed of skeleton fibers having an average diameter of <=5mum is produced e.g. by melt-blow process and irradiated with ionizing radiation. The irradiated aggregate is graftpolymerized with acrylonitrile monomer and >=50wt.% of the skeleton fiber is amidoximated to obtain the objective aggregate of high-functionality ultrafine conjugate fiber containing introduced functional group and having high durability. The aggregate can collect metallic ion in high efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属イオンの捕集に使用できる高機能性極細
複合繊維集合体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a highly functional ultrafine conjugate fiber aggregate that can be used to collect metal ions.

=1− 〔従来の技術〕 繊維を改質して水中或いは空気中のイオン、特に安全上
積重しくない重金属イオンを捕集して除去すること、又
は産業上必要な金属イオンを捕集することは既に試みら
れているが捕集効率が充分でなかった。例えばアミドキ
シム化された基を持つ吸着体を使用して金属イオンを回
収する方法については、J、Okamoto and 
others、 J、Appl、Po1.Sci、。
=1- [Prior art] Modifying fibers to collect and remove ions in water or air, especially heavy metal ions that are not safe for safety reasons, or collecting metal ions needed for industrial purposes. This has already been attempted, but the collection efficiency was not sufficient. For example, methods for recovering metal ions using adsorbents with amidoximated groups are described in J. Okamoto and
others, J. Appl, Po1. Sci.

30、2967 (1985)、H,0m1chi a
nd others、 Sep、 Sci。
30, 2967 (1985), H, 0m1chia
nd others, Sep, Sci.

Technol、+ 2(L 163 (1985)、
H,0m1chi and others。
Technol, + 2 (L 163 (1985),
H,0m1chi and others.

Ib1d、、 21.299 (1986)特開昭53
−126088号、特開昭58−205543号、特開
昭58−205544号等があり、普た、イオン交換体
を支持させたイオン交換繊維を含む生地については特開
昭62276049号、特開昭62−298359号等
が知られている。
Ib1d,, 21.299 (1986) Japanese Patent Publication No. 1973
JP-A-126088, JP-A-58-205543, JP-A-58-205544, etc. For fabrics containing ion-exchange fibers supported by ion exchangers, JP-A-62276049, JP-A-Sho. No. 62-298359 and the like are known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

湖沼・河川水、海水、また生活排水、産業用水・排水な
どの溶液から積極的に全域イオンを捕集回収したり、或
いは捕集除去したりする試みは官2− 能基金付けた繊維、樹脂、フィルムなどで既に檀々試み
られているが従来技術で見られるものを使用しているた
めに捕集効果が充分でなかったり、また、これら繊維、
樹脂、フィルムの使用条件での強度が充分でなかったb
するため実用性が不十分であった。本発明の目的は、捕
集効率が高く、且つ耐久性のある高機能性極細複合繊維
集合体を提供することにある。
Attempts to actively collect and recover ions from solutions such as lake/river water, seawater, domestic wastewater, industrial water/wastewater, etc., or to collect and remove ions from fibers and resins funded by government funds. , films, etc. have already been tried, but because they use materials found in the prior art, the collection effect is not sufficient, and these fibers,
Resin and film did not have sufficient strength under the usage conditionsb
Therefore, its practicality was insufficient. An object of the present invention is to provide a highly functional ultrafine conjugate fiber aggregate that has high collection efficiency and is durable.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は平均直径5μm以下の骨格繊維に、骨格繊維の
重量の50多以上のアミドキシム化された官能基を持つ
グラフト部分を有する繊維からなり、見掛密度が0.1
ないし0.5s+/ctAである高機能性極細複合繊維
集合体である。
The present invention consists of fibers having an average diameter of 5 μm or less and a graft portion having amidoximated functional groups of 50 or more than the weight of the skeleton fibers, and an apparent density of 0.1.
It is a highly functional ultrafine conjugate fiber aggregate having an average particle diameter of 0.5 s+/ctA.

また、本発明は平均直径5μm以下の骨格繊維からなる
繊維集合体を製造し、@雌性放射線照射し、ニトリル基
を含有し、該ニトリル基をアミドキシム基に変換しうる
単量体を用いて繊維集合体の繊維にグラフト重合し、該
ニトリル基をアミドキシム化することによりなる高機能
性極細複合繊維集合体 合体の製造方法である。
In addition, the present invention manufactures a fiber aggregate consisting of skeletal fibers with an average diameter of 5 μm or less, irradiates it with @female radiation, and uses a monomer that contains a nitrile group and can convert the nitrile group to an amidoxime group. This is a method for producing a highly functional ultrafine conjugate fiber aggregate by graft polymerizing the fibers of the aggregate and converting the nitrile groups into amidoximes.

