JP2017226887A - Film deposition method - Google Patents

Film deposition method Download PDF

Info

Publication number
JP2017226887A
JP2017226887A JP2016124478A JP2016124478A JP2017226887A JP 2017226887 A JP2017226887 A JP 2017226887A JP 2016124478 A JP2016124478 A JP 2016124478A JP 2016124478 A JP2016124478 A JP 2016124478A JP 2017226887 A JP2017226887 A JP 2017226887A
Authority
JP
Japan
Prior art keywords
film
aluminum oxide
vacuum chamber
water vapor
targets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016124478A
Other languages
Japanese (ja)
Other versions
JP6322669B2 (en
Inventor
水野 雄介
Yusuke Mizuno
雄介 水野
辰徳 磯部
Tatsunori Isobe
辰徳 磯部
太平 水野
Taihei Mizuno
太平 水野
永田 純一
Junichi Nagata
純一 永田
大士 小林
Hiroshi Kobayasi
大士 小林
裕夫 大久保
Hiroo Okubo
裕夫 大久保
新井 真
Makoto Arai
新井  真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2016124478A priority Critical patent/JP6322669B2/en
Priority to PCT/JP2017/020216 priority patent/WO2017221650A1/en
Priority to CN201780038184.2A priority patent/CN109328243A/en
Priority to KR1020187026465A priority patent/KR20180115731A/en
Priority to TW106119666A priority patent/TWI686489B/en
Publication of JP2017226887A publication Critical patent/JP2017226887A/en
Application granted granted Critical
Publication of JP6322669B2 publication Critical patent/JP6322669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3492Variation of parameters during sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a film deposition method capable of efficiently depositing an aluminum oxide film having a stress within a specified range, while keeping a predetermined film deposition rate.SOLUTION: A material S on which a film is deposited is arranged oppositely to targets 2,2made of aluminum in a vacuum chamber 1. A rare gas and oxygen gas are introduced into the vacuum chamber under a vacuum atmosphere. Specified electric power is applied to the targets to subject the targets to sputtering and thus a reaction product of an aluminum atom and oxygen is stuck to and deposited on the surface of the material on which a film is deposited to form an aluminum oxide film. At the same time, steam having a partial pressure in the range of 1×10Pa-0.1 Pa is introduced into the vacuum chamber.SELECTED DRAWING: Figure 1

Description

本発明は、成膜方法に関し、より詳しくは、スパッタリングにより被成膜物の表面に酸化アルミニウム膜を成膜するものに関する。   The present invention relates to a film forming method, and more particularly to a method for forming an aluminum oxide film on the surface of an object to be formed by sputtering.

酸化アルミニウム膜は、表示装置や半導体装置にて薄膜トランジスタなどの素子の保護膜(パッシベーション膜)や絶縁膜として従来から用いられる場合がある。このような酸化アルミニウム膜の成膜にはスパッタリング法によるものが一般に知られ(例えば、特許文献1、2参照)、その中でも、所謂反応性スパッタリング法を用いるものが一般に利用されている。この場合、ターゲットとしてアルミニウム製のものを用い、当該ターゲットと被成膜物とを真空チャンバ内に配置して真空引きし、所定圧力に達すると、放電用の希ガスと酸素等の反応ガスとを導入し、ターゲットに例えば負の電位を持った所定電力を投入してターゲットをスパッタリングする。これにより、ターゲットから飛散したアルミニウム原子と酸素との反応生成物が被成膜物に付着、堆積してその表面に酸化アルミニウム膜が成膜される。   An aluminum oxide film is conventionally used as a protective film (passivation film) or an insulating film for an element such as a thin film transistor in a display device or a semiconductor device. For the formation of such an aluminum oxide film, a sputtering method is generally known (for example, see Patent Documents 1 and 2), and among these, a method using a so-called reactive sputtering method is generally used. In this case, a target made of aluminum is used as the target, and the target and the deposition target are placed in a vacuum chamber and evacuated. Then, for example, a predetermined power having a negative potential is applied to the target to sputter the target. As a result, a reaction product of aluminum atoms and oxygen scattered from the target adheres to and deposits on the deposition target, and an aluminum oxide film is formed on the surface.

上記のようにして成膜された酸化アルミニウム膜は、通常、圧縮方向の応力を持つが、その圧縮応力が大きくなると、基板の反りが大きくなる等の問題を招来する。この場合、ターゲットに投入する電力を高くしていくと、これに従い圧縮応力が増加し、また、スパッタリングによる成膜時に放電用の希ガスの流量を減少させて真空チャンバ内の圧力を低くしていくと、同様に圧縮応力が増加する。このため、ターゲットに投入する電力を低くしたり、成膜時の真空チャンバの圧力を高くすれば、応力が所定値(例えば、±500MPa)以内の酸化アルミニウム膜を成膜できるが、これでは、成膜レートが低下してしまう。   The aluminum oxide film formed as described above usually has a stress in the compression direction. However, when the compressive stress increases, problems such as an increase in warpage of the substrate are caused. In this case, as the power supplied to the target is increased, the compressive stress increases accordingly, and the flow rate of the rare gas for discharge is decreased during the film formation by sputtering to lower the pressure in the vacuum chamber. Similarly, the compressive stress increases as well. For this reason, an aluminum oxide film having a stress within a predetermined value (for example, ± 500 MPa) can be formed by lowering the electric power supplied to the target or increasing the pressure of the vacuum chamber at the time of film formation. The film formation rate is lowered.

