JPH0364543B2 - - Google Patents

Info

Publication number
JPH0364543B2
JPH0364543B2 JP58132553A JP13255383A JPH0364543B2 JP H0364543 B2 JPH0364543 B2 JP H0364543B2 JP 58132553 A JP58132553 A JP 58132553A JP 13255383 A JP13255383 A JP 13255383A JP H0364543 B2 JPH0364543 B2 JP H0364543B2
Authority
JP
Japan
Prior art keywords
expanded particles
temperature
particles
dsc curve
expansion ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58132553A
Other languages
Japanese (ja)
Other versions
JPS6023428A (en
Inventor
Hideki Kuwabara
Atsushi Kitagawa
Yoshimi Sudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JEI ESU PII KK
Original Assignee
JEI ESU PII KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JEI ESU PII KK filed Critical JEI ESU PII KK
Priority to JP13255383A priority Critical patent/JPS6023428A/en
Publication of JPS6023428A publication Critical patent/JPS6023428A/en
Publication of JPH0364543B2 publication Critical patent/JPH0364543B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は無架橋ポリプロピレン系ランダム共重
合体樹脂予備発泡粒子の製造方法に関し、さらに
詳しくは成型性が良好な無架橋ポリプロピレン系
ランダム共重合体樹脂予備発泡粒子の製造方法に
関する。 従来より主に発泡ポリスチレン、発泡ポリエチ
レンが緩衝材、包装材等各方面に用いられてい
る。これらの発泡体と共にポリプロピレン系樹脂
の発泡成型体が使用されてきており、本出願人は
ポリプロピレン系樹脂のビーズ成型法に用いる予
備発泡粒子を得る方法をすでに出願している(特
公昭56−1344号)。この方法によれば、発泡が非
常に困難とされていた、ポリプロピレン系樹脂粒
子から簡単に比較的高発泡の予備発泡粒子を得る
ことができる画期的なものであるが、同時に次の
様な問題点を有しており、未だ改良の余地を残し
ているものである。すなわち、 (1) 比較的高発泡のものが得られるとはいえ、25
倍程度が限度であり、これ以上の倍率のものを
得ようとしても独立気泡率の低下を招き成型に
供し得ない。 (2) 得られる予備発泡粒子の気泡が微細となる傾
向があり、このような予備発泡粒子を用いて成
型体を得ようとしても寸法精度が良好でかつ腰
の強い(柔軟性の大きい)発泡体は得難い。 これら従来技術の欠点を解決する方法として本
出願人は、予備発泡粒子の真の発泡倍率Eと断面
1mm2当りの気泡数nとがともに特定の範囲内の値
を有する予備発泡粒子加熱発泡せしめて元の発泡
倍率Eより大なる発泡倍率を有する予備発泡粒子
を得る方法を提案し先に出願を行なつた(特願昭
57−172590号、特願昭58−7743号)。これらの製
造方法により得られた予備発泡粒子は上記従来の
欠点を解決することができる反面、最初の予備発
泡粒子の発泡倍率、気泡数が同一でかつ同一条件
で加熱発泡せしめても最終的に得られる予備発泡
粒子の発泡倍率が同一とならない(ロツト間の発
泡倍率のバラツキが大きい)という問題を有し、
未だ改良の余地を残しているものである。 本発明者らは上記の点に鑑み鋭意研究した結
果、得られた予備発泡粒子のロツト間の発泡倍率
のバラツキの大小を左右する要因が最初の予備発
泡粒子の結晶構造上の違いにあることを見い出し
本発明を完成するに至つた。 即ち本発明は真の発泡倍率をE、断面1mm2当り
の気泡数をnとしたとき、 2<E1/3×n1/2<60 の関係を有し、かつ該予備発泡粒子の示差走査熱
量測定によつて得られるDSC曲線(ただし予備
発泡粒子1〜3mgを示差走査熱量計によつて10
℃/分の昇温速度で220℃まで昇温したときに得
られるDSC曲線)に基材樹脂固有の固有ピーク
より高温側に高温ピークが現われる結晶構造を有
する無架橋ポリプロピレン系ランダム共重合体樹
脂予備発泡粒子に発泡能を付与し、しかる後該予
備発泡粒子を加熱して発泡させ、元の発泡倍率E
より大なる発泡倍率を有する予備発泡粒子を得る
ことを特徴とする無架橋ポリプロピレン系ランダ
ム共重合体樹脂予備発泡粒子の製造方法を要旨と
する。 本発明に用いられる予備発泡粒子の材質として
は、例えば無架橋のエチレン−プロピレンランダ
ム共重合体やブテン−プロピレンランダム共重合
体等の無架橋プロピレン系ランダム共重合体が用
いられる。なかでもエチレン−プロピレンランダ
ム共重合体が好ましく、特にエチレン成分0.5〜
10wt%のものが好ましい。 本発明において発泡に供される無架橋ポリプロ
ピレン系ランダム共重合体樹脂予備発泡粒子とし
ては、真の発泡倍率をE、断面1mm2当りの気泡数
をnとしたとき、次式2<E1/3×n1/2<60を満足
する予備発泡粒子である。E1/3×n1/2が2以下で
はこれを加熱発泡して得られる予備発泡粒子の気
泡が粗大となり過ぎ、良好な物性を有する発泡成
型体が得られ難い。E1/3×n1/2が60以上の場合
(かかる場合は発泡倍率Eが極端に高いか気泡数
nが極端に多いかいずれかの場合、もしくは両方
の場合である。)には、このような予備発泡粒子
を加熱して発泡させようとしても収縮が生じ易
く、発泡効率が極めて悪くなり、無理に発泡させ
ようとすれば独立気泡率の低下を招く、このよう
にして得られた予備発泡粒子を用いて、発泡成型
を行なつたとしても得られる発泡成型体は寸法精
度に劣り、満足な物性を有するものではない。上
記真の発泡倍率Eは、予備発泡粒子の密度を基材
樹脂の樹脂密度で除した値の逆数として求められ
る。ここで予備発泡粒子の密度は、例えば次の如
く測定することができる。まずメスシリンダー中
に予め入れておいた一定量の水の中に重量既知の
所定量の予備発泡粒子を入れた後全体の容積を測
定する。次いで全体の容積から元の水の体積を減
じて予備発泡粒子の容積を求め、重量を容積で除
すことにより求めることができる。また断面1mm2
当りの気泡数nは、予備発泡粒子の切断面を顕微
鏡にて観察して求めることができる。 本発明において発泡に供される無架橋ポリプロ
ピレン系ランダム共重合体樹脂予備発泡粒子は、
上記2<E1/3×n1/2<60の関係を有するとともに
示差走査熱量測定によつて得られるDSC曲線に
基材樹脂固有の固有ピークより高温側に高温ピー
クが現われる結晶構造を有する。DSC曲線に上
記高温ピークが現われない予備発泡粒子は、加熱
して発泡させようとしても収縮が生じ易く、発泡
効率も悪くなり、ロツト間の発泡倍率のバラツキ
が大きくなる。又、このような予備発泡粒子から
製造された予備発泡粒子を用いて成型を行なつて
も収縮率の少ない寸法安定性に優れた成型体を得
ることはできない。 本発明において、無架橋ポリプロピレン系ラン
ダム共重合体樹脂予備発泡粒子の示差走査熱量測
定によつて得られるDSC曲線とは、無架橋ポリ
プロピレン系ランダム共重合体樹脂予備発泡粒子
1〜3mgを示差走査熱量計によつて10℃/分の昇
温速度で220℃まで昇温したときに得られるDSC
曲線である。 上記固有ピークと高温ピークとは、以下のよう
にして区別することができる。即ち、まず試料を
室温から220℃まで10℃/分の昇温速度で昇温し
た時に得られるDSC曲線を第1回目のDSC曲線
とし、次に220℃から10℃/分の降温速度で40℃
付近まで降温し、再度10℃/分の昇温速度で220
℃まで昇温した時に得られるDSC曲線を第2回
目のDSC曲線とする。次に第1回目のDSC曲線
と第2回目のDSC曲線の比較を行なう。固有ピ
ークは通常第1回目のDSC曲線にも第2回目の
DSC曲線にも現われるピークでそのピークの頂
点の温度は第1回目と第2回目で多少異なる場合
があるが、その差は5℃未満通常は2℃未満であ
る。 一方、高温ピークとは、第1回目のDSC曲線
で上記固有ピークより高温側に現われる吸熱ピー
クである。上記高温ピークは、上記固有ピークと
して現われる構造とは異なる結晶構造の存在によ
るものではないかと考えられ、該高温ピークは第
1回目のDSC曲線には現われるが、同一条件で
昇温を行なつた第2回目のDSC曲線には現われ
ない。従つて高温ピークとして現われる構造は本
発明において用いられる、最初の予備発泡粒子が
ポリプロピレン系樹脂固有の固有ピークを示す結
晶構造とは異なる、結晶構造をも有していること
を示し、特定の発泡条件によつて無架橋ポリプロ
ピレン系ランダム共重合体樹脂を発泡せしめるこ
とによつてDSC曲線に高温ピークが現われる結
晶構造を有する予備発泡粒子が得られる。 前記第2回目のDSC曲線に現われる固有ピー
クの温度と第1回目のDSC曲線に現われる高温
ピークの温度との差は大きいことが望ましく、第
2回目のDSC曲線の固有ピークの頂点の温度と
高温ピークの頂点の温度との差は5℃以上、好ま
しくは10℃以上である。 本発明において高温ピークにおける融解エネル
ギーの大小は特に限定するものではないが、融解
エネルギーが1.0cal/g以上のものが特に好まし
い。融解エネルギーは、 融解エネルギー(cal/g)=高温ピークのチヤー
ト上の面積(cm2) ×(チヤート1cm2当りの熱量(j/cm2) ×0.239(cal/j)÷ (測定サンプル重量(g)) より求めることができる。 本発明に用いられる上記、2<E1/3×n1/2<60
の関係を有しかつDSC曲線に高温ピークが現わ
れる結晶構造を有する無架橋ポリプロピレン系ラ
ンダム共重合体樹脂予備発泡粒子は次のようにし
て製造される。即ち密閉容器内に無架橋ポリプロ
ピレン系ランダム共重合体樹脂粒子と、該樹脂粒
子100重量部に対して水100〜400重量部、揮発性