一定重量・体積の機能性繊維集合体を用いて効率良く金
属イオンを捕集するには、極細繊維を使用して表面積を
太きくシ、ここにアミドキシム化されゾこ官能基を多く
持つようにすることが必須である。既に拳げた文献にお
いても#a維の表面が重要なポイントになると述べられ
ている。本発明が主として述べる方法によれば特殊な紡
糸方法を用いた場合には、極めて効率よく表面積の大き
い極細繊維とその集合体を同時に作ることができる。
In order to efficiently collect metal ions using a functional fiber aggregate of a certain weight and volume, the surface area is increased by using ultrafine fibers, which are converted into amidoximes and have a large number of functional groups. It is essential to do so. It has already been stated in extensive literature that the surface of #a fiber is an important point. According to the method mainly described in the present invention, when a special spinning method is used, ultrafine fibers with a large surface area and aggregates thereof can be simultaneously produced extremely efficiently.

本発明に用いる繊維の平均直径は5μm以下である。非
常に細くなると繊維17当りのアミドキシム基量は多く
なるが、不織布密度が高くなり、筐が好筐しい。本発明
に用いる極細骨格繊維を造る方法は便乗公知の方法を用
いることが出来る。例えば、第一の方法として、合成樹
脂を微細ノズル孔から少量ずつ押出して高速で巻ぎ取る
方法があるが生産性が低いのが問題である。父、第二の
方4− 法として、互いに溶解性の異なる二つ以上の合成高分子
重合体を用いて海島構造繊a′f、造9.海成分除去に
よう極細繊維状A成分を残すことにより橋細繊維を造る
方法があるが特殊な口金や、海成分の除去など特別処理
が必要でコストの高いのが難点である。第一の方法によ
り見られた極Ifa繊維を公知の方法にて不織布化する
ことは出来るがかなり難しく、繊維の太さは10μmく
らいが限界で、それよりaいものは水流絡合の方法など
を適用する必要があり付加工程が必要である。また第二
の方法では海島1&維から予めウェッブを作り、次いで
海成分を溶剤で除去することによう極細繊維集合体とす
ることが必要である。
The average diameter of the fibers used in the present invention is 5 μm or less. If it becomes very thin, the amount of amidoxime groups per fiber 17 will increase, but the density of the nonwoven fabric will be high and the housing will be good. A known method can be used to produce the ultrafine skeletal fibers used in the present invention. For example, the first method is to extrude a synthetic resin little by little through a fine nozzle hole and wind it up at high speed, but the problem is that the productivity is low. Father, second method 4- As a method, two or more synthetic polymers having mutually different solubility are used to fabricate sea-island structure fibers a'f, 9. There is a method of making bridge-fine fibers by leaving ultra-fine fibrous component A to remove the sea component, but the disadvantage is that it requires a special die and special processing such as removing the sea component, making it expensive. It is possible to make the polar Ifa fibers obtained by the first method into a non-woven fabric using known methods, but it is quite difficult, and the fiber thickness is limited to about 10 μm, and those thicker than that can be made by hydroentanglement. additional steps are required. In the second method, it is necessary to prepare a web from the sea islands 1 and fibers, and then remove the sea component with a solvent to obtain an ultrafine fiber aggregate.

以上述べた既存の方法でも極細繊維集合体を作ることは
出来るが、より効率的に極細繊維を得るにはメルトブロ
ーン法が有効で、これによれば極細の骨格繊維が容易に
できるだけでなく、この繊維からなる不織布状繊維集合
体も同時に造ることが出来る為、本発明の基材となる極
細繊維集合体を形成するための最も望ましい方法である
Although it is possible to make ultrafine fiber aggregates using the existing methods described above, the melt blown method is effective for obtaining ultrafine fibers more efficiently. This method is the most desirable method for forming the ultrafine fiber aggregate that is the base material of the present invention, since a nonwoven fabric-like fiber aggregate made of fibers can also be produced at the same time.

5 ここでiうメルトブローン法とは、熱可塑性重合体を溶
解押出しし、多孔オリフィス状ノズルから吐出すると同
時に、該ノズルに隣接する気体噴出用孔或いは溝から噴
出する高温高速気体によって吹き飛ばすことによって他
剤繊維流とし、該極細繊維流をベルトコンベア状あるい
はドラム状の捕集機上で捕集することによって不織布状
の極細fa維集合体を得るものである。−船釣には、特
開昭49−10258号公報、特開昭49−48921
号公報、特開昭50−121570号公報においてはメ
ルトプロー法、特開昭50−46972号公報では溶融
ブロー成形法、或いは特公昭44−25871号公報で
はジェット紡糸法の名称で知られるものである。
5. The melt-blown method here refers to melt-extruding a thermoplastic polymer, discharging it from a multi-hole orifice nozzle, and simultaneously blowing it out with high-temperature, high-speed gas ejected from a gas ejection hole or groove adjacent to the nozzle. A nonwoven fabric-like ultrafine fa fiber aggregate is obtained by collecting the ultrafine fiber stream on a belt conveyor-like or drum-like collector. - For boat fishing, JP-A-49-10258, JP-A-49-48921
No. 50-121570, it is known as the melt blow method, JP 50-46972, the melt blow molding method, and JP 44-25871, the jet spinning method. .