特開2003−3259号公報JP 2003-3259 A 特開2010−114413号公報JP 2010-114413 A

本発明は、以上の点に鑑み、所定の成膜レートを維持したまま、応力が所定値以内の酸化アルミニウム膜を効率よく成膜することができる成膜方法を提供することをその課題とするものである。   In view of the above, it is an object of the present invention to provide a film forming method capable of efficiently forming an aluminum oxide film having a stress within a predetermined value while maintaining a predetermined film forming rate. Is.

上記課題を解決するために、本発明は、真空チャンバ内に被成膜物と、アルミニウム製または酸化アルミニウム製のターゲットとを配置し、真空雰囲気中の真空チャンバ内に希ガス及び酸素含有の反応ガスまたは希ガスのみを導入し、ターゲットに所定電力を投入してターゲットをスパッタリングすることで被成膜物の表面に酸化アルミニウム膜を成膜する成膜方法において、真空チャンバ内に水素ガスまたは水蒸気を導入することを特徴とする。   In order to solve the above-described problems, the present invention provides a deposition object and an aluminum or aluminum oxide target in a vacuum chamber, and a reaction containing a rare gas and oxygen in the vacuum chamber in a vacuum atmosphere. In a film formation method for forming an aluminum oxide film on the surface of an object to be deposited by introducing only a gas or a rare gas, applying a predetermined power to the target, and sputtering the target, hydrogen gas or water vapor is placed in a vacuum chamber It is characterized by introducing.

本発明によれば、ターゲットへの投入電力、成膜時における真空チャンバ内の希ガス及び反応ガスの分圧(スパッタガスの導入量)を変えずに水素ガスまたは水蒸気を導入することで、所定の成膜レートを維持したまま、水素ガスまたは水蒸気を導入しない場合と比較して低い応力の酸化アルミニウム膜を成膜することができる。   According to the present invention, by introducing hydrogen gas or water vapor without changing the input power to the target and the partial pressure of the rare gas and reaction gas in the vacuum chamber during deposition (introduction amount of sputtering gas), a predetermined value is obtained. Thus, an aluminum oxide film having a lower stress can be formed as compared with the case where hydrogen gas or water vapor is not introduced while maintaining the film formation rate.

本発明においては、真空チャンバ内に水蒸気を導入する場合、前記スパッタリングによる成膜時、真空チャンバ内の前記水蒸気の分圧を1×10−3Pa〜0.1Paの範囲にすることが好ましい。これによれば、所定の成膜レートを維持したまま、酸化アルミニウム膜の応力を確実に低下させることができ、水蒸気の分圧が1×10−2Paのときには、圧縮応力を約−50MPaにできることが確認された。なお、水蒸気の分圧が1×10−3Paより低くなると、効果的に応力を小さくした状態で酸化アルミニウム膜を成膜することができず、また、水蒸気の分圧が0.1Paより高くなると、例えば異常放電が誘発されて酸化アルミニウム膜を成膜することができない場合がある。 In this invention, when water vapor | steam is introduce | transduced in a vacuum chamber, it is preferable to make the partial pressure of the said water vapor | steam in a vacuum chamber into the range of 1 * 10 < -3 > Pa-0.1Pa at the time of the film-forming by the said sputtering. According to this, the stress of the aluminum oxide film can be reliably reduced while maintaining a predetermined film formation rate. When the partial pressure of water vapor is 1 × 10 −2 Pa, the compressive stress is reduced to about −50 MPa. It was confirmed that it was possible. When the partial pressure of water vapor is lower than 1 × 10 −3 Pa, an aluminum oxide film cannot be formed in a state where stress is effectively reduced, and the partial pressure of water vapor is higher than 0.1 Pa. In this case, for example, an abnormal discharge may be induced and an aluminum oxide film may not be formed.

本発明の成膜方法を実施できるスパッタリング装置の模式断面図。The schematic cross section of the sputtering device which can enforce the film-forming method of this invention. 本発明の効果を示す実験例の結果を示すグラフ。The graph which shows the result of the experiment example which shows the effect of this invention.

以下、図面を参照して、ターゲットをアルミニウム製、被成膜物を矩形のガラス基板(以下、基板Sという)とし、反応性スパッタリングにより酸化アルミニウム膜を成膜する場合を例に本発明の実施形態の成膜方法を説明する。   Hereinafter, referring to the drawings, the present invention is implemented by taking as an example the case where an aluminum oxide film is formed by reactive sputtering with a target made of aluminum and a film formation object as a rectangular glass substrate (hereinafter referred to as substrate S). A film forming method of the embodiment will be described.

