JPH0364441B2 - - Google Patents

Info

Publication number
JPH0364441B2
JPH0364441B2 JP58021829A JP2182983A JPH0364441B2 JP H0364441 B2 JPH0364441 B2 JP H0364441B2 JP 58021829 A JP58021829 A JP 58021829A JP 2182983 A JP2182983 A JP 2182983A JP H0364441 B2 JPH0364441 B2 JP H0364441B2
Authority
JP
Japan
Prior art keywords
gas
endothermic
reaction vessel
catalytic reaction
endothermic gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58021829A
Other languages
Japanese (ja)
Other versions
JPS59146910A (en
Inventor
Masayoshi Taki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP58021829A priority Critical patent/JPS59146910A/en
Publication of JPS59146910A publication Critical patent/JPS59146910A/en
Publication of JPH0364441B2 publication Critical patent/JPH0364441B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】 本発明は、鋼部品の焼入・焼もどしあるいは、
浸炭焼入等の熱処理に使用する、吸熱型ガスを変
成させる吸熱型ガス変成装置に関する。
[Detailed Description of the Invention] The present invention is directed to quenching and tempering steel parts,
The present invention relates to an endothermic gas transformation device that transforms endothermic gas used in heat treatments such as carburizing and quenching.

鋼部品の焼入・焼もどしあるいは浸炭焼入など
の熱処理において使用する吸熱型ガスは、従来、
第1図に示すような吸熱型ガス発生炉と呼ばれる
吸熱型ガス変成装置により生成されている。
Endothermic gases used in heat treatments such as quenching, tempering, and carburizing of steel parts have traditionally been
It is produced by an endothermic gas shift device called an endothermic gas generating furnace as shown in FIG.

この吸熱型ガス発生炉は、ニツケル触媒3を充
填し、加熱炉4により1000〜1100℃に加熱・保持
したレトルト2内へ、炭化水素ガス、例えば、メ
タン、プロパン、ブタンガスと空気の混合ガスを
送給し、CO、H2、N2を主成分とし、微量のメタ
ン、CO2、H2Oを含む吸熱型ガスを変成させるも
のである。
This endothermic gas generator feeds a mixed gas of hydrocarbon gas, such as methane, propane, or butane gas, and air into a retort 2 filled with a nickel catalyst 3 and heated and maintained at 1000 to 1100°C by a heating furnace 4. The system converts an endothermic gas containing CO, H 2 and N 2 as main components and trace amounts of methane, CO 2 and H 2 O.

この炭化水素ガスを空気により部分酸化させる
反応が、吸熱反応であることから、吸熱型ガスと
いわれる。
Since the reaction of partially oxidizing this hydrocarbon gas with air is an endothermic reaction, it is called an endothermic gas.

この吸熱型ガス発生炉による吸熱型ガス変成法
においては、レトルト2を高温に加熱・保持する
ための加熱炉4の設備費が過大であるという欠点
がある。
This endothermic gas conversion method using an endothermic gas generating furnace has a drawback that the equipment cost of the heating furnace 4 for heating and maintaining the retort 2 at a high temperature is excessive.

また、吸熱型ガス発生炉では、加熱炉4のヒー
ターの断線頻度が高く、ニツケル触媒3の反応性
の劣化が著しいことと、一旦、ヒーターが断線し
たり、ニツケル触媒3の反応性が劣化すると、吸
熱型ガス発生炉の反応性を回復するための操作・
ニツケル触媒3の交換等に要する維持費が高くな
る欠点がある。
In addition, in an endothermic gas generating furnace, the heater of the heating furnace 4 is frequently disconnected, and the reactivity of the nickel catalyst 3 is significantly deteriorated. , operations and operations to restore the reactivity of an endothermic gas generator
There is a disadvantage that the maintenance cost required for replacing the nickel catalyst 3 is high.