本発明に用いるメルトプローン法に依れば、平均直径5
μm以下の繊維を容易に造ることが出来る。
According to the melt-prone method used in the present invention, the average diameter is 5
Fibers smaller than μm can be easily produced.

使用する合成重合体としては熱可塑性のものであれは何
でも良く、ポリエチレン、ポリプロピレン、ポリブテン
、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビ
ニリデン、ポリアクリル酸エスチル、ポリスチレン、或
いはこれらの共重合体、ポリ(エチレン−ビニルアルコ
ール)共31体、ポリ(テトラフロロエチレン−エチレ
ン)共重合体、ポリアミド、ポリエステル、ポリウレタ
ンエラストマーなどが使用できる。なかでもポリプロピ
レンは本発明方法のグラフト重合に使用する放射線に対
するラジカルの出来易さ、ラジカル安定性、骨格繊維と
しての疎水性、耐熱性の点などでもつとも望ましい合成
重合体である。
Any thermoplastic synthetic polymer may be used, including polyethylene, polypropylene, polybutene, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polyester acrylate, polystyrene, or copolymers thereof, and polystyrene. (ethylene-vinyl alcohol) copolymer, poly(tetrafluoroethylene-ethylene) copolymer, polyamide, polyester, polyurethane elastomer, etc. can be used. Among these, polypropylene is a desirable synthetic polymer because of its ease of forming radicals against the radiation used in the graft polymerization of the method of the present invention, radical stability, hydrophobicity as a skeleton fiber, and heat resistance.

勿論、本発明の基材となる極細繊維集合体は、前述した
通つメルトプローン法以外の方法でも製造可能であり、
それらの方法は既に不織布を製造する方法に適用されて
いる。
Of course, the ultrafine fiber aggregate that serves as the base material of the present invention can be produced by methods other than the conventional melt-prone method described above.
These methods have already been applied to methods for producing nonwoven fabrics.

既に述べた如〈従来は骨格繊維として5μm以上、特に
普通の繊維として15μm以上、時には40μmから2
00μmの繊維が使われてきた。これは入手の容易さ、
骨格繊維として使用し布地などの製品形態に加工する場
合の加工の容易さ、変性グラフト繊維を酸・アルカリ中
、高温・紫外線下などで長時間使用する場合の繊維製品
の形態安定性など7− を考慮したためと思われるが、本発明で述べるごとく本
発明の方法によれば容易に、5μm以下の極細繊維の集
合体が得られ、これのグラフト化、変問題がなかった。
As already mentioned, conventionally, skeletal fibers have a diameter of 5 μm or more, especially ordinary fibers have a diameter of 15 μm or more, and sometimes 40 μm to 2 μm.
00 μm fibers have been used. This is easy to obtain,
Ease of processing when used as a skeletal fiber and processed into products such as cloth, morphological stability of textile products when modified graft fibers are used for long periods of time in acid/alkali, high temperature, ultraviolet light, etc. 7- This seems to be due to consideration of the above, but as described in the present invention, according to the method of the present invention, aggregates of ultrafine fibers of 5 μm or less were easily obtained, and there were no grafting problems.

メルトブローン法による場合繊維集合体の見掛密度は吐
出ノズルと、捕集するベルトコンベア間の距離、吐出す
る熱可塑性樹脂の単位時間当すの量、ベルトコンベアの
移動速度及び捕集後のプレス条件によυ調節することが
容易である。
In the case of the melt-blown method, the apparent density of the fiber aggregate is determined by the distance between the discharge nozzle and the collection belt conveyor, the amount of thermoplastic resin discharged per unit time, the moving speed of the belt conveyor, and the pressing conditions after collection. It is easy to adjust to υ.

グラフト条件によっても異なるが、骨格繊維集合体の見
掛密度は0.03f/−ないし0.25f/−の範囲が
好ましい。0.03f/cTAより小さい場合には、繊
維量が少なすき゛るためグラフト化及び変性後の官能基
量が不十分で効率よい複合繊維集合体とはならず、逆に
0.25f/crAより大きいと変性後に水中に於て使
用する場合、流れに対する抵抗が犬きくなりAき°て効
率が悪いものになってし渣う。
Although it varies depending on the grafting conditions, the apparent density of the skeleton fiber aggregate is preferably in the range of 0.03 f/- to 0.25 f/-. If it is smaller than 0.03 f/cTA, the amount of fibers will be too small and the amount of functional groups after grafting and modification will be insufficient and an efficient composite fiber aggregate will not be obtained. When used underwater after denaturation, the resistance to flow increases, resulting in inefficiency.

− 本発明に言う見掛密度は単位画8i当シの重量を測定し
、この値を厚さで除して算出する。厚さはJIS  L
  1096の方法で測定する。
- The apparent density referred to in the present invention is calculated by measuring the weight of the unit image 8i and dividing this value by the thickness. Thickness is JIS L
Measured using the 1096 method.