図1を参照して、SMは、本発明の成膜方法を実施することができるマグネトロン方式のスパッタリング装置である。スパッタリング装置SMは成膜室11を画成する真空チャンバ1を備える。以下においては、「上」、「下」といった方向を示す用語は、図1に示すスパッタリング装置SMの姿勢を基準にする。真空チャンバ1の側壁には排気口12が開設され、排気口12には、ロータリーポンプ、ドライポンプ、ターボ分子ポンプなどで構成される真空排気手段Pからの排気管13が接続され、成膜室11内を真空引きして所定圧力(例えば、1×10−5Pa)に保持できるようになっている。 Referring to FIG. 1, SM is a magnetron type sputtering apparatus capable of performing the film forming method of the present invention. The sputtering apparatus SM includes a vacuum chamber 1 that defines a film forming chamber 11. In the following, terms indicating directions such as “up” and “down” are based on the attitude of the sputtering apparatus SM shown in FIG. An exhaust port 12 is formed in the side wall of the vacuum chamber 1, and an exhaust pipe 13 from a vacuum exhaust means P configured by a rotary pump, a dry pump, a turbo molecular pump, or the like is connected to the exhaust port 12 to form a film forming chamber. 11 is evacuated and can be maintained at a predetermined pressure (for example, 1 × 10 −5 Pa).

真空チャンバ1の下部には、アルミニウム製(例えば、純度99.999%)のターゲット2,2と磁石ユニット3,3とで構成される2個のカソードユニットCuが設けられている。各ターゲット2,2は、同一の略直方体形状に夫々形成されたものであり、その下面には、スパッタリングによる成膜中、当該ターゲット2,2を冷却する銅製のバッキングプレート22がインジウムなどのボンディング材(図示せず)を介して夫々接合されている。そして、バッキングプレート22に接合した状態で各ターゲット2,2が真空チャンバ1の下部内面に真空シール兼用の絶縁体23を介して設置される。この場合、各ターゲット2,2は、成膜室11の左右方向に所定の間隔を置いて、かつ、未使用時のターゲット2,2の上面が、後述の基板Sに平行な同一平面内に位置するようになっている。各ターゲット2,2には、交流電源Psからの出力Pkが夫々接続され、交流電源Psにより各ターゲット2,2間に所定周波数(例えば、1kHz〜100kHz)の交流電力が投入されるようになっている。 In the lower part of the vacuum chamber 1, two cathode units Cu composed of targets 2 1 and 2 2 made of aluminum (for example, purity 99.999%) and magnet units 3 1 and 3 2 are provided. . Each of the targets 2 1 and 2 2 is formed in the same substantially rectangular parallelepiped shape, and a copper backing plate 22 for cooling the targets 2 1 and 2 2 is formed on the lower surface of the targets 2 1 and 2 2 during the film formation by sputtering. Each of them is bonded via a bonding material (not shown) such as indium. Then, the targets 2 1 and 2 2 are installed on the lower inner surface of the vacuum chamber 1 through an insulator 23 that also serves as a vacuum seal while being bonded to the backing plate 22. In this case, the targets 2 1 and 2 2 are spaced apart from each other by a predetermined distance in the left-right direction of the film forming chamber 11, and the upper surfaces of the targets 2 1 and 2 2 when not in use are parallel to a substrate S to be described later. It is located in the same plane. Each target 2 1, 2 2, AC power supply output Pk from Ps are respectively connected, the AC power source each target 2 1 by Ps, 2 2 between the predetermined frequency (e.g., 1 kHz to 100 kHz) AC power is turned on It has become so.

各バッキングプレート22の下方(真空チャンバ1の外側)に位置させて夫々配置された磁石ユニット3,3は同一の形態を有し、磁石ユニット3,3は、バッキングプレート22に平行に設けられ、磁性材料製の平板から構成される支持板31(ヨーク)を備える。支持板31上には、当該支持板31の中心線上に位置させて配置した中央磁石32と、この中央磁石32の周囲を囲うように、支持板31の上面外周に沿って環状に配置した周辺磁石33とがターゲット2,2側の極性をかえて設けられている。この場合、例えば、中央磁石32の同磁化に換算したときの体積をその周囲を囲う周辺磁石33の同磁化に換算したときの体積の和(周辺磁石:中央磁石:周辺磁石=1:2:1(図1参照))程度になるように設計される。これにより、各ターゲット2,2の上方で釣り合ったトンネル状の漏洩磁場(図示せず)が夫々形成される。中央磁石32及び周辺磁石33は、ネオジム磁石等の公知のものであり、これらの中央磁石及び周辺磁石は一体のものでも、または、所定体積の磁石片を複数列設して構成してもよい。なお、例えばターゲット2,2の利用効率を高めるために、磁石ユニット3,3に駆動手段(図示せず)を接続し、スパッタリングによる成膜中、上下方向または左右方向の少なくとも一方向に所定のストロークで往復動させるようにしてもよい。 The magnet units 3 1 and 3 2 arranged below the respective backing plates 22 (outside the vacuum chamber 1) have the same configuration, and the magnet units 3 1 and 3 2 are parallel to the backing plate 22. Provided with a support plate 31 (yoke) composed of a flat plate made of a magnetic material. On the support plate 31, a central magnet 32 disposed on the center line of the support plate 31, and a periphery disposed annularly along the outer periphery of the upper surface of the support plate 31 so as to surround the center magnet 32 A magnet 33 is provided to change the polarity of the targets 2 1 and 2 2 . In this case, for example, the volume when converted into the same magnetization of the central magnet 32 and the volume when converted into the same magnetization of the peripheral magnet 33 surrounding the periphery (peripheral magnet: central magnet: peripheral magnet = 1: 2: 1 (see FIG. 1)). As a result, tunnel-like leakage magnetic fields (not shown) balanced above the targets 2 1 and 2 2 are formed. The central magnet 32 and the peripheral magnet 33 are known ones such as neodymium magnets, and these central magnets and peripheral magnets may be integrated, or may be configured by arranging a plurality of magnet pieces having a predetermined volume. . For example, in order to increase the utilization efficiency of the targets 2 1 and 2 2 , a driving means (not shown) is connected to the magnet units 3 1 and 3 2 , and at least one of the vertical direction and the horizontal direction is formed during film formation by sputtering. You may make it reciprocate by a predetermined stroke in a direction.