発泡剤(例えばジクロロジフロロメタン)3〜30
重量部、分散剤(例えば微粒状酸化アルミニウ
ム)0.1〜3重量部を配合し、融解終了温度Tm以
上に昇温することなく、Tm−25℃〜Tm−5℃
(Tmは無架橋ポリプロピレン系ランダム共重合
体樹脂の融解終了温度で、本発明においては、試
料6〜8mgを示差走査熱量計にて10℃/分の昇温
速度で220℃まで昇温し、次いで10℃/分の降温
速度で40℃付近まで降温した後、再度10℃/分の
昇温速度で220℃まで昇温し、第2回目の昇温に
よつて得られたDSC曲線の吸熱ピークの裾が高
温側でベースラインの位置に戻つた時の温度を融
解終了温度とした。)まで昇温した後、容器の一
端を開放して、上記樹脂粒子と水とを容器内より
低圧の雰囲気下に放出し、樹脂粒子を発泡せしめ
て得ることができる。 上述の如く、発泡に際して発泡温度を融解終了
温度Tm以上に昇温することなく上記した一定の
温度範囲に規定することにより、2<E1/3×n1/2
<60の関係を有しかつ、DSC曲線に高温ピーク
の現われる構造を有する、発泡粒子を得ることが
できる。発泡温度が上記範囲から外れた場合、ま
たは上記範囲内であつても一旦融解終了温度Tm
以上に昇温した場合は、2<E1/3×n1/2<60の関
係を満足しないかあるいは、得られた発泡粒子の
DSC曲線には固有ピークのみが現われ高温ピー
クは現われない。 本発明において、予備発泡粒子に発泡能を付与
する。発泡能の付与は予備発泡粒子に無機ガス、
揮発性発泡剤または無機ガスと揮発性発泡剤との
混合ガスを含有させることにより行なわれ、所望
する発泡倍率の程度によつても異なるが、通常
1.5〜10Kg/cm2(abs.)の内圧が付与される。無
機ガスとしては、例えば空気、窒素、アルゴン、
ヘリウム等が挙げられるが通常は空気が用いられ
る。また揮発性発泡剤としては、例えばプロパ
ン、ブタン、ペンタン、ヘキサン等で例示される
脂肪族炭化水素類、シクロブタン、シクロペンタ
ン等で例示される環式脂肪族炭化水素類およびト
リクロロフロロメタン、ジクロロジフロロメタ
ン、ジクロロテトラフロロエタン、メチルクロラ
イド、エチルクロライド、メチレンクロライド等
で例示されるハロゲン化炭化水素類等が使用され
る。 次いで上記、発泡能を付与した予備発泡粒子を
加熱発泡する。加熱する方法としては一般に蒸気
による加熱が行なわれるが、熱風による加熱を行
なつてもよい。加熱温度は目的とする発泡倍率に
よつて異なるが、通常は、蒸気による加熱の場合
には0.8〜1.5Kg/cm2(G)の蒸気を供給して加熱
し、また熱風による加熱の場合には100℃以上の
熱風を供給して加熱する。また加熱時間は蒸気の
場合は1分以内、熱風の場合は8分以内が好まし
い。 本発明においては上記加熱発泡は、一回の操作
により行なう場合に制限されず、加熱発泡させた
予備発泡粒子をさらに加熱せしめ、発泡させる操
作を繰り返してもよい。このような操作は加熱発
泡に供すべき無架橋ポリプロピレン系ランダム共
重合体樹脂予備発泡粒子が2<E1/3×n1/2<60の
関係を満足し、かつDSC曲線に高温ピークが現
われる結晶構造を有するものである限り何度繰り
返してもよい。 本発明により得られる予備発泡粒子は通常元の
予備発泡粒子の真の発泡倍率Eの1.15倍以上の発
泡倍率、例えば3〜100倍、好ましくは10〜60倍
の発泡倍率を有し、また0.1〜300個/mm2の気泡数
を有する。 本発明により得られる予備発泡粒子は発泡成型
体の製造に用いられる。まず上記予備発泡粒子は
常温、常圧下所定時間熟成された後、窒素、空気
等の無機ガスまたは無機ガスと揮発性発泡剤との
混合ガスを用いて所定圧力にて所定時間加圧熟成
される。次いで上記の加圧熟成により内圧を付与
された予備発泡粒子は、例えば型面に水蒸気等の
加熱媒体が通過できる小孔を有する金型に充填し
例えば2〜5Kg/cm2(G)の水蒸気により加熱発
泡させることにより型通りの発泡成型体を得るこ
とができる。 上記の発泡成型体は、例えば包装材、緩衝材、
保温材、断熱材、建築資材、車輛部材、浮揚材、
食品容器等に用いることができる。 以下実施例,比較例を挙げて本発明を更に詳細
に説明する。 実施例1〜17および比較例1〜16 密閉容器に水3000g、無架橋エチレン−プロピ
レンランダム共重合体樹脂粒子(Tm=153℃)
1000g、極微粒状酸化アルミニウム(分散剤)3
g及び第1表に示す揮発性発泡剤を配合し、撹拌
下容器内温度を同表に示す容器内最高温度以下に
保ちながら加熱した。次いで第1表の1,2に示
す発泡温度にて30分間保持した後、容器内の圧力
を、窒素ガスにより30Kg/cm2(G)に保持しなが
ら容器の一端を開放し、樹脂粒子と水とを同時に
大気圧へ放出し、樹脂粒子を発泡せしめて発泡粒
子を得た。得られた発泡粒子の真の発泡倍率およ
び気泡数を測定し、結果を第2表の1,2の加熱
発泡に供される予備発泡粒子の項に示す。 尚、加熱発泡に供する予備発泡粒子のうち、実
施例12は実施例9の、実施例13は実施例7の、実
施例16は実施例5の、実施例17は実施例6の、比
較例11は比較例7の、比較例12は比較例8の、比
較例15は比較例5の、比較例16は比較例6の二段
発泡粒子をそれぞれ用いた。気泡数の調節は、基
材樹脂100部に対しシリカ0.05〜0.2部を添加して
行なつた。得られた各発泡粒子を示差走査熱量計
(島津製作所製DT−30型)によつて10℃/分の
昇温速度で220℃まで昇温して第1回目の測定を
行なつた後10℃/分の降温速度で40℃まで降温
し、再度10℃/分の昇温速度で220℃まで昇温し
て第2回目の測定を行なつた。 そして得られたDSC曲線から高温ピークを測
定し、高温ピークの融解エネルギー(cal/g)
を計算し結果を第2表にあわせて示した。 尚、実施例1の発泡粒子のDSC曲線を第1図
に示す(図中aは固有ピーク、bは高温ピークを
示し、斜線部分は高温ピークの面積を示す)。又、
比較例3の発泡粒子のDSC曲線を第2図に示す。
第1図及び第2図において実線は第1回目の測定
で得られたDSC曲線を示し、点線は第2回目の
測定で得られたDSC曲線を示す。 次いで上記各予備発泡粒子を3Kg/cm2(G)の
空気にて所定時間加圧処理し、第2表に示す内圧
を付与した後同表に示す圧力の蒸気にて10秒間加
熱して発泡せしめた。得られた予備発泡粒子の気
泡数、真の発泡倍率および発泡倍率のバラツキを
比較する指数として発泡倍率インデツクスを求め
結果を第2表の12にあわせて示す。 次に実施例1〜4及び比較例1〜4の各発泡粒
子を3Kg/cm2(G)の空気で24時間加圧処理し、
その後50mm×300mm×300mmの内寸法を有する成型
用金型に充填し、3.3Kg/cm2(G)の蒸気で加熱
し、発泡成型を行なつた。得られた各成型体を80
℃のオーブン内で24時間乾燥し、常温まで徐冷し
た後、発泡成型体の発泡倍率、収縮率を測定し
た。又、吸水率をJIS−K6767B法にて測定し、
吸水率の大小より融着性の良否を判定した。結果
を第2表の1,2に示す。又、得られたデータか
ら、横軸をlog E,縦軸をlog nとしてプロツト
した(実施例は〇、比較例は●で示す)結果を第
3図に示す。第3図中において直線1は、 log n=−2/3log E+2log60を、 また直線2は、 log n=−2/3log E+2log2を示し、 直線1は、 式:E1/3×n1/2=60に相当し、 直線2は、 式:E1/3×n1/2=に相当する。
The present invention relates to a method for producing pre-expanded non-crosslinked polypropylene random copolymer resin particles, and more particularly to a method for producing pre-expanded non-crosslinked polypropylene random copolymer resin particles having good moldability. Conventionally, foamed polystyrene and foamed polyethylene have been mainly used for various purposes such as cushioning materials and packaging materials. Along with these foams, polypropylene resin foam moldings have been used, and the applicant has already filed an application for a method for obtaining pre-expanded particles for use in a polypropylene resin bead molding method (Japanese Patent Publication No. 56-1344). issue). This method is revolutionary in that it is possible to easily obtain relatively highly foamed pre-expanded particles from polypropylene resin particles, which have been considered extremely difficult to foam. This method has some problems and still leaves room for improvement. In other words, (1) Although relatively high foaming can be obtained, 25
