JPH0364451A - Production of insulation coating film - Google Patents

Production of insulation coating film

Info

Publication number
JPH0364451A
JPH0364451A JP20004489A JP20004489A JPH0364451A JP H0364451 A JPH0364451 A JP H0364451A JP 20004489 A JP20004489 A JP 20004489A JP 20004489 A JP20004489 A JP 20004489A JP H0364451 A JPH0364451 A JP H0364451A
Authority
JP
Japan
Prior art keywords
film
stress
internal stress
compressive stress
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20004489A
Other languages
Japanese (ja)
Inventor
Haruhiko Deguchi
治彦 出口
Tsuneo Nakamura
恒夫 中村
Kazuyoshi Imae
一義 今江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP20004489A priority Critical patent/JPH0364451A/en
Publication of JPH0364451A publication Critical patent/JPH0364451A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To form an insulation coating film having high adhesive strength to an undercoat layer with superior reproducibility by regulating internal stress in a film to a low compressive stress at the time of forming an Al2O3 film by a high frequency double pole sputtering method. CONSTITUTION:An Al2O3 film is formed by a high frequency double pole sputtering method under an inert-gas atmosphere. As film forming conditions, the density of applied electric power and inert gas are set at about 2.25-3.82W/cm<2> and about 15-30mTorr, respectively, and further, internal stress in the resulting Af film is regulated to a compressive stress of 0-2X10<1>0dyne/ cm<2>. By this method, the film formation rate of the Al2O3 film can be improved.

Description

【発明の詳細な説明】 (イ)産業上の利用分111F この発明は絶縁膜の製造方法に関する。さらに詳しくは
、薄膜磁気ヘッド等の、絶縁層やギャップ層等に使用さ
れる酸化アルミニウム(AIyOl)膜を不活性ガス雰
囲気下で高周波2極スパッタリング法を用いた成膜技術
により作製する絶縁膜の製造方法に関する。
Detailed Description of the Invention (a) Industrial Application 111F This invention relates to a method for manufacturing an insulating film. More specifically, the insulating film, which is used for the insulating layer, gap layer, etc. of thin-film magnetic heads, etc., is produced by a film-forming technique using high-frequency bipolar sputtering in an inert gas atmosphere. Regarding the manufacturing method.

(ロ)従来の技術 オーディオ、ビデオその他における磁気情報処理分野の
磁気記録再生手段として用いられる薄膜磁気ヘッドのギ
ャップ層や絶縁層としてAlzC++。
(b) Prior Art AlzC++ is used as a gap layer or insulating layer of a thin film magnetic head used as a magnetic recording/reproducing means in the field of magnetic information processing in audio, video, and other fields.

S+Ot、SiOなどが用いられている。この中でもA
l2O3膜は優れた耐摩耗性及び絶縁性を有しており、
薄膜磁気ヘッドのギャップ層等に最も適した膜の1つで
ある。
S+Ot, SiO, etc. are used. Among these, A
The l2O3 film has excellent wear resistance and insulation properties,
It is one of the most suitable films for the gap layer of thin-film magnetic heads.

ALO3膜の作製に関しては、通常高周波2極スパッタ
リング法が用いられている。これはA I 203が高
融点月利であるため、蒸着等の成膜手段で作製するのは
困難であり、またA I t O3が絶縁性の飼料であ
るため直流電源を用いたスパッタリング法ではターゲッ
トの表面が揚重してしまい成膜することができないため
である。高周波2極スパッタリング法(よ投入電力、不
活性ガス圧等のパラメータににって制御され、膜の特性
や成膜レイトが変化する。
Regarding the production of the ALO3 film, a high frequency bipolar sputtering method is usually used. This is because A I 203 has a high melting point, so it is difficult to produce it by film-forming methods such as vapor deposition, and because A I t O3 is an insulating feed, it cannot be produced by sputtering using a DC power supply. This is because the surface of the target is lifted and cannot be deposited. High frequency bipolar sputtering method (controlled by parameters such as input power and inert gas pressure, changes film characteristics and film formation rate).