また、真空チャンバ1の側壁にはガス供給口41a,41bが開設され、ガス供給口41a,41bにはガス管42a,42bが夫々接続されている。ガス管42a,42bは、マスフローコントローラ43a,43bを介して、図示省略のアルゴン等の希ガスのガス源と、酸素ガスやオゾン等の酸素含有の反応ガスのガス源とに夫々連通し、成膜室11内に流量制御された希ガスと反応ガスとを導入できるようにしている。   Gas supply ports 41a and 41b are opened on the side walls of the vacuum chamber 1, and gas pipes 42a and 42b are connected to the gas supply ports 41a and 41b, respectively. The gas pipes 42a and 42b are connected to a gas source of a rare gas (not shown) such as argon and a gas source of an oxygen-containing reaction gas such as oxygen gas and ozone via the mass flow controllers 43a and 43b, respectively. A rare gas and a reactive gas whose flow rate is controlled can be introduced into the film chamber 11.

上記スパッタリング装置SMにより各ターゲット2,2をスパッタリングして基板S表面に反応性スパッタリングにより酸化アルミニウム膜を成膜する場合、図外の真空搬送ロボットにより、並設した各ターゲット2,2に対向する成膜室11上部の所定位置に基板Sをセットし、成膜室11を所定圧力まで真空引きする。成膜室11が所定圧力に達すると、マスフローコントローラ43a,43bを制御して希ガス及び反応ガスを導入し、交流電源Psにより各ターゲット2,2の間に交流電力を投入する。これにより、各ターゲット2,2の上方にレーストラック状に高密度のプラズマが発生する。そして、プラズマ中の希ガスのイオンでターゲット2,2が夫々スパッタされる。これにより、ターゲット2,2から飛散したアルミニウム原子と酸素との反応生成物が基板S表面に付着、堆積して酸化アルミニウム膜が成膜される。 When sputtering the targets 2 1 and 2 2 by the sputtering apparatus SM and forming an aluminum oxide film on the surface of the substrate S by reactive sputtering, the targets 2 1 and 2 arranged in parallel by a vacuum transfer robot (not shown). The substrate S is set at a predetermined position above the film forming chamber 11 facing 2, and the film forming chamber 11 is evacuated to a predetermined pressure. When the film forming chamber 11 reaches a predetermined pressure, the noble gas and the reactive gas are introduced by controlling the mass flow controllers 43a and 43b, and AC power is supplied between the targets 2 1 and 2 2 by the AC power source Ps. Thereby, high-density plasma is generated in a racetrack above each of the targets 2 1 and 2 2 . Then, the targets 2 1 and 2 2 are sputtered by rare gas ions in the plasma. As a result, a reaction product of aluminum atoms and oxygen scattered from the targets 2 1 and 2 2 adheres to and accumulates on the surface of the substrate S to form an aluminum oxide film.

ここで、上記のようにして成膜された酸化アルミニウム膜は、通常、圧縮方向の応力を持つが、その圧縮応力が大きくなると、基板の反りが大きくなる等の問題を招来する。このため、所定の成膜レートを維持したまま、応力が所定値(例えば、±500MPa)以内の酸化アルミニウム膜を成膜することができるようにする必要がある。本実施形態では、真空チャンバ1の側壁に更にガス供給口41cを開設し、ガス供給口41cに、マスフローコントローラ43cを介在させたガス管42cを接続し、成膜室11内に流量制御された水蒸気を導入できるようにした。そして、例えばスパッタリングによる成膜時、マスフローコントローラ43cを制御して成膜室11に水蒸気を導入することとした。この場合、成膜時の成膜室11内の水蒸気の分圧が1×10−3Pa〜0.1Paの範囲となるようにマスフローコントローラ43cにより水蒸気の流量を制御することが好ましい。 Here, the aluminum oxide film formed as described above usually has a stress in the compression direction. However, when the compressive stress increases, problems such as an increase in the warpage of the substrate are caused. For this reason, it is necessary to be able to form an aluminum oxide film having a stress within a predetermined value (for example, ± 500 MPa) while maintaining a predetermined film formation rate. In the present embodiment, a gas supply port 41 c is further opened on the side wall of the vacuum chamber 1, and a gas pipe 42 c with a mass flow controller 43 c interposed is connected to the gas supply port 41 c so that the flow rate is controlled in the film forming chamber 11. Water vapor can be introduced. For example, during film formation by sputtering, the mass flow controller 43 c is controlled to introduce water vapor into the film formation chamber 11. In this case, it is preferable to control the flow rate of water vapor by the mass flow controller 43c so that the partial pressure of water vapor in the film formation chamber 11 during film formation is in the range of 1 × 10 −3 Pa to 0.1 Pa.