本発明では、このようにして得られた極細の骨格繊維集
合体にニトリル基を含有し、該ニトリル基をアミドキシ
ム基に変換しうる単量体をグラフトシ、このニトリル基
をアミドキシム化することにより高機能性極細複合繊維
集合体とすることができる。これらの単量体としては、
例えば、アクリロニトリル、シアン化ビニリデン、クロ
トンニトリル、メタクリレートリル、クロルアクリロニ
トリル、2−シアノエチルアクリレート、2−シアノエ
チルメタクリレート等があシ、これらを単線 独で、或いは2・以上を混合して用いることが出来る。
In the present invention, the ultrafine skeletal fiber aggregate thus obtained contains a nitrile group, is grafted with a monomer capable of converting the nitrile group into an amidoxime group, and is converted into an amidoxime. It can be made into a functional ultrafine composite fiber aggregate. These monomers include:
For example, acrylonitrile, vinylidene cyanide, crotonitrile, methacrylaterile, chloroacrylonitrile, 2-cyanoethyl acrylate, 2-cyanoethyl methacrylate, etc. can be used singly or in combination of two or more.

一般には、手近かに入手できるアクリロニトリルを使用
するのが実際的である。
It is generally practical to use readily available acrylonitrile.

グラフトさせる方法としては骨格繊維集合体の窯素など
の不活性気体存在下での電離性放射線による照射、及び
それに引き続くグラフト反応を行う方法がよい。1M、
離性放射線の照射後モノマーを導入することにようホモ
ポリマーの発生を抑制することが出来るが、更に不活性
気体下の照射によりパーオキサイドラジカルの発生を防
ぐことが出来、これによりグラフト重合時のホモポリマ
ーの生成を最小限に抑えることが出来る。fii離性放
射線としては、α線、β線、r線、XM、加速電子線な
どがあるが電子線発生装置による加速電子線で骨格繊維
を照射し、骨格繊維上に活性ラジカルを作ってグラフト
重合の開始点とするのが実際的である。照射量はグラフ
ト条件とかねあいで決めればよいが、一般には、大線量
照射でラジカル量を多くしてグラフト重合開始点を多く
するのが、効率よく高機能性極細複合繊維集合体を作る
のに積置しく、l Mrad以上望ましくは5Mrad
以上、50Mrad  以下の照射が必要である。照射
量が多すぎると骨格繊維の変質を招き、又、照射に大エ
ネルギーを要し実際的でない。
A preferred method for grafting is to irradiate the skeletal fiber aggregate with ionizing radiation in the presence of an inert gas such as kiln, followed by a grafting reaction. 1M,
The generation of homopolymers can be suppressed by introducing monomers after irradiation with dissociative radiation, but the generation of peroxide radicals can also be prevented by irradiation under an inert gas, which results in the generation of peroxide radicals during graft polymerization. The formation of homopolymers can be minimized. fii Dissociative radiation includes alpha rays, beta rays, r rays, XM, accelerated electron beams, etc. Skeletal fibers are irradiated with accelerated electron beams from an electron beam generator to create active radicals on the skeletal fibers and graft them. It is practical to use it as the starting point for polymerization. The irradiation dose can be determined depending on the grafting conditions, but in general, increasing the amount of radicals and increasing the number of graft polymerization initiation sites with a large dose of irradiation is the best way to efficiently create a highly functional ultrafine composite fiber aggregate. Preferably 1 Mrad or more, preferably 5 Mrad
As described above, irradiation of 50 Mrad or less is required. If the irradiation dose is too large, it will cause deterioration of the skeletal fibers and require a large amount of energy for irradiation, which is impractical.

電離性放射線の照射後、ニトリル基を含有し、該ニトリ
ル基をアミドキシム基に変換しうる単量体の気相中或い
は窒素下液相中でグラフト反応が1〇− 行われる。グラフト反応は、グラフト率50%以上にな
るまで行われる。グラ7145096未満では、変性後
のアミドキシム量が不足で十分な効果を発揮する高機能
性極細複合繊維集合体とはならない。又、グラフト量が
多すぎて、変性後の繊維集合体の見掛密度が0.59/
diを超すようになると例えば水中で使用する場合の流
水に対する抵抗が太きくなシ過ぎ、捕集イオンを含んだ
新鮮水との接触が不十分で効率よく捕集が行われなくな
ってし渣う。従ってグラフト反応は使用する繊維集合体
の見掛密度との差によって決める必要がある。
After irradiation with ionizing radiation, a grafting reaction of a monomer containing a nitrile group and capable of converting the nitrile group into an amidoxime group is carried out in the gas phase or in the liquid phase under nitrogen. The grafting reaction is carried out until the grafting rate reaches 50% or more. If the amount is less than 7145096, the amount of amidoxime after modification is insufficient and a highly functional ultrafine conjugate fiber aggregate that exhibits sufficient effects cannot be obtained. In addition, the amount of grafting was too large, and the apparent density of the fiber aggregate after modification was 0.59/
If it exceeds di, for example, when used underwater, the resistance to flowing water will be too high, and contact with fresh water containing collected ions will be insufficient, resulting in inefficient collection. . Therefore, the grafting reaction must be determined based on the difference in apparent density of the fiber aggregate used.