電力、脱の内部応力とJ□(板と膜の密着強度(ま1、
li&板ど膜の関係を示4゛上で重要な要因てあり、般
に内部応力が小さく密着強度の高い膜か求められている
。また、内部応力や密着強度(よスパッタ9フフ時のパ
ラメータにより変化4゛る。飼えばMn−Z、nフェラ
イト等の磁性載板」二に、スパソタリング法等によりF
eAlSi合金等の磁性層を形成した後、不活性ガスで
あるArカスIOm’、1.’orrの雰囲気て高周波
2極スパッタリング法でAl2O。
Electric power, internal stress of release and J□ (adhesion strength between plate and membrane (Ma1,
The relationship between Li and plate films is an important factor, and films with low internal stress and high adhesion strength are generally required. In addition, the internal stress and adhesion strength (varies by 4 degrees depending on the parameters during sputtering).
After forming a magnetic layer such as eAlSi alloy, Ar gas IOm', which is an inert gas, 1. Al2O by high frequency bipolar sputtering method in an atmosphere of 'orr.

脱を形成したどき、第2図のように投入電力密度により
内部応]Jが変化する。同図に示ず上うに投入電力密度
1.27W/cm2て成膜したA I 20 *膜の内
部応力り、、I:、 2.55W/cm2で成膜したも
のの約1/2である。また2、55W/cm2で成膜し
たA I 203膜は内部応力が太きくAl1403模
中にクラックが発生ずるため、従来、世人電力密度1.
27W/cm’、 A rカス圧10mTorrという
条イ/「ζA I 20 、l膜を作製していノこ。
When a breakout is formed, the internal response [J] changes depending on the input power density as shown in FIG. The internal stress of the A I 20 * film formed at an input power density of 1.27 W/cm 2 (not shown in the figure) is about 1/2 of that formed at an input power density of 2.55 W/cm 2 . In addition, the A I 203 film formed at 2.55 W/cm2 has a large internal stress and cracks occur in the Al1403 layer, so conventionally, the power density was 1.55 W/cm2.
27 W/cm' and Ar gas pressure of 10 mTorr.

(ハ)発明hJ71決しようと4′る課題しかしながら
、−に記の条件て作製したALO。
(c) Problems to be Solved by Invention hJ71 However, ALO was produced under the conditions described in -.

膜は内部応力が大きくハラついて再現ヤ1.が71思く
、そのため2.55W/cm’で成膜したA I 20
3膜に生じるようなりラブクが発生ずる場合がある。ま
ノこ投入電力密度が低いため、ハ1203粒子のもつエ
ネルギーが小さく、前記磁性層との密着強度が低くなり
、Al2O3膜か剥離する等」二記条件で作製したAl
2O3膜の信頼性に問題があった。
The film has a large internal stress and is distorted.1. 71, so the A I 20 film formed at 2.55 W/cm'
Rubs may occur on the 3 membranes. Because the power density input into the manoko is low, the energy of the 1203 particles is small, and the adhesion strength with the magnetic layer is low, causing the Al2O3 film to peel off.''
There was a problem with the reliability of the 2O3 film.

この発明はかかる状況に鑑み/lされたものであり、内
部応力が小さい圧縮応力に調整されて再現性が良好てあ
り、かっ乃板または下地層と密着性が良好な絶縁膜の製
造方法を捉伏しようとするものである。
The present invention was developed in view of the above situation, and provides a method for manufacturing an insulating film in which the internal stress is adjusted to a small compressive stress, the reproducibility is good, and the adhesion to the cover plate or base layer is good. It is an attempt to seize control.

(ニ)課題を解決するための手段 かくしてこの発明によれば、不活性ガスを用いるh周波
2極スパノタリング法に上り酸化アルミニウム膜を形成
する絶縁膜の製造方法において、成膜条件か、形成され
る酸化アルミニウメ2、膜の1’=1部応ツノを0〜2
 X 10”dyne/am’の圧紺i応力に副路しう
る条件に選択されることを特徴とする絶縁膜の製造方法
が提供される。
(d) Means for Solving the Problems Thus, according to the present invention, in a method for manufacturing an insulating film that forms an aluminum oxide film using an h-frequency bipolar spanotaring method using an inert gas, the film formation conditions are changed. Aluminum oxide 2, 1' = 1 part of the film, 0 to 2
Provided is a method for manufacturing an insulating film, characterized in that the conditions are selected such that the pressure stress of X 10"dyne/am' can be applied.