このような、従来の吸熱型ガス発生炉の欠点に
鑑み、発明者は、従来のニツケル触媒に比べ、低
温(850〜950℃)で活性なコバルト触媒を発明
し、触媒反応容器内に、上記低温で活性コバルト
触媒を充填し、850〜950℃に加熱・保持した触媒
反応容器に、炭化水素(CH4、C3H8、C4H10等)
ガスと空気の混合ガスを送給し、CO、H2、N2
主成分とし、微量のCH4、CO2、H2O、Cを含む
吸熱型ガスを変成する方法を提案(特願昭57−
134952)した。
In view of these shortcomings of conventional endothermic gas generators, the inventor invented a cobalt catalyst that is active at lower temperatures (850 to 950°C) than conventional nickel catalysts, and added the above-mentioned cobalt catalyst to the catalytic reaction vessel. Hydrocarbons (CH 4 , C 3 H 8 , C 4 H 10 , etc.) are added to a catalytic reaction vessel filled with activated cobalt catalyst at low temperature and heated and maintained at 850-950°C.
We proposed a method to feed a mixed gas of gas and air to transform an endothermic gas containing CO, H 2 and N 2 as main components, and trace amounts of CH 4 , CO 2 , H 2 O and C (patent application). Showa 57-
134952).

この吸熱型ガス変成法によれば、例えば、ブタ
ンを例にとつてみると、 C4H10+2O2→4CO+5H2 の反応によつて、吸熱型ガスが変成される。
According to this endothermic gas conversion method, taking butane as an example, an endothermic gas is converted by the reaction C 4 H 10 +2O 2 →4CO+5H 2 .

この時、ブタンと空気との混合比に応じて、若
干のCH4、CO2、H2O等が生成される。
At this time, some amount of CH 4 , CO 2 , H 2 O, etc. is generated depending on the mixing ratio of butane and air.

ところで、この吸熱型ガス変成法においては、
炭化水素ガスと空気との反応が、発熱反応と吸熱
反応から成つているため、触媒反応容器の発熱反
応の活性な部位では、容器内温度が著しく上昇し
て、触媒反応容器及び触媒自体の劣化を早め、維
持コストが高くなる欠点がある。
By the way, in this endothermic gas conversion method,
Since the reaction between hydrocarbon gas and air consists of an exothermic reaction and an endothermic reaction, the temperature inside the catalytic reaction vessel increases significantly at the active part of the exothermic reaction in the catalytic reaction vessel, causing deterioration of the catalytic reaction vessel and the catalyst itself. This has the disadvantage of increasing maintenance costs.

さらに、この吸熱型ガス変成法を具体例で説明
すると、第2図において、0.86/minのブタン
と8.6/minの空気からなる混合ガスを、930℃
に加熱・保持され、100c.c.のコバルト触媒6を充
填した触媒反応容器7に送給すると、15/min
の吸熱型ガスが変成される。
Furthermore, to explain this endothermic gas conversion method using a specific example, in Figure 2, a mixed gas consisting of butane at 0.86/min and air at 8.6/min is heated to 930°C.
When the cobalt catalyst 6 is heated and maintained at
endothermic gas is transformed.

その時、触媒反応容器7の入り口付近(A部)
では、第3図に示すように、発熱反応により部分
的に1050℃程度まで温度が上昇し、触媒反応容器
7、コバルト触媒6自体の耐久性が著しく劣化す
る欠点がある。
At that time, near the entrance of the catalyst reaction vessel 7 (part A)
However, as shown in FIG. 3, the temperature partially rises to about 1050° C. due to the exothermic reaction, and the durability of the catalytic reaction vessel 7 and the cobalt catalyst 6 itself is significantly deteriorated.

一方、触媒反応容器7の中央部付近(B部)で
は、吸熱反応によりやや容器内温度が低下するも
のの、ガス変成反応に影響する程のものではな
い。
On the other hand, near the center of the catalytic reaction vessel 7 (section B), the temperature inside the vessel decreases slightly due to the endothermic reaction, but this is not enough to affect the gas shift reaction.

本発明は、触媒反応容器形状を改善することに
より、触媒反応容器内の部分的オーバーヒートを
防止し、触媒反応容器全体の温度分布を均一化し
て、触媒反応容器ならびに触媒自体の耐久性を向
上した吸熱型ガス変成装置を提供することを目的
とする。
By improving the shape of the catalyst reaction vessel, the present invention prevents partial overheating within the catalyst reaction vessel, equalizes the temperature distribution throughout the catalyst reaction vessel, and improves the durability of the catalyst reaction vessel and the catalyst itself. The purpose of the present invention is to provide an endothermic gas shift device.