グラフト繊維のアミドキシム化はヒドロキシルアミンを
用いる公知の方法で行うことが出来る。
Amidoximation of the graft fiber can be carried out by a known method using hydroxylamine.

本発明の高機能性極細複合繊維集合体の金属イオンに対
する捕集性能は、既に述べた条件の他、繊維集合体の形
状等によっても異なるが、更に、最も捕集効率の良いア
ミドキシム基濃度としては、高機能性極細複合繊維集合
体14当り、3ないし3Qmeqである。3meq/y
以下では、アミドキシム基濃度が不十分で効率が悪く、
又30mctq/f以上になると、繊維集合体の親水性
が大きくなりすぎて形態安定性が悪くなるほか、表面で
有効に作用するアミドキシム基の濃度が相対的に小さく
なり効率が落ちてし筐う。
The metal ion-trapping performance of the highly functional ultrafine composite fiber aggregate of the present invention varies depending on the shape of the fiber aggregate in addition to the conditions already mentioned. is 3 to 3 Qmeq per highly functional ultrafine conjugate fiber aggregate 14. 3meq/y
Below, the concentration of amidoxime groups is insufficient and the efficiency is poor;
Moreover, if it exceeds 30 mctq/f, the hydrophilicity of the fiber aggregate becomes too large, resulting in poor morphological stability, and the concentration of amidoxime groups that effectively act on the surface becomes relatively small, resulting in a decrease in efficiency. .

〔実施例1〕 1、 メルトブローン法による骨格繊維集合体の製造 ポリプロピレン・ベレット状ポリマー〔メルトフローレ
ート=30〕を、時開y49−48921号公報等に記
載されるメルトプローン装置において、直径0.3mの
紡糸ノズルを1F1間隔に一列に配列1−1その両側に
0.2■厚さのスリット状気体吐出孔を有するものを用
いて、ポリマー溶融温度300℃、紡糸ノズル当りの吐
出量0.2 y /分、スリット状気体吐出孔から噴出
するプローン用空気温度を300℃、ブローン用加熱空
気圧力を2.2kf/−の条件でメルトプローンを行っ
た。この時、メルトブローン噴射繊維流は、紡糸ノズル
の下方20副の位置を走行するネット状ベルトコンベア
捕集機で捕集して繊維集合体をえた。この集合体を走査
型電子顕微鏡で観察したところ繊維が互にゆるく絡合し
た不織布を形成しているのがわかった。このメルトプロ
ーン不織布の目付は捕集機速度をメルトプローン装置当
りの吐出量に対してlll4I整設定した結果509/
d、見掛密度はo、1y/crAであった。又、得られ
た不織布を走査型電子顕微鏡で観察し、構成する繊維の
平均的繊度を求めたところ約3μmであった。即ち本発
明の方法により繊維の極細化とこの繊維を用いた集合体
とが一挙にえられたことになる。
[Example 1] 1. Production of skeletal fiber aggregate by melt-blowing method Polypropylene pellet-like polymer [melt flow rate = 30] was melt-blown with a diameter of 0.5 mm using a melt blowing apparatus described in Jikai Y49-48921, etc. Using 3 m spinning nozzles arranged in a row at 1F1 intervals and having 0.2 mm thick slit gas discharge holes on both sides, the polymer melting temperature was 300°C and the discharge amount per spinning nozzle was 0. 2 y/min, the temperature of the air for blowing jetted out from the slit-shaped gas discharge hole was 300° C., and the heated air pressure for blowing was 2.2 kf/−. At this time, the melt-blown fiber stream was collected by a net-like belt conveyor collector running 20 sub-positions below the spinning nozzle to obtain a fiber aggregate. When this aggregate was observed using a scanning electron microscope, it was found that the fibers were loosely intertwined with each other to form a nonwoven fabric. The basis weight of this melt-prown nonwoven fabric was determined by adjusting the collector speed to the discharge amount per melt-prone device.
d, apparent density was o, 1y/crA. Furthermore, the obtained nonwoven fabric was observed with a scanning electron microscope, and the average fineness of the constituent fibers was determined to be approximately 3 μm. That is, by the method of the present invention, ultra-fine fibers and aggregates using these fibers can be obtained all at once.