以上によれば、ターゲット2,2への投入電力、成膜時の希ガスと酸素ガスとの分圧(即ち、マスフローコントローラ43a,43bの制御による希ガスと反応ガスとの導入量)を変えずに水蒸気を導入することで、所定の成膜レートを維持したまま、水蒸気を導入しない場合と比較して低い応力の酸化アルミニウム膜を成膜することができる。このとき、水蒸気の分圧を1×10−3Pa〜0.1Paの範囲にすれば、酸化アルミニウム膜の応力を確実に低下させることができ、例えば、水蒸気の分圧が1×10−2Paのときには、圧縮応力を約−50MPaにできることが確認された。なお、水蒸気の分圧が1×10−3Paより低くなると、効果的に応力を小さくした状態で酸化アルミニウム膜を成膜することができず、また、水蒸気の分圧が0.1Paより高くなると、例えば異常放電が誘発されて酸化アルミニウム膜を成膜することができない場合がある。 According to the above, the input power to the targets 2 1 and 2 2 , the partial pressure of the rare gas and the oxygen gas at the time of film formation (that is, the introduction amount of the rare gas and the reactive gas by the control of the mass flow controllers 43a and 43b). By introducing water vapor without changing the temperature, it is possible to form an aluminum oxide film having a lower stress than in the case where water vapor is not introduced while maintaining a predetermined film formation rate. At this time, if the partial pressure of water vapor is in the range of 1 × 10 −3 Pa to 0.1 Pa, the stress of the aluminum oxide film can be reliably reduced. For example, the partial pressure of water vapor is 1 × 10 −2. When it was Pa, it was confirmed that the compressive stress could be about -50 MPa. When the partial pressure of water vapor is lower than 1 × 10 −3 Pa, an aluminum oxide film cannot be formed in a state where stress is effectively reduced, and the partial pressure of water vapor is higher than 0.1 Pa. In this case, for example, an abnormal discharge may be induced and an aluminum oxide film may not be formed.

以上の効果を確認するために、図1に示すスパッタリング装置SMを用い、基板Sの表面に酸化アルミニウム膜を成膜する実験を行った。先ず、比較実験として、各ターゲット2,2と基板Sとの間の距離を180mm、交流電源Psによるターゲット2,2間への投入電力(交流電力)を40kW、スパッタ時間を271秒に設定し、また、真空排気されている成膜室11内の圧力が0.5Paに保持されるように、マスフローコントローラ43a,43bを制御して希ガスとしてのアルゴンと酸素ガスとを8:2の流量比で導入した。そして、基板Sの中央において、基板S表面に成膜された酸化アルミニウム膜の成膜レートと応力を測定したところ、成膜レートは10.56nm/minであり、応力は約−1000MPa(圧縮応力)であった。なお、膜厚は、エリプソメータを用いて、また、応力は、薄膜応力測定装置を用いて夫々測定した。 In order to confirm the above effects, an experiment was performed in which an aluminum oxide film was formed on the surface of the substrate S using the sputtering apparatus SM shown in FIG. First, as a comparative experiment, the distance between the targets 2 1 and 2 2 and the substrate S is 180 mm, the input power (AC power) between the targets 2 1 and 2 2 by the AC power source Ps is 40 kW, and the sputtering time is 271. And the mass flow controllers 43a and 43b are controlled so that the argon and oxygen gases as rare gases are set to 8 so that the pressure in the film forming chamber 11 being evacuated is maintained at 0.5 Pa. : Introduced at a flow rate ratio of 2. Then, when the film formation rate and stress of the aluminum oxide film formed on the surface of the substrate S were measured at the center of the substrate S, the film formation rate was 10.56 nm / min and the stress was about −1000 MPa (compressive stress). )Met. The film thickness was measured using an ellipsometer, and the stress was measured using a thin film stress measuring device.