このような目的は、本発明によれば、低温で活
性なコバルト触媒を充填し、コバルト触媒の反応
温度に設定した触媒反応容器に、炭化水素ガスと
空気の混合ガスを送給して、吸熱型ガスを変成す
る吸熱型ガス変成装置であつて、前記触媒反応容
器のガス流路断面積を、炭化水素ガスと空気との
混合ガス吸入側から、変成された吸熱型ガス搬出
側に向かつて、徐々に拡大せしめるように形成す
ることを特徴とした吸熱型ガス変成装置によつて
達成される。
According to the present invention, such a purpose is achieved by feeding a mixed gas of hydrocarbon gas and air into a catalytic reaction vessel filled with a cobalt catalyst that is active at low temperature and set at the reaction temperature of the cobalt catalyst to absorb heat. The endothermic gas shift device converts a modified endothermic gas, and the cross-sectional area of the gas flow path of the catalytic reaction vessel is directed from an intake side of a mixed gas of hydrocarbon gas and air to an output side of the endothermic gas that has been transformed. This is achieved by an endothermic gas shift device that is formed so as to gradually expand.

以下添付図面に基づいて、本発明の実施例を説
明する。
Embodiments of the present invention will be described below based on the accompanying drawings.

第4図に本発明にかかる吸熱型ガス変成装置を
示す。
FIG. 4 shows an endothermic gas shift apparatus according to the present invention.

触媒反応容器を、第2図に示すような円筒状触
媒反応容器7から、体積、長さとも一定のまま、
3.3゜のテーパのついた円筒台状触媒反応容器に変
更し、炭化水素ガスと空気の混合ガス吸入口での
ガス流速を、変成された吸熱型ガス排出口のガス
流速の約4倍とした。
The catalytic reaction vessel is changed from a cylindrical catalytic reaction vessel 7 as shown in FIG. 2 while keeping the volume and length constant.
The catalytic reaction vessel was changed to a cylindrical table-shaped catalyst reaction vessel with a 3.3° taper, and the gas flow rate at the mixed gas inlet of hydrocarbon gas and air was made approximately four times the gas flow rate at the modified endothermic gas outlet. .

この結果、第5図に示すように、触媒反応容器
7′内の温度分布が均一となり、混合ガス送給口
付近の発熱反応部(A部)でも、発熱反応が広い
領域に分散されて、部分的に容器内温度が高くな
ることがない。
As a result, as shown in FIG. 5, the temperature distribution inside the catalytic reaction vessel 7' becomes uniform, and even in the exothermic reaction section (A section) near the mixed gas feed port, the exothermic reaction is dispersed over a wide area. The temperature inside the container does not rise partially.

この実施例において、従来装置(第2図)と同
様に、0.86/minのブタンと8.6/minの空気
からなる混合ガスを、930℃に加熱・保持され、
100c.c.のコバルト触媒6を充填した触媒反応容器
7′に送給して、15/minの吸熱型ガスを変成
した。
In this example, a mixed gas consisting of butane at 0.86/min and air at 8.6/min was heated and maintained at 930°C, similar to the conventional device (Fig. 2).
It was fed to a catalytic reaction vessel 7' filled with 100 c.c. of cobalt catalyst 6, and an endothermic gas was converted at a rate of 15/min.

この時の触媒反応容器7′内温度分布は、第5
図に示すように、容器内最高温度を960℃に押さ
えることができ、触媒反応容器7′及びコバルト
触媒6自体の耐久性を向上することができた。
At this time, the temperature distribution inside the catalytic reaction vessel 7' is as follows:
As shown in the figure, the maximum temperature inside the container could be suppressed to 960° C., and the durability of the catalytic reaction container 7' and the cobalt catalyst 6 itself could be improved.