The limit is about twice as much, and even if you try to obtain a product with a magnification higher than this, the closed cell ratio will decrease and it will not be possible to use it for molding. (2) The air bubbles in the resulting pre-expanded particles tend to be fine, and even when trying to obtain a molded product using such pre-expanded particles, it is difficult to obtain a foam with good dimensional accuracy and firmness (high flexibility). The body is hard to come by. As a method to solve these drawbacks of the prior art, the present applicant has developed a method for heating and foaming pre-expanded particles in which the true expansion ratio E and the number of bubbles n per 1 mm 2 of the pre-expanded particles are both within a specific range. proposed a method of obtaining pre-expanded particles with a larger expansion ratio than the original expansion ratio E, and filed an application earlier.
No. 57-172590, patent application No. 58-7743). Although the pre-expanded particles obtained by these manufacturing methods can solve the above-mentioned conventional drawbacks, even if the expansion ratio and the number of cells are the same as the initial pre-expanded particles and they are heated and foamed under the same conditions, the final There is a problem that the expansion ratio of the obtained pre-expanded particles is not the same (the expansion ratio varies greatly between lots),
There is still room for improvement. As a result of intensive research in view of the above points, the present inventors have found that the factor that determines the variation in expansion ratio between lots of obtained pre-expanded particles is the difference in the crystal structure of the initial pre-expanded particles. This discovery led to the completion of the present invention. That is, the present invention has a relationship of 2 < E 1/3 × n 1/2 < 60, where E is the true expansion ratio and n is the number of bubbles per 1 mm 2 of cross section, and the differential of the pre-expanded particles is DSC curve obtained by scanning calorimetry (however, 1 to 3 mg of pre-expanded particles were measured by differential scanning calorimeter at 10
A non-crosslinked polypropylene random copolymer resin with a crystal structure in which a high-temperature peak appears on the higher temperature side than the characteristic peak unique to the base resin in the DSC curve obtained when the temperature is raised to 220 °C at a heating rate of °C/min. A foaming ability is imparted to the pre-expanded particles, and then the pre-expanded particles are heated and foamed to achieve the original expansion ratio E.
The gist of the present invention is a method for producing pre-expanded non-crosslinked polypropylene random copolymer resin particles, which is characterized by obtaining pre-expanded particles having a larger expansion ratio. As the material for the pre-expanded particles used in the present invention, for example, non-crosslinked propylene random copolymers such as non-crosslinked ethylene-propylene random copolymers and butene-propylene random copolymers are used. Among them, ethylene-propylene random copolymer is preferred, especially ethylene component 0.5~
10wt% is preferred. The non-crosslinked polypropylene random copolymer resin pre-expanded particles to be subjected to foaming in the present invention have the following formula 2<E 1/ where the true expansion ratio is E and the number of cells per 1 mm 2 of cross section is n. These are pre-expanded particles that satisfy 3 ×n 1/2 <60. If E 1/3 ×n 1/2 is less than 2, the bubbles in the pre-expanded particles obtained by heating and foaming will become too coarse, making it difficult to obtain a foamed molded product with good physical properties. If E 1/3 × n 1/2 is 60 or more (in such a case, the expansion ratio E is extremely high, the number of bubbles n is extremely large, or both), Even if you try to foam these pre-expanded particles by heating, they tend to shrink, resulting in extremely poor foaming efficiency, and if you try to foam them forcibly, it will lead to a decrease in the closed cell ratio. Even if foam molding is performed using pre-expanded particles, the resulting foam molded product has poor dimensional accuracy and does not have satisfactory physical properties. The true expansion ratio E is determined as the reciprocal of the value obtained by dividing the density of the pre-expanded particles by the resin density of the base resin. Here, the density of the pre-expanded particles can be measured, for example, as follows. First, a predetermined amount of pre-expanded particles with a known weight is placed in a predetermined amount of water previously placed in a graduated cylinder, and the total volume is then measured. The volume of the pre-expanded particles is then determined by subtracting the original water volume from the total volume, and can be determined by dividing the weight by the volume. Also, the cross section is 1mm 2