次に、本発明の効果を示す実験として、スパッタ条件を上記と同様にし、成膜時、マスフローコントローラ43cを制御して水蒸気も所定の流量で導入した。この場合、水蒸気の分圧を5×10−4Pa〜1Paの範囲で変化させ、そのときの酸化アルミニウム膜の応力(MPa)の変化を図2に示す。これによれば、水蒸気を導入すると、酸化アルミニウム膜の応力が低下し、水蒸気の分圧が1×10−3Paのとき、酸化アルミニウム膜の応力を約−500MPa近くまで低下できたことが判る。このときの成膜レートは10.48nm/minであり、成膜レートが殆ど変化しないことが確認された。そして、水蒸気の分圧が1×10−2Paまでは、当該水蒸気の分圧に逆比例して酸化アルミニウム膜の応力がより低下し、水蒸気の分圧が1×10−2Paのときに、酸化アルミニウム膜の応力を約−50MPaにできたことが確認された。このときの成膜レートは11.00nm/minであった。更に、水蒸気の分圧を増加させると、酸化アルミニウム膜は引張方向の応力(引張応力)を持つようになり、水蒸気の分圧が0.1Paのときでも、酸化アルミニウム膜の応力を約+100MPaにできたことが確認された。このときの成膜レートは11.20nm/minであった。但し、分圧が0.1Paより高くなると、異常放電が誘発され、酸化アルミニウム膜を正常に成膜することができなかった。 Next, as an experiment showing the effect of the present invention, the sputtering conditions were the same as described above, and water vapor was also introduced at a predetermined flow rate by controlling the mass flow controller 43c during film formation. In this case, the partial pressure of water vapor is changed in the range of 5 × 10 −4 Pa to 1 Pa, and the change in stress (MPa) of the aluminum oxide film at that time is shown in FIG. According to this, when water vapor is introduced, the stress of the aluminum oxide film is reduced, and when the partial pressure of the water vapor is 1 × 10 −3 Pa, it can be seen that the stress of the aluminum oxide film can be reduced to about −500 MPa. . The film formation rate at this time was 10.48 nm / min, and it was confirmed that the film formation rate hardly changed. And until the partial pressure of water vapor reaches 1 × 10 −2 Pa, the stress of the aluminum oxide film is further reduced in inverse proportion to the partial pressure of water vapor, and when the partial pressure of water vapor is 1 × 10 −2 Pa It was confirmed that the stress of the aluminum oxide film could be about -50 MPa. The film formation rate at this time was 11.00 nm / min. Further, when the partial pressure of water vapor is increased, the aluminum oxide film has a stress in the tensile direction (tensile stress), and even when the partial pressure of water vapor is 0.1 Pa, the stress of the aluminum oxide film is increased to about +100 MPa. It was confirmed that it was possible. The film formation rate at this time was 11.20 nm / min. However, when the partial pressure was higher than 0.1 Pa, abnormal discharge was induced and the aluminum oxide film could not be formed normally.

以上、本発明の成膜方法の実施形態について説明したが、本発明は上記のものに限定されるものではない。上記実施形態では、スパッタリングによる成膜中、水蒸気を所定の分圧で導入する場合を例に説明したが、これに限定されるものではなく、水素ガスを所定の分圧で導入する場合にも、酸化アルミニウム膜の応力を低下できることが確認された。なお、上記実施形態では、真空チャンバ1の側壁に開設したガス供給口41a,41b,41cから希ガス、酸素ガス及び水蒸気を導入するものを例に説明したが、これに限定されるものではない。特に図示して説明しないが、例えば真空チャンバ1の底璧にガス管を貫装し、ターゲット2,2の周囲に位置するガス管の先端から、希ガス、酸素ガスや水蒸気を噴出するようにしてもよい。 Although the embodiments of the film forming method of the present invention have been described above, the present invention is not limited to the above. In the above embodiment, the case where water vapor is introduced at a predetermined partial pressure during film formation by sputtering has been described as an example. However, the present invention is not limited to this, and the case where hydrogen gas is introduced at a predetermined partial pressure is also described. It was confirmed that the stress of the aluminum oxide film can be reduced. In the above embodiment, the case where the rare gas, the oxygen gas, and the water vapor are introduced from the gas supply ports 41a, 41b, 41c opened on the side wall of the vacuum chamber 1 has been described as an example. However, the present invention is not limited to this. . Although not specifically illustrated and described, for example, a gas pipe is inserted into the bottom of the vacuum chamber 1 and rare gas, oxygen gas, or water vapor is ejected from the tip of the gas pipe positioned around the targets 2 1 and 2 2. You may do it.

また、上記実施形態でも、ターゲット2,2をアルミニウム製としたものを例に説明したが、ターゲット2,2を酸化アルミニウム製として、希ガスのみ、または、希ガスに加えて酸素を導入しながら、高周波電力を投入してターゲット2,2をスパッタリングし、成膜する場合にも本発明は適用できる。更に、複数枚のターゲット2,2を並設し、対をなすものに交流電源Psにより交流電力を投入するものを例に説明したが、これに限定されるものではなく、ターゲットを一枚とし、DC電源にて直流電力を投入するような場合にも本発明は適用し得る。更に、上記実施形態では、被成膜物をガラス基板とした場合を例に説明したが、例えば被成膜物を樹脂製の基材としてもよい。この場合、シート状の基材を駆動ローラと巻取りローラとの間で一定の速度で移動させながら基材の片面にスパッタリングにより酸化アルミニウム膜を成膜するようなものにも本発明は適用できる。 In the above embodiment, the target 2 1 , 2 2 is made of aluminum. However, the target 2 1 , 2 2 is made of aluminum oxide, and only the rare gas or oxygen added to the rare gas is used. The present invention can also be applied to the case where the target 2 1 , 2 2 is sputtered by forming a film while introducing high frequency power. Furthermore, the description has been given by taking as an example the case where a plurality of targets 2 1 and 2 2 are arranged side by side and AC power is supplied to the pair of targets by the AC power supply Ps, but the present invention is not limited to this, and the targets are not limited. The present invention can also be applied to a case in which DC power is supplied from a DC power source. Furthermore, although the said embodiment demonstrated to the example the case where a film-forming thing was used as the glass substrate, it is good also considering a film-forming thing as a resin-made base material, for example. In this case, the present invention can also be applied to an apparatus in which an aluminum oxide film is formed on one surface of a base material by sputtering while moving the sheet-like base material at a constant speed between a driving roller and a take-up roller. .