以上により明らかなように、本発明にかかる吸
熱型ガス変成装置によれば、触媒反応容器の形状
を改善することにより、容器内の部分的オーバー
ヒートを防止でき、触媒反応容器全体の温度分布
を均一化できることから、触媒反応容器ならびに
コバルト触媒自体の耐久性を向上できる利点があ
る。
As is clear from the above, according to the endothermic gas shift device according to the present invention, by improving the shape of the catalytic reaction vessel, partial overheating within the vessel can be prevented, and the temperature distribution throughout the catalytic reaction vessel can be made uniform. This has the advantage of improving the durability of the catalytic reaction vessel and the cobalt catalyst itself.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の吸熱型ガス発生機を示す図、第
2図は特願昭57−134952にて提案した吸熱型ガス
変成装置を示す図、第3図は第2図に示す触媒反
応容器内の温度分布を示す図、第4図は本発明に
かかる吸熱型ガス変成装置を示す図、第5図は第
4図に示す触媒反応容器内の温度分布を示す図で
ある。 1……流量計、2……レトルト、3……ニツケ
ル触媒、4……加熱炉、5……電源、6……コバ
ルト触媒、7,7′……触媒反応容器、A……発
熱反応部位、B……吸熱反応部位。
Figure 1 is a diagram showing a conventional endothermic gas generator, Figure 2 is a diagram showing an endothermic gas converter proposed in Japanese Patent Application No. 57-134952, and Figure 3 is a catalytic reaction vessel shown in Figure 2. FIG. 4 is a diagram showing the endothermic gas shift apparatus according to the present invention, and FIG. 5 is a diagram showing the temperature distribution inside the catalytic reaction vessel shown in FIG. 4. 1...Flowmeter, 2...Retort, 3...Nickel catalyst, 4...Heating furnace, 5...Power source, 6...Cobalt catalyst, 7,7'...Catalytic reaction vessel, A...Exothermic reaction site , B... Endothermic reaction site.

Claims (1)

【特許請求の範囲】[Claims] 1 低温で活性なコバルト触媒を充填し、コバル
ト触媒の反応温度に設定した触媒反応容器に、炭
化水素ガスと空気の混合ガスを送給して、吸熱型
ガスを変成する吸熱型ガス変成装置であつて、前
記触媒反応容器のガス流路断面積を、炭化水素ガ
スと空気の混合ガス吸入側から、変成された吸熱
型ガス搬出側に向かつて、徐々に拡大せしめるよ
うに形成することを特徴とした吸熱型ガス変成装
置。
1. An endothermic gas shift device that converts endothermic gas by supplying a mixed gas of hydrocarbon gas and air to a catalytic reaction vessel filled with a cobalt catalyst that is active at low temperatures and set at the reaction temperature of the cobalt catalyst. The cross-sectional area of the gas flow path of the catalytic reaction vessel is formed so as to gradually expand from the intake side of the mixed gas of hydrocarbon gas and air toward the exit side of the modified endothermic gas. Endothermic gas shift equipment.
JP58021829A 1983-02-11 1983-02-11 Endothermic gas converter Granted JPS59146910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58021829A JPS59146910A (en) 1983-02-11 1983-02-11 Endothermic gas converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58021829A JPS59146910A (en) 1983-02-11 1983-02-11 Endothermic gas converter

Publications (2)

Publication Number Publication Date
JPS59146910A JPS59146910A (en) 1984-08-23
JPH0364441B2 true JPH0364441B2 (en) 1991-10-07

Family

ID=12065953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58021829A Granted JPS59146910A (en) 1983-02-11 1983-02-11 Endothermic gas converter

Country Status (1)

Country Link
JP (1) JPS59146910A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8206666B2 (en) * 2002-05-21 2012-06-26 Battelle Memorial Institute Reactors having varying cross-section, methods of making same, and methods of conducting reactions with varying local contact time

Also Published As

Publication number Publication date
JPS59146910A (en) 1984-08-23

Similar Documents

Publication Publication Date Title
US6506359B1 (en) Auto-oxidation and internal heating type reforming method and apparatus for hydrogen production
JPS6261521B2 (en)
US4976747A (en) Fuel treatment apparatus for fuel cells
GB2039518A (en) A process and a plant for preparing a gas rich in