The number of bubbles n can be determined by observing the cut surface of the pre-expanded particles using a microscope. The pre-expanded non-crosslinked polypropylene random copolymer resin particles subjected to foaming in the present invention are:
It has the above relationship 2 < E 1/3 × n 1/2 < 60 and has a crystal structure in which a high temperature peak appears on the higher temperature side than the characteristic peak specific to the base resin in the DSC curve obtained by differential scanning calorimetry. . Pre-expanded particles in which the above-mentioned high-temperature peak does not appear on the DSC curve tend to shrink even when heated and foamed, resulting in poor foaming efficiency and large variations in expansion ratio between lots. Further, even if pre-expanded particles produced from such pre-expanded particles are used for molding, it is not possible to obtain a molded article with low shrinkage rate and excellent dimensional stability. In the present invention, a DSC curve obtained by differential scanning calorimetry of non-crosslinked polypropylene random copolymer resin pre-expanded particles refers to a DSC curve obtained by differential scanning calorimetry of non-crosslinked polypropylene random copolymer resin pre-expanded particles. DSC obtained when the temperature is raised to 220°C at a heating rate of 10°C/min using a meter
It is a curve. The above characteristic peak and high temperature peak can be distinguished as follows. That is, the first DSC curve is the DSC curve obtained when the sample is heated from room temperature to 220°C at a heating rate of 10°C/min, and then the sample is heated from room temperature to 220°C at a cooling rate of 10°C/min. ℃
The temperature is lowered to around 220℃, and then the temperature is increased again at a heating rate of 10℃/min.
The DSC curve obtained when the temperature is raised to ℃ is the second DSC curve. Next, the first DSC curve and the second DSC curve are compared. The characteristic peak is usually found both in the first DSC curve and in the second one.
The temperature at the top of the peak, which also appears in the DSC curve, may differ slightly between the first and second runs, but the difference is less than 5°C and usually less than 2°C. On the other hand, the high temperature peak is an endothermic peak that appears on the higher temperature side than the above-mentioned characteristic peak in the first DSC curve. It is thought that the above-mentioned high-temperature peak is due to the presence of a crystal structure different from the structure that appears as the above-mentioned characteristic peak, and although the high-temperature peak appears in the first DSC curve, the temperature was raised under the same conditions. It does not appear in the second DSC curve. Therefore, the structure that appears as a high-temperature peak indicates that the initial pre-expanded particles used in the present invention also have a crystal structure that is different from the crystal structure that exhibits the characteristic peaks inherent to polypropylene resins. By foaming a non-crosslinked polypropylene random copolymer resin under certain conditions, pre-expanded particles having a crystal structure in which a high temperature peak appears on the DSC curve can be obtained. It is desirable that the difference between the temperature of the characteristic peak appearing in the second DSC curve and the temperature of the high temperature peak appearing in the first DSC curve is large, and the temperature at the peak of the characteristic peak of the second DSC curve and the high temperature are preferably large. The difference from the peak temperature is 5°C or more, preferably 10°C or more. In the present invention, the magnitude of the melting energy at the high temperature peak is not particularly limited, but it is particularly preferable that the melting energy is 1.0 cal/g or more. The melting energy is as follows: Melting energy (cal/g) = Area of high temperature peak on the chart (cm 2 ) × (heat amount per 1 cm 2 of chart (j/cm 2 ) × 0.239 (cal/j) ÷ (measured sample weight ( g)) The above used in the present invention, 2<E 1/3 ×n 1/2 <60
Pre-expanded non-crosslinked polypropylene random copolymer resin particles having a crystal structure having the following relationship and a high temperature peak appearing in the DSC curve are produced as follows. That is, in a closed container, non-crosslinked polypropylene random copolymer resin particles, 100 to 400 parts by weight of water per 100 parts by weight of the resin particles, and 3 to 30 parts by weight of a volatile blowing agent (for example, dichlorodifluoromethane) are placed.