この発明にJ5いて、AI、o311ffiは不活1生
ガス雰囲気下での高周波2極スパソタリング法により形
成されるが、このときの条件としてまず、形成されるA
LO9膜に生ずる内部応力が圧縮応力となる範囲に設定
される。ずなわら、AL(1+tJ脆性+A利であるた
め、引っ張り応力に弱く容易にクラックが生じるが、圧
縮応ツノに対しては若干の耐性があり、ある程度の内部
応力まで(よりラソタが発生しない傾向があるためであ
る。そしてざらに、」二記圧縮応力が成膜1+jiの不
活性ガス圧の変化に対してその変化が比較的小さい’E
(j、囲に選択される。これ(Jすなわち、成膜時の不
活性ガス圧変動に対しても形成されるAl2O3膜内に
生ずる圧縮応力のバラツキが抑さえられることを意味す
る。従って」二記正縮応ノノの範囲としては、O〜2 
X to10dyne/cm’が選択される。」二記圧
縮応力への調整は、不活性ガス圧、投入電力密度等のパ
ラメータを選択することによりなされる。」二記圧縮応
力の範囲となる不活性カス圧の具体例としては、後述す
る実施例(こ詳細されるが、例えば不活性カスが八「ガ
スである場合、投入電力密度が2.55W/cm’下で
15−25mTorrが、又は投入電力密度が3.82
W/cm’下で20〜:(OmTorrが挙げられる。
In this invention, AI and o311ffi are formed by the high frequency bipolar spa sottering method in an inert raw gas atmosphere.
The internal stress generated in the LO9 film is set in a range where it becomes compressive stress. However, because AL (1 + tJ brittleness + A strength) is weak against tensile stress and easily cracks, it has some resistance to compressive stress, and up to a certain level of internal stress (more likely to prevent lasing). This is because the change in compressive stress is relatively small with respect to the change in inert gas pressure of film formation 1+ji.
(j, is selected in the circle. This (J) means that the variation in the compressive stress that occurs in the Al2O3 film that is formed is suppressed even in response to inert gas pressure fluctuations during film formation.Therefore, " The range of the two positive condensation reactions is O~2
X to 10 dyne/cm' is selected. Adjustment to the compressive stress described in Section 2 is made by selecting parameters such as inert gas pressure and input power density. As a specific example of the inert scum pressure within the range of compressive stress described in 2. cm' under 15-25 mTorr, or input power density is 3.82
20~ (OmTorr) under W/cm'.

従ってこの発明はまた、成膜条件が、投入電力密度が2
25〜3.82W/cm2及び不活性ガス1工か15〜
30m’rorrの範囲に設定されることを特徴とする
絶縁膜の製造方法をも提0(するものである。
Therefore, in this invention, the film forming conditions are such that the input power density is 2.
25~3.82W/cm2 and inert gas 1 or 15~
The present invention also provides a method for manufacturing an insulating film characterized in that the thickness is set within a range of 30 m'rorr.

この発明において、成fix時の投入電力密度及び不活
性ガス圧条件を調節する以外は、当該分野で公知の方法
・条件が適用できる。
In this invention, methods and conditions known in the art can be applied, except for adjusting the input power density and inert gas pressure conditions during fixing.

01:)作用 この発明によれば、不活外ガスを用いる高周波2極スパ
ッタリング法により酸化アルミニウム膜を成膜する際、
投入電力密度及び不活性ガス圧の調節により、内部応力
が特定の圧縮応力、例えば0〜2 X 10”dyne
/am’と比較的小さくかつ変動幅の小さい圧縮応力に
調整され、その結果密着強度の高い酸化アルミニウド膜
が形成されることとなる。
01:) Effect According to the present invention, when forming an aluminum oxide film by high frequency bipolar sputtering method using an inert external gas,
By adjusting the input power density and inert gas pressure, the internal stress can be reduced to a specific compressive stress, e.g. 0 to 2 x 10"dyne.
The compressive stress is adjusted to /am', which is relatively small and has a small fluctuation range, and as a result, an aluminum oxide film with high adhesion strength is formed.