2、 高機能性極細複合繊維集合体の製造1、で得られ
た繊維集合体を窒素下で電子線発生装置を用い、2 M
 e V、1mAの電子線で20Mrad(7)照射を
行い引き続きアクリロニトリルモノマーに浸漬し、窒素
下で50℃、1時間のグラフト反応を行った。グラフト
率は300%であり、これは25μm径の通常のポリプ
ロピレン繊維不織布を用いた場合の同条件下のグラフト
率(1時間でグラフト率120%、4時間で150%)
に比べ表面積の大きいメルトプローン不織布の効果が十
分に13− 出ていることを示している。仄さ゛に、ヒドロギシルア
ミン3%メタノール水溶液(メタノール/水=5o15
0)中でグラフトされたアクリロニトリルQ)アミドキ
シム化を行った。得られた高機能性極細複合繊維集合体
の中のアミドキシム基量は9、5 meq/1 fであ
り、見掛密度は0.162P/−であった。
2. Production of highly functional ultrafine conjugate fiber aggregate The fiber aggregate obtained in 1.
The sample was irradiated with an electron beam of 20 Mrad(7) at eV and 1 mA, then immersed in acrylonitrile monomer, and a graft reaction was performed at 50° C. for 1 hour under nitrogen. The grafting rate is 300%, which is the same as the grafting rate under the same conditions when using a regular polypropylene fiber nonwoven fabric with a diameter of 25 μm (grafting rate 120% in 1 hour, 150% in 4 hours).
This shows that the effect of the melt-prown nonwoven fabric, which has a larger surface area than that of 13-. Slightly add 3% hydroxycylamine aqueous methanol solution (methanol/water = 5o15
Acrylonitrile Q) amidoximation grafted in 0) was carried out. The amount of amidoxime groups in the obtained highly functional ultrafine conjugate fiber aggregate was 9.5 meq/1 f, and the apparent density was 0.162 P/-.

3、金mイオンの捕集 2、で見られた高機能性極細複合繊維集合体0,1F(
5cmX1cm位の大きさです)をとシ、海水50tの
中に入れて振盪した。1日後、この高機能性極細複合繊
維集合体を取り出し、0.IN塩酸を用いて吸着された
ウラニルイオンを溶離し、発色剤アルセナゾ■を加えた
後、吸光測定を行って、吸着されたウラニルイオンの定
置を行った。その結果、0.125W/lグ繊維のウラ
ニルイオンが捕集されていることが判った。これは、通
常の太さ(25μm)の繊維を使用して作b、アミドキ
シム基量が同じ不織布を使用した場合の0.05η/1
2繊維に比べ極めて効率よく、本発明の方法が14− 優れたものであることを示している。
3. Collection of gold m ions 2. Highly functional ultrafine composite fiber aggregates 0, 1F (
(Its size is about 5 cm x 1 cm), and then put it in 50 tons of seawater and shaken it. One day later, this highly functional ultrafine conjugate fiber aggregate was taken out and 0. After eluting the adsorbed uranyl ions using IN hydrochloric acid and adding the coloring agent arsenazo 2, absorbance was measured to determine the emplacement of the adsorbed uranyl ions. As a result, it was found that uranyl ions of 0.125 W/lg of fiber were collected. This is 0.05η/1 when using a nonwoven fabric with the same amount of amidoxime groups when fabricated using fibers of normal thickness (25 μm).
This shows that the method of the present invention is extremely efficient compared to 14-2 fibers.

〔比較例1〕 1、 メルトプローン法による骨格繊維集合体の製造 実施例1と同じポリプロピレン・ペレット状ポリマーを
用い、紡糸ノズル当りの吐出量を0.3り7分、プロー
ン用加熱空気圧力を1.8kf/4 ネット状コンベア
をノズルの下30cntに設置した条件でメルトプロー
ンを行って直径約10μmの繊維からなる不織布をえた
。このメルトプローン不織布の目付は70r10n”、
見掛密度は0.08f/−でありた。
[Comparative Example 1] 1. Production of skeleton fiber aggregate by melt-prone method Using the same polypropylene pellet polymer as in Example 1, the discharge amount per spinning nozzle was 0.3 x 7 minutes, and the heating air pressure for the prone was Melt proning was performed under the condition that a 1.8 kf/4 net conveyor was installed 30 cnt below the nozzle to obtain a nonwoven fabric made of fibers with a diameter of about 10 μm. The basis weight of this melt-prone nonwoven fabric is 70r10n”,
The apparent density was 0.08 f/-.

2、 高機能性極細複合繊維集合体の製造1、で得られ
た繊維集合体に20Mradの放射線を照射後、アクリ
ロニトリルモノマー、と40℃、6時間接触させてグラ
フト重合反応を行い、グラフト率300優の繊維を得た
。次いで、3多ヒドロキシルアミンを用いてアミドキシ
ム化を行なって官能基を導入し、高機能性極細複合繊維
集合体を得た。この繊維集合体中のアミドキシム基量は
重量増加測定の結果9.0 meq/l Pであり、繊
維集合体の見掛密度は0.131F/−であった。
2. Production of highly functional ultrafine conjugate fiber aggregate After irradiating the fiber aggregate obtained in 1 with 20 Mrad radiation, it was brought into contact with acrylonitrile monomer at 40°C for 6 hours to perform a graft polymerization reaction, resulting in a grafting ratio of 300. Obtained excellent fiber. Next, amidoximization was performed using tri-hydroxylamine to introduce a functional group to obtain a highly functional ultrafine conjugate fiber aggregate. The amount of amidoxime groups in this fiber aggregate was 9.0 meq/l P as a result of weight increase measurement, and the apparent density of the fiber aggregate was 0.131 F/-.