parts by weight, and 0.1 to 3 parts by weight of a dispersant (for example, finely divided aluminum oxide), and without raising the temperature above the melting end temperature Tm, Tm-25℃ to Tm-5℃.
(Tm is the melting end temperature of the non-crosslinked polypropylene random copolymer resin, and in the present invention, 6 to 8 mg of the sample is heated to 220°C at a heating rate of 10°C/min using a differential scanning calorimeter. Next, the temperature was lowered to around 40°C at a cooling rate of 10°C/min, and then the temperature was raised again to 220°C at a heating rate of 10°C/min. The temperature at which the tail of the peak returned to the baseline position on the high-temperature side was defined as the melting end temperature.) After raising the temperature to a temperature of It can be obtained by foaming the resin particles. As mentioned above, by setting the foaming temperature within the above-mentioned constant temperature range without increasing the temperature above the melting end temperature Tm during foaming, 2<E 1/3 ×n 1/2
It is possible to obtain expanded particles having a relationship of <60 and having a structure in which a high temperature peak appears in the DSC curve. If the foaming temperature is outside the above range, or even if it is within the above range, the melting end temperature Tm
If the temperature is increased above, the relationship of 2 < E 1/3 × n 1/2 < 60 is not satisfied, or the resulting foamed particles are
Only the characteristic peak appears in the DSC curve, and the high temperature peak does not appear. In the present invention, foaming ability is imparted to the pre-expanded particles. Foaming ability is imparted to pre-expanded particles by inorganic gas,
This is done by containing a volatile blowing agent or a mixed gas of an inorganic gas and a volatile blowing agent, and it usually depends on the degree of the desired expansion ratio.
An internal pressure of 1.5 to 10 Kg/cm 2 (abs.) is applied. Examples of inorganic gases include air, nitrogen, argon,
Examples include helium, but air is usually used. Examples of volatile blowing agents include aliphatic hydrocarbons such as propane, butane, pentane, and hexane; cycloaliphatic hydrocarbons such as cyclobutane and cyclopentane; and trichlorofluoromethane and dichlorodichloromethane. Halogenated hydrocarbons such as fluoromethane, dichlorotetrafluoroethane, methyl chloride, ethyl chloride, methylene chloride, etc. are used. Next, the above-mentioned pre-expanded particles imparted with foaming ability are heated and foamed. As a heating method, heating with steam is generally performed, but heating with hot air may also be performed. The heating temperature varies depending on the desired expansion ratio, but usually, when heating with steam, 0.8 to 1.5 kg/cm 2 (G) of steam is supplied, and when heating with hot air, is heated by supplying hot air of 100℃ or higher. Further, the heating time is preferably within 1 minute in the case of steam, and within 8 minutes in the case of hot air. In the present invention, the heat-foaming is not limited to a single operation, but may be repeated by further heating and foaming the pre-expanded particles that have been heat-foamed. Such an operation ensures that the non-crosslinked polypropylene random copolymer resin pre-expanded particles to be subjected to heat foaming satisfy the relationship 2<E 1/3 × n 1/2 <60 and that a high temperature peak appears on the DSC curve. It may be repeated any number of times as long as it has a crystal structure. The pre-expanded particles obtained by the present invention usually have an expansion ratio of 1.15 times or more, for example 3 to 100 times, preferably 10 to 60 times, the true expansion ratio E of the original pre-expanded particles, and 0.1 It has a bubble count of ~300/ mm2 . The pre-expanded particles obtained by the present invention are used for producing foam molded articles. First, the pre-expanded particles are aged at room temperature and pressure for a predetermined time, and then pressure aged at a predetermined pressure for a predetermined time using an inorganic gas such as nitrogen or air, or a mixed gas of an inorganic gas and a volatile blowing agent. . Next, the pre-expanded particles to which internal pressure has been applied by the above-mentioned pressure aging are filled into a mold having, for example, small holes on the mold surface through which a heating medium such as steam can pass. By heating and foaming, it is possible to obtain a foam molded product according to the pattern. The above-mentioned foam molded product can be used, for example, as a packaging material, a cushioning material,