以下実施例によりこの発明の詳細な説明するが、これに
よりこの発明は限定されるしので(よない。
The present invention will be described in detail with reference to Examples below, but the present invention is not limited thereby.

(へ)実施例 Mn−Znフェライト基板」二にFcAlSi合金膜を
スパッタリングによって成膜した後、Arガス雰囲気下
での高周波2極スパッタリング法により、l)投入電力
密度が2.55W/cm2下で成膜したとき(・て表示
) 及び 2)投入電力密度が3.82W/cm2下で成膜したと
き(○て表示) のそれぞれにおいて、該成膜時のArガス圧に対するA
 l=o G膜の内部応力を1lll+定しく下記表1
)、これらの関係を第1図に示した。
(f) Example Mn-Zn ferrite substrate 2) After forming an FcAlSi alloy film by sputtering, the film was formed by high-frequency bipolar sputtering method in an Ar gas atmosphere, l) at an input power density of 2.55 W/cm2. 2) When the film was formed (indicated by *) and 2) When the film was formed at an input power density of 3.82 W/cm2 (indicated by ○), A for the Ar gas pressure at the time of film formation.
l=o The internal stress of the G film is 1llll + constant Table 1 below
), these relationships are shown in Figure 1.

(以下余白) 表1 上記表1及び第1図から、 1)投入電力密度が2.25W/cm’下で成膜した場
合、形成されるA l 203膜の内部応力は約25m
Torr以下のArガス圧では圧縮応力で、2膜mT 
orr付近で圧縮応力から引っ張り応力に遷移すること
がわかる。またAI、03膜の圧縮応力はArガス圧に
対して単調に減少する傾向があり、Arガス圧約15m
T orr以下では応力の変化(よ急激である。
(Leaving space below) Table 1 From Table 1 and Figure 1 above, 1) When the film is formed at an input power density of 2.25 W/cm', the internal stress of the formed Al 203 film is approximately 25 m
At Ar gas pressure below Torr, two films mT due to compressive stress.
It can be seen that there is a transition from compressive stress to tensile stress near orr. Furthermore, the compressive stress of the AI,03 film tends to decrease monotonically with the Ar gas pressure, and the Ar gas pressure is approximately 15 m
Below T orr, the stress changes (very rapidly).

2)投入電力密度が3.82W/cm’下で成膜した場
合、形成されるA l v 03膜の内部応力は約30
11IT orr以下のArガス圧て(ま圧縮応力で、
30m’l’orr付近で圧縮応力から引っ張り応力に
遷移することがわかる。またALO*膜の圧縮応力はA
rガス圧に対して単調に減少する傾向があり、Arガス
圧約20mT orr以下では応力の変化は急激である
2) When forming a film at an input power density of 3.82 W/cm', the internal stress of the formed A l v 03 film is approximately 30
Ar gas pressure below 11 IT orr (with compressive stress,
It can be seen that there is a transition from compressive stress to tensile stress around 30 m'l'orr. Also, the compressive stress of the ALO* film is A
The stress tends to decrease monotonically with respect to the Ar gas pressure, and the stress changes rapidly when the Ar gas pressure is less than about 20 mTorr.

」二記いずれの結果からも、特に従来AIto+膜を成
膜していたArガス圧10mT orr近傍では、内部
応力の変化はArガス圧の変化に対して敏感であり、こ
のことからArガス圧のわずかな変化に対しても内部応
力が大きく変化し、内部応力にバラツキが生じ易いこと
がわかる。
” Both results show that changes in internal stress are sensitive to changes in Ar gas pressure, especially at Ar gas pressures of 10 mT orr, which are conventionally used to form AIto+ films. It can be seen that even a slight change in the internal stress causes a large change in the internal stress, and variations in the internal stress are likely to occur.