3、 金属イオンの捕集 2、でえられた高機能性極細後合繊m集合体を用いて実
施例1と同様にして海水中のウラニルイオンの捕集を行
ったところ1日で0.075η/iF繊維のウラニルイ
オンが捕集された。この結果を実施例1と比較すると、
アミドキシム基量がほぼ同じでも、繊維が太い場合はア
ミドキシム基が繊維中に存在するためか、ウラニルイオ
ンの捕集には充分役立たないことを示している。
3. Collection of metal ions 2. When uranyl ions in seawater were collected in the same manner as in Example 1 using the obtained highly functional ultrafine post-synthetic fiber m aggregate, 0.075η was obtained in one day. /iF fiber uranyl ions were collected. Comparing this result with Example 1,
This indicates that even if the amount of amidoxime groups is approximately the same, when the fibers are thick, the fibers are not sufficiently useful for collecting uranyl ions, probably because the amidoxime groups are present in the fibers.

〔実施例2〕 6ナイロンペレツト50部、ポリプロピレンペレット5
0部を溶融混合して、口金よ少押出し、6ナイロンカ海
、ポリプロピレンが島となっている直径17μmの海鳥
繊維をつくった。この海島繊維の断面を走査型電子顕微
鏡で調べたところ、平均直径0.5μmの島、約100
0本から出来ていることが判った。この繊維に巻鰯を施
し、51mに切断し、クロスラッパー 二−ドルパンチ
ングマ/crAの不織布を作った。この不織布を塩化カ
ルシウムのメチルアルコール溶液中に浸漬して、海島繊
維のナイロンを溶出させ、メチルアルコールで洗浄して
、ポリプロピレンの槓細繊維からなる不なった。
[Example 2] 6 nylon pellets 50 parts, polypropylene pellets 5
0 parts were melt-mixed and extruded a little using a die to produce seabird fibers with a diameter of 17 μm, each consisting of islands of 6 nylon fiber and polypropylene. When we examined the cross section of this sea-island fiber using a scanning electron microscope, we found that there were about 100 islands with an average diameter of 0.5 μm.
It turned out that it was made from 0 pieces. This fiber was rolled and cut into 51 m lengths to produce a cross-wrapped two-dol punching machine/crA nonwoven fabric. This nonwoven fabric was immersed in a methyl alcohol solution of calcium chloride to elute the nylon sea-island fibers, and washed with methyl alcohol to form a polypropylene laminate fiber.

この不織布に20Mradの照射、続いてアクリロニI
−IJルのグラフト反応を行い、グラフト率300%の
繊維を得た。次いでアミドキシム化を行ったのち得られ
た不織布中のアミドキシム基量は12.5meq/ 1
 fであり、見掛密度は0.16f/cIAであった。
This nonwoven fabric was irradiated with 20 Mrad, followed by Acryloni I
A grafting reaction of -IJ was carried out to obtain fibers with a grafting rate of 300%. Then, after performing amidoximation, the amount of amidoxime groups in the obtained nonwoven fabric was 12.5 meq/1
f, and the apparent density was 0.16 f/cIA.

続いて実施例1と同様にして海水中のウラニルイオンの
捕集を行ったところ1日でo、oc+oq/12繊維の
ウラニルイオンが効率良く捕集された。
Subsequently, uranyl ions in seawater were collected in the same manner as in Example 1, and uranyl ions from o, oc+oq/12 fibers were efficiently collected in one day.

〔発明の効果〕〔Effect of the invention〕

本発明の高機能性極細複合繊維集合体を用いて、効率良
く金属イオンの捕集をすることができる。
Using the highly functional ultrafine composite fiber aggregate of the present invention, metal ions can be efficiently collected.

7

Claims (2)

【特許請求の範囲】[Claims] (1)平均直径5μm以下の骨格繊維に、骨格繊維の重
量の50%以上のアミドキシム化された官能基を持つグ
ラフト部分を有する繊維からなり、見掛密度が0.1な
いし0.5g/cm^3である高機能性極細複合繊維集
合体。
(1) The fibers are composed of a skeleton fiber with an average diameter of 5 μm or less and a graft portion having an amidoximated functional group that accounts for 50% or more of the weight of the skeleton fiber, and an apparent density of 0.1 to 0.5 g/cm. A highly functional ultrafine composite fiber aggregate that is ^3.
(2)平均直径5μm以下の骨格繊維からなる繊維集合
体を製造し、電離性放射線照射し、ニトリル基を含有し
、該ニトリル基をアミドキシム基に変換しうる単量体を
用いて繊維集合体の繊維にグラフト重合し、該ニトリル
基をアミドキシム化することよりなる高機能性極細複合
繊維集合体の製造方法。
(2) Produce a fiber aggregate consisting of skeleton fibers with an average diameter of 5 μm or less, irradiate it with ionizing radiation, and use a monomer that contains a nitrile group and can convert the nitrile group into an amidoxime group to form a fiber aggregate. 1. A method for producing a highly functional ultrafine conjugate fiber aggregate, which comprises graft polymerizing the nitrile group to the fiber of the invention and converting the nitrile group into an amidoxime.
JP19711189A 1989-07-28 1989-07-28 Aggregate of high-functionality ultrafine conjugate fiber and its production Pending JPH0364577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19711189A JPH0364577A (en) 1989-07-28 1989-07-28 Aggregate of high-functionality ultrafine conjugate fiber and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19711189A JPH0364577A (en) 1989-07-28 1989-07-28 Aggregate of high-functionality ultrafine conjugate fiber and its production