Heat insulation materials, insulation materials, construction materials, vehicle parts, flotation materials,
It can be used for food containers, etc. The present invention will be explained in more detail below with reference to Examples and Comparative Examples. Examples 1 to 17 and Comparative Examples 1 to 16 3000 g of water and non-crosslinked ethylene-propylene random copolymer resin particles (Tm = 153°C) in a closed container
1000g, ultrafine aluminum oxide (dispersant) 3
g and the volatile blowing agent shown in Table 1 were mixed and heated while stirring and keeping the temperature inside the container below the maximum temperature shown in the same table. Next, after maintaining the foaming temperature shown in 1 and 2 of Table 1 for 30 minutes, one end of the container was opened while the pressure inside the container was maintained at 30 kg/cm 2 (G) with nitrogen gas, and the resin particles and Water and water were simultaneously discharged to atmospheric pressure to foam the resin particles to obtain foamed particles. The true expansion ratio and number of cells of the obtained foamed particles were measured, and the results are shown in Table 2, 1 and 2, under the heading of pre-expanded particles subjected to heat foaming. Of the pre-expanded particles subjected to heat foaming, Example 12 is from Example 9, Example 13 is from Example 7, Example 16 is from Example 5, Example 17 is from Example 6, and Comparative Example. Comparative Example 11 used the two-stage expanded particles of Comparative Example 7, Comparative Example 12 used the two-stage expanded particles of Comparative Example 8, Comparative Example 15 used the two-stage expanded particles of Comparative Example 5, and Comparative Example 16 used the two-stage expanded particles of Comparative Example 6. The number of bubbles was adjusted by adding 0.05 to 0.2 parts of silica to 100 parts of the base resin. After performing the first measurement by heating each of the obtained expanded particles to 220°C at a heating rate of 10°C/min using a differential scanning calorimeter (Model DT-30 manufactured by Shimadzu Corporation), The temperature was lowered to 40°C at a cooling rate of 10°C/min, and the temperature was again raised to 220°C at a heating rate of 10°C/min, and a second measurement was performed. Then, measure the high temperature peak from the obtained DSC curve and calculate the melting energy (cal/g) of the high temperature peak.
was calculated and the results are shown in Table 2. The DSC curve of the expanded particles of Example 1 is shown in FIG. 1 (in the figure, a indicates the characteristic peak, b indicates the high temperature peak, and the shaded area indicates the area of the high temperature peak). or,
The DSC curve of the expanded particles of Comparative Example 3 is shown in FIG.
In FIGS. 1 and 2, the solid line indicates the DSC curve obtained in the first measurement, and the dotted line indicates the DSC curve obtained in the second measurement. Next, each of the above pre-expanded particles was pressurized with 3 kg/cm 2 (G) air for a predetermined period of time to give the internal pressure shown in Table 2, and then heated with steam at the pressure shown in the same table for 10 seconds to foam. I forced it. The foaming ratio index was determined as an index for comparing the number of cells, the true foaming ratio, and the variation in the foaming ratio of the obtained pre-expanded particles, and the results are shown in Table 12 of Table 2. Next, each of the expanded particles of Examples 1 to 4 and Comparative Examples 1 to 4 was pressurized with 3 kg/cm 2 (G) of air for 24 hours,
Thereafter, the mixture was filled into a mold having internal dimensions of 50 mm x 300 mm x 300 mm, and heated with steam at 3.3 Kg/cm 2 (G) to perform foam molding. 80 pieces of each molded body obtained
After drying in an oven at ℃ for 24 hours and slowly cooling to room temperature, the foaming ratio and shrinkage rate of the foam molded product were measured. In addition, the water absorption rate was measured using the JIS-K6767B method.
The quality of the fusion properties was determined based on the water absorption rate. The results are shown in 1 and 2 of Table 2. Further, the results obtained by plotting the obtained data with log E on the horizontal axis and log n on the vertical axis (examples are shown with ○, comparative examples with ●) are shown in FIG. In Figure 3, straight line 1 shows log n=-2/3log E+2log60, and straight line 2 shows log n=-2/3log E+2log2, and straight line 1 has the formula: E 1/3 ×n 1/2 = 60, and straight line 2 corresponds to the formula: E 1/3 ×n 1/2 =.