そこでこの実施例において、Arガス圧約15〜25m
T orr、投入電力密度2 、’55 W /’c−
m ”で高周波2極スパッタリングすることにより、又
は、Arガス圧約20−30m、T orr、投入電力
密度3.82W/cm’で高周波2極スパッタリングす
ることにjこり、いずれも内部応力がO〜2 X 10
10dyn/c−の圧縮応力に祠祭されたAlx0a膜
が形成されることがわかる。
Therefore, in this embodiment, the Ar gas pressure is approximately 15 to 25 m.
Torr, input power density 2, '55 W/'c-
By performing high-frequency bipolar sputtering at a pressure of about 20 to 30 m, Torr, and an input power density of 3.82 W/cm', the internal stress can be reduced to 2 x 10
It can be seen that an Alx0a film enshrined under a compressive stress of 10 dyn/c- is formed.

上記条件下で得られるA L20 s膜は、内部応力が
小さく、かつ上記範囲でArガス圧が変動しても内部応
力はたかだかO〜2(Iyn/cm2の範囲で変化する
だ(プであってそのそのバラツキも少ないので、鉄膜に
クラックが発生しないものである。また投入電力密度が
従来に比べて約2〜3倍になっているため、FeAlS
i合金膜との密着強度が高いものとなる。
The A L20s film obtained under the above conditions has a small internal stress, and even if the Ar gas pressure changes within the above range, the internal stress will change within the range of at most 0 to 2 (Iyn/cm2). Since there is little variation in the iron film, cracks do not occur in the iron film.Also, since the input power density is about 2 to 3 times higher than that of the conventional method, FeAlS
The adhesion strength to the i-alloy film is high.

なお、上記実施例において不活性ガスはAr以外のもの
、例えばNeガス等当該分!l!1.で高値の不活性ガ
スであってもよい。
In the above embodiments, the inert gas is other than Ar, such as Ne gas, etc. l! 1. It may also be a high priced inert gas.

(ト)発明の効果 この発明によれば、内部応ノノが小さく、かつ下地層と
の密着強度の高いA1.03絶縁膜を再現性よく成膜す
ることができる。またさらにA l 203膜の成膜レ
イトが向上し、量産性に優れた絶縁膜形成方法を提供で
きる。
(G) Effects of the Invention According to the present invention, an A1.03 insulating film having a small internal thickness and high adhesion strength to the underlying layer can be formed with good reproducibility. Furthermore, the deposition rate of the Al 203 film is improved, and an insulating film forming method with excellent mass productivity can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はArガス雰囲気下での高周波2極スパッタリン
グ法によりFeAlSi合金膜上に成膜したときの、形
成されるAltO,+膜の内部応力と該成11Q時のA
rガス圧との関係を示すグラフ図、第2図は、スパッタ
リング時の投入電力密度と形成されるAl2O3膜の内
部応力どの関係を示すグラフ図である。 1 第 2 図 特開平3 64451(5)
Figure 1 shows the internal stress of the AltO,+ film formed on the FeAlSi alloy film by the high-frequency bipolar sputtering method in an Ar gas atmosphere and the A
FIG. 2 is a graph showing the relationship between the input power density during sputtering and the internal stress of the Al2O3 film formed. 1 Figure 2 JP-A-3 64451 (5)

Claims (2)

【特許請求の範囲】[Claims] 1.不活性ガス雰囲気下での高周波2極スパッタリング
法により酸化アルミニウム膜を形成する絶縁膜の製造方
法において、 成膜条件が、形成される酸化アルミニウム膜の内部応力
を0〜2×10^1^0dyne/cm^2の圧縮応力
に調整しうる条件に選択されることを特徴とする絶縁膜
の製造方法。
1. In an insulating film manufacturing method in which an aluminum oxide film is formed by high frequency bipolar sputtering in an inert gas atmosphere, the film forming conditions are such that the internal stress of the aluminum oxide film to be formed is 0 to 2 x 10^1^0 dyne. 1. A method for manufacturing an insulating film, characterized in that the conditions are selected such that the compressive stress can be adjusted to a compressive stress of /cm^2.
2.成膜条件が、投入電力密度が2.25〜3.82W
/cm^2及び不活性ガス圧が15〜30mTorrの
範囲に設定されることを特徴とする請求項1の絶縁膜の
製造方法。
2. The film forming conditions are input power density of 2.25 to 3.82W.
2. The method of manufacturing an insulating film according to claim 1, wherein the inert gas pressure and the inert gas pressure are set in a range of 15 to 30 mTorr.
JP20004489A 1989-07-31 1989-07-31 Production of insulation coating film Pending JPH0364451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20004489A JPH0364451A (en) 1989-07-31 1989-07-31 Production of insulation coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20004489A JPH0364451A (en) 1989-07-31 1989-07-31 Production of insulation coating film