Publications (1)

Publication Number Publication Date
JPH0364577A true JPH0364577A (en) 1991-03-19

Family

ID=16368914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19711189A Pending JPH0364577A (en) 1989-07-28 1989-07-28 Aggregate of high-functionality ultrafine conjugate fiber and its production

Country Status (1)

Country Link
JP (1) JPH0364577A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998042910A1 (en) * 1997-03-25 1998-10-01 Chelest Corporation Chelate-forming fiber, process for preparing the same, and use thereof
JP2007284844A (en) * 2006-04-20 2007-11-01 Japan Atomic Energy Agency Method for introducing amidoxime group to polymeric substrate in high density and product produced thereby
JP2008229586A (en) * 2007-03-23 2008-10-02 Japan Atomic Energy Agency Graft-polymerized functional nonwoven filter and its manufacturing method
JP2009091707A (en) * 2007-10-12 2009-04-30 Japan Atomic Energy Agency Method for producing graft-polymerized functional nonwoven fabric
JP2015024364A (en) * 2013-07-25 2015-02-05 大阪ガスケミカル株式会社 Water purification cartridge and water purifier

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998042910A1 (en) * 1997-03-25 1998-10-01 Chelest Corporation Chelate-forming fiber, process for preparing the same, and use thereof
US6200481B1 (en) 1997-03-25 2001-03-13 Chelest Corporation Chelate-forming fiber, process for preparing the same, and use thereof
JP2007284844A (en) * 2006-04-20 2007-11-01 Japan Atomic Energy Agency Method for introducing amidoxime group to polymeric substrate in high density and product produced thereby
JP2008229586A (en) * 2007-03-23 2008-10-02 Japan Atomic Energy Agency Graft-polymerized functional nonwoven filter and its manufacturing method
JP2009091707A (en) * 2007-10-12 2009-04-30 Japan Atomic Energy Agency Method for producing graft-polymerized functional nonwoven fabric
JP2015024364A (en) * 2013-07-25 2015-02-05 大阪ガスケミカル株式会社 Water purification cartridge and water purifier

Similar Documents

Publication Publication Date Title
US10017461B2 (en) Method of making ligand functionalized substrates
US3833708A (en) Immiscible polymer products and processes
US9259689B2 (en) Functionalized nonwoven article
Ahmed et al. A review on electrospinning for membrane fabrication: Challenges and applications
KR101546551B1 (en) Hydrophilic porous substrates
US8586338B2 (en) Ligand functionalized substrates
US4110143A (en) Process for making a wettable polyolefin battery separator
US6659751B1 (en) Apparatus for radiation-induced graft polymerization treatment of fabric webs
DD153884A5 (en) MICROPOROESIC FILM WITH IMPROVED WATER THERMALITY AND / OR REDUCED ELECTRICAL RESISTANCE
JP5853031B2 (en) Composite fiber and fiber structure including the composite fiber
JPH0364577A (en) Aggregate of high-functionality ultrafine conjugate fiber and its production
JPH04187248A (en) Ion exchange polymer, ion exchange fiber, its production and nonwoven ion exchange fabric
JPH0679832A (en) Hydrophilic fiber sheet and production thereof
JP2015062870A (en) Filtration membrane, filtration unit, filtration system and filtration method
JP3487968B2 (en) Sulfonated composite fibers and nonwovens
JPWO2018043462A1 (en) Ion exchange fiber, water purification filter and water treatment method
JPH02169771A (en) Ultrafine conjugated fiber assembly and production thereof
JP3494805B2 (en) Grafted polyolefin-based nonwoven fabric
JPS6018329B2 (en) porous isotactic polypropylene hollow fiber
Tayal et al. A comparative study of cellulose acetate/polycaprolactone blend electrospun and phase-inversion membranes for forward osmosis
JPH07145559A (en) Water-absorption treatment of synthetic fiber
KAUR Surface modification of electrospun poly (vinylidene fluoride) nanofibrous microfiltration membrane
JPH07207562A (en) Nonwoven fabric
JPH02180940A (en) Crosslinked porous thermoplastic resin
JPH0247305A (en) Synthetic fiber having alkali resistance and liquid-retaining property and production thereof