【表】【table】

【表】【table】

【表】【table】

【表】 以上説明したように本発明によれば、従来に比
してより一層高発泡の予備発泡粒子が得られると
ともに、得られた発泡粒子の発泡倍率のロツト間
のバラツキをきわめて小さくすることができるた
め、目的とする発泡倍率の予備発泡粒子を容易に
製造することができ、しかもかかる目的を達成す
るための工程管理をも容易ならしめることができ
る。しかも本発明により得られる予備発泡粒子は
高発泡でありながら従来の予備発泡粒子同様の独
立気泡率を有する等優れたものであり、この予備
発泡粒子を用いて得られる発泡成型体は、寸法精
度、融着性、柔軟性が大きい等優れた性質を有す
る等の種々の効果を有する。
[Table] As explained above, according to the present invention, it is possible to obtain pre-expanded particles with a higher degree of foaming than in the past, and to minimize the variation between lots in the expansion ratio of the obtained expanded particles. Therefore, pre-expanded particles having a desired expansion ratio can be easily produced, and process control for achieving this purpose can also be made easier. In addition, the pre-expanded particles obtained by the present invention are highly foamed and have an excellent closed cell ratio similar to that of conventional pre-expanded particles. It has various effects such as excellent properties such as high fusion properties and high flexibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1の予備発泡粒子のDSC曲
線を示すグラフ、第2図は、比較例3の予備発泡
粒子のDSC曲線を示すグラフ、第3図は実施例,
比較例において得られた予備発泡粒子の発泡倍率
Eと気泡数nのデータに基づき、横軸をlog E、
縦軸をlog nとしてプロツトした図である。
FIG. 1 is a graph showing the DSC curve of the pre-expanded particles of Example 1, FIG. 2 is a graph showing the DSC curve of the pre-expanded particles of Comparative Example 3, and FIG. 3 is a graph showing the DSC curve of the pre-expanded particles of Example 1.
Based on the data on the expansion ratio E and the number of bubbles n of the pre-expanded particles obtained in the comparative example, the horizontal axis is log E,
It is a diagram in which the vertical axis is plotted as log n.