SM…スパッタリング装置、1…真空チャンバ、2,2…ターゲット、42a…ガス管(希ガス用)、43a…マスフローコントローラ(希ガス用)、42b…ガス管(反応ガス用)、43b…マスフローコントローラ(反応ガス用)、42c…ガス管(水蒸気用)、43c…マスフローコントローラ(水蒸気用)、S…基板(被成膜物)。 SM ... Sputtering device, 1 ... Vacuum chamber, 2 1 , 2 2 ... Target, 42a ... Gas pipe (for rare gas), 43a ... Mass flow controller (for rare gas), 42b ... Gas pipe (for reactive gas), 43b ... Mass flow controller (for reaction gas), 42c ... gas pipe (for water vapor), 43c ... mass flow controller (for water vapor), S ... substrate (film formation).

上記課題を解決するために、本発明は、真空チャンバ内に被成膜物と、アルミニウム製または酸化アルミニウム製のターゲットとを配置し、真空雰囲気中の真空チャンバ内に希ガス及び酸素含有の反応ガスまたは希ガスのみを導入し、ターゲットに所定電力を投入してターゲットをスパッタリングすることで被成膜物の表面に酸化アルミニウム膜を成膜する成膜方法において、真空チャンバ内に水素ガスまたは水蒸気を導入し、スパッタリングによる成膜時、真空チャンバ内に水蒸気が所定の分圧で存在する状態とし、応力が所定値以内の酸化アルミニウム膜を得ることを特徴とする。この場合、前記水蒸気の分圧を2×10 −3 Pa〜0.1Paの範囲にすることがより好ましい。また、真空チャンバ内に、前記ターゲットの少なくとも2枚を設け、対をなすターゲット間に所定周波数の交流電力を投入して各ターゲットをスパッタリングすることが好ましい。
In order to solve the above-described problems, the present invention provides a deposition object and an aluminum or aluminum oxide target in a vacuum chamber, and a reaction containing a rare gas and oxygen in the vacuum chamber in a vacuum atmosphere. In a film formation method for forming an aluminum oxide film on the surface of an object to be deposited by introducing only a gas or a rare gas, applying a predetermined power to the target, and sputtering the target, hydrogen gas or water vapor is placed in a vacuum chamber. When forming a film by sputtering, water vapor is present in the vacuum chamber at a predetermined partial pressure, and an aluminum oxide film having a stress within a predetermined value is obtained . In this case, it is more preferable that the partial pressure of the water vapor is in the range of 2 × 10 −3 Pa to 0.1 Pa. Preferably, at least two of the targets are provided in a vacuum chamber, and each target is sputtered by supplying AC power of a predetermined frequency between the paired targets.

Claims (2)

真空チャンバ内に被成膜物と、アルミニウム製または酸化アルミニウム製のターゲットとを配置し、真空雰囲気中の真空チャンバ内に希ガス及び酸素含有の反応ガスまたは希ガスのみを導入し、ターゲットに所定電力を投入してターゲットをスパッタリングすることで被成膜物の表面に酸化アルミニウム膜を成膜する成膜方法において、
真空チャンバ内に水素ガスまたは水蒸気を導入することを特徴とする成膜方法。
An object to be deposited and a target made of aluminum or aluminum oxide are placed in a vacuum chamber, and only a rare gas and an oxygen-containing reactive gas or a rare gas are introduced into the vacuum chamber in a vacuum atmosphere, and a predetermined target is applied to the target. In a film formation method for forming an aluminum oxide film on the surface of an object to be deposited by applying power and sputtering a target,
A film forming method, wherein hydrogen gas or water vapor is introduced into a vacuum chamber.
請求項1記載の成膜方法であって、真空チャンバ内に水蒸気を導入するものにおいて、
前記スパッタリングによる成膜時、真空チャンバ内の前記水蒸気の分圧を1×10−3Pa〜0.1Paの範囲にしたことを特徴とする請求項1記載の成膜方法。
The film forming method according to claim 1, wherein water vapor is introduced into the vacuum chamber.
The film forming method according to claim 1, wherein the partial pressure of the water vapor in the vacuum chamber is set to a range of 1 × 10 −3 Pa to 0.1 Pa during the film formation by sputtering.
JP2016124478A 2016-06-23 2016-06-23 Stress adjustment method Active JP6322669B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016124478A JP6322669B2 (en) 2016-06-23 2016-06-23 Stress adjustment method
PCT/JP2017/020216 WO2017221650A1 (en) 2016-06-23 2017-05-31 Film formation method
CN201780038184.2A CN109328243A (en) 2016-06-23 2017-05-31 Film build method
KR1020187026465A KR20180115731A (en) 2016-06-23 2017-05-31 Stress adjustment method
TW106119666A TWI686489B (en) 2016-06-23 2017-06-13 Stress adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016124478A JP6322669B2 (en) 2016-06-23 2016-06-23 Stress adjustment method