Publications (1)

Publication Number Publication Date
JPH0364451A true JPH0364451A (en) 1991-03-19

Family

ID=16417895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20004489A Pending JPH0364451A (en) 1989-07-31 1989-07-31 Production of insulation coating film

Country Status (1)

Country Link
JP (1) JPH0364451A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06247721A (en) * 1993-02-25 1994-09-06 Owens Brockway Glass Container Inc Multi-column orifice glass feeder
US6251231B1 (en) * 1997-07-10 2001-06-26 Nec Corporation Manufacturing process for a magneto-resistive head accommodating a narrow gap
JP2007016272A (en) * 2005-07-06 2007-01-25 Ge Speciality Materials Japan Kk Protective film covered on substrate, and its manufacturing method
JP2008211260A (en) * 2008-06-09 2008-09-11 Hitachi Ltd Semiconductor laser and its production process
JP2017226887A (en) * 2016-06-23 2017-12-28 株式会社アルバック Film deposition method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06247721A (en) * 1993-02-25 1994-09-06 Owens Brockway Glass Container Inc Multi-column orifice glass feeder
US6251231B1 (en) * 1997-07-10 2001-06-26 Nec Corporation Manufacturing process for a magneto-resistive head accommodating a narrow gap
JP2007016272A (en) * 2005-07-06 2007-01-25 Ge Speciality Materials Japan Kk Protective film covered on substrate, and its manufacturing method
JP2008211260A (en) * 2008-06-09 2008-09-11 Hitachi Ltd Semiconductor laser and its production process
JP2017226887A (en) * 2016-06-23 2017-12-28 株式会社アルバック Film deposition method

Similar Documents

Publication Publication Date Title
JPH02161617A (en) Production of magnetic recording medium
JPH0364451A (en) Production of insulation coating film
TW460588B (en) Metallic composition comprising chromium-tantalum oxides (Cr-TaOx), thin film magnetic recording media and hard disk
JPH1053877A (en) Thin film forming device and functional single thin film
US4752344A (en) Magnetic layer and method of manufacture
JP2836779B2 (en) Cobalt based magnetic alloys and magnetic alloy thin film materials for magnetic recording
EP0178685A2 (en) Perpendicular magnetic recording medium and method of making same
JPS6195503A (en) Amorphous soft magnetic thin film
JP2607288B2 (en) Magnetic recording medium and method of manufacturing the same
JPH08129752A (en) Production of magnetic recording medium
JPH06150239A (en) Production of magnetic head and chromium nitride film
JPS63270463A (en) Method and device for sputtering
JPH07334843A (en) Production of magnetic recording medium
JP2527623B2 (en) Magnetic layer protective film structure of magnetic recording medium and film forming method
JPS60127528A (en) Magnetic recording medium
JPH0485716A (en) Thin magnetic film for magnetic head
JPS60263332A (en) Production of magnetic recording medium
JPH03112114A (en) Manufacture of magnetic film and alloy target used therefor
JPH07169016A (en) Magnetic head and its manufacture
JPH0528483A (en) Production of metallic thin film tape magnetic recording medium
JPH0261819A (en) Perpendicular magnetic recording medium
JPS60150237A (en) Production of magnetic recording medium
JPH05189742A (en) Magnetic recording medium and its production
JPS6116013A (en) Magnetic recording medium and its production
JPH07225934A (en) Metallic thin film type magnetic recording medium