Claims (1)

【特許請求の範囲】 1 真の発泡倍率をE、断面1mm2当たりの気泡数
をnとしたとき、 2<E1/3×n1/2<60 の関係を有し、かつ示差走査熱量測定によつて得
られるDSC曲線(ただし予備発泡粒子1〜3mg
を示差走査熱量計によつて10℃/分の昇温速度で
220℃まで昇温したときに得られるDSC曲線)
に、基材樹脂固有の固有ピークより高温側に高温
ピークが現れる結晶構造を有する無架橋プロピレ
ン系ランダム共重合体樹脂予備発泡粒子に発泡能
を付与し、しかる後該予備発泡粒子を加熱して発
泡させ、元の発泡倍率Eより大なる発泡倍率を有
する予備発泡粒子を得ることを特徴とする無架橋
ポリプロピレン系ランダム共重合体樹脂予備発泡
粒子の製造方法。
[Claims] 1. When the true expansion ratio is E and the number of bubbles per 1 mm 2 of cross section is n, the relationship is 2 < E 1/3 × n 1/2 < 60, and the differential scanning calorific value is DSC curve obtained by measurement (however, if the pre-expanded particles are 1 to 3 mg)
using a differential scanning calorimeter at a heating rate of 10°C/min.
DSC curve obtained when the temperature is raised to 220℃)
First, foaming ability is imparted to pre-expanded particles of a non-crosslinked propylene random copolymer resin having a crystal structure in which a high-temperature peak appears on the higher temperature side than the characteristic peak inherent to the base resin, and then the pre-expanded particles are heated. A method for producing pre-expanded non-crosslinked polypropylene random copolymer resin particles, which comprises foaming the particles to obtain pre-expanded particles having a larger expansion ratio than the original expansion ratio E.
JP13255383A 1983-07-20 1983-07-20 Production of prefoamed particle of polypropylene resin Granted JPS6023428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13255383A JPS6023428A (en) 1983-07-20 1983-07-20 Production of prefoamed particle of polypropylene resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13255383A JPS6023428A (en) 1983-07-20 1983-07-20 Production of prefoamed particle of polypropylene resin

Publications (2)

Publication Number Publication Date
JPS6023428A JPS6023428A (en) 1985-02-06
JPH0364543B2 true JPH0364543B2 (en) 1991-10-07

Family

ID=15083974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13255383A Granted JPS6023428A (en) 1983-07-20 1983-07-20 Production of prefoamed particle of polypropylene resin

Country Status (1)

Country Link
JP (1) JPS6023428A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649795B2 (en) * 1985-11-29 1994-06-29 日本スチレンペ−パ−株式会社 Method for producing pre-expanded polypropylene resin molded product

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431475A (en) * 1977-08-15 1979-03-08 Asahi Chem Ind Co Ltd Manufacture of both granular foam of crosslinked polyolefinic resin and formed product

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431475A (en) * 1977-08-15 1979-03-08 Asahi Chem Ind Co Ltd Manufacture of both granular foam of crosslinked polyolefinic resin and formed product

Also Published As

Publication number Publication date
JPS6023428A (en) 1985-02-06

Similar Documents

Publication Publication Date Title
EP0123144B1 (en) Polypropylene resin prefoamed particles
JP3782454B2 (en) Polypropylene homopolymer expanded particles and expanded molded articles
EP0108245B1 (en) Process for producing pre-foamed particles of polypropylene resin
JPH0417978B2 (en)
JPS5943491B2 (en) Polypropylene resin foam molding
JPH0419258B2 (en)
JPS60168632A (en) Expanded molding of bridged polypropylene resin
JPH0559139B2 (en)
JPS6324615B2 (en)
JPH0364543B2 (en)
JP3950557B2 (en) Polypropylene-based resin pre-expanded particles and method for producing in-mold expanded molded articles therefrom
JPS6344779B2 (en)
JPH01136726A (en) Expansion molding process of polypropylene resin in mold
JPH0414058B2 (en)
JPS6244778B2 (en)
JPS5851123A (en) Method of molding preliminarily foamed polypropylene resin particles in mold
JPH0355502B2 (en)
JPS6324617B2 (en)
JPS6324618B2 (en)
JPS6344780B2 (en)
JPH0739500B2 (en) Pre-expanded polypropylene resin particles
JPH0362543B2 (en)
JPS5962120A (en) Preparation of preliminary foaming particles of polypropylene family resin
JPH0218225B2 (en)
JPS6344778B2 (en)