Publications (2)

Publication Number Publication Date
JP2017226887A true JP2017226887A (en) 2017-12-28
JP6322669B2 JP6322669B2 (en) 2018-05-09

Family

ID=60784678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016124478A Active JP6322669B2 (en) 2016-06-23 2016-06-23 Stress adjustment method

Country Status (5)

Country Link
JP (1) JP6322669B2 (en)
KR (1) KR20180115731A (en)
CN (1) CN109328243A (en)
TW (1) TWI686489B (en)
WO (1) WO2017221650A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022059277A1 (en) * 2020-09-16 2022-03-24 株式会社アルバック Laminated structure, and method for manufacturing laminated structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364451A (en) * 1989-07-31 1991-03-19 Sharp Corp Production of insulation coating film
JPH06248420A (en) * 1993-02-25 1994-09-06 Kyocera Corp Hard film coated member
JPH0770749A (en) * 1993-09-03 1995-03-14 Canon Inc Formation of thin film and device therefor
JPH0925571A (en) * 1995-07-06 1997-01-28 Canon Inc Film formation of oxide thin film
JPH0995773A (en) * 1995-10-03 1997-04-08 Kobe Steel Ltd Production of window material for vacuum device
JP2002030432A (en) * 2000-07-19 2002-01-31 Hitachi Ltd System and method for sputtering
JP2005138208A (en) * 2003-11-05 2005-06-02 Sumitomo Electric Hardmetal Corp Surface coated cutting tool and its manufacturing method
JP2014141698A (en) * 2013-01-23 2014-08-07 Dainippon Screen Mfg Co Ltd Film deposition method for aluminium oxide

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5911856A (en) * 1993-09-03 1999-06-15 Canon Kabushiki Kaisha Method for forming thin film
KR100691168B1 (en) * 2003-02-27 2007-03-09 섬모픽스, 인코포레이티드 Dielectric barrier layer films
WO2006005067A2 (en) * 2004-07-07 2006-01-12 General Electric Company Protective coating on a substrate and method of making thereof
CN104480442A (en) * 2014-12-05 2015-04-01 中国科学院电工研究所 Method for preparing transparent conductive film containing aluminum zinc hydroxide

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364451A (en) * 1989-07-31 1991-03-19 Sharp Corp Production of insulation coating film
JPH06248420A (en) * 1993-02-25 1994-09-06 Kyocera Corp Hard film coated member
JPH0770749A (en) * 1993-09-03 1995-03-14 Canon Inc Formation of thin film and device therefor
JPH0925571A (en) * 1995-07-06 1997-01-28 Canon Inc Film formation of oxide thin film
JPH0995773A (en) * 1995-10-03 1997-04-08 Kobe Steel Ltd Production of window material for vacuum device
JP2002030432A (en) * 2000-07-19 2002-01-31 Hitachi Ltd System and method for sputtering
JP2005138208A (en) * 2003-11-05 2005-06-02 Sumitomo Electric Hardmetal Corp Surface coated cutting tool and its manufacturing method
JP2014141698A (en) * 2013-01-23 2014-08-07 Dainippon Screen Mfg Co Ltd Film deposition method for aluminium oxide

Also Published As

Publication number Publication date
TWI686489B (en) 2020-03-01
JP6322669B2 (en) 2018-05-09
TW201816150A (en) 2018-05-01
WO2017221650A1 (en) 2017-12-28
CN109328243A (en) 2019-02-12
KR20180115731A (en) 2018-10-23

Similar Documents

Publication Publication Date Title
JP5875462B2 (en) Sputtering method
JP6559233B2 (en) Magnetron sputtering equipment
KR20080064125A (en) Spattering and film forming method
US20170004995A1 (en) Film Forming Apparatus and Film Forming Method
JP5527894B2 (en) Sputtering equipment
JP2010013724A (en) Penning type sputtering system
JP5186152B2 (en) Thin film formation method
JP5718767B2 (en) Sputtering equipment
JP6322669B2 (en) Stress adjustment method
JP2014148703A (en) Sputtering device
JP2010248576A (en) Magnetron sputtering apparatus
JP6887230B2 (en) Film formation method
JP6734711B2 (en) Deposition method
JP2013001943A (en) Sputtering apparatus
JP2012062573A (en) Discharge electrode and discharge method
WO2019163439A1 (en) Film formation method
JP2009046714A (en) Film deposition system and film deposition method
JP2004124171A (en) Plasma processing apparatus and method
JP7219140B2 (en) Deposition method
KR102376098B1 (en) film formation method
JP2018204061A (en) Sputtering apparatus
JP2017115215A (en) Manufacturing apparatus for organic el display device
JP5475843B2 (en) Film formation method, film formation apparatus, piezoelectric film, piezoelectric element, and liquid ejection apparatus
JP2013194300A (en) Sputtering apparatus
JP2020143356A (en) Sputtering apparatus and sputtering method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180409

R150 Certificate of patent or registration of utility model

Ref document number: 6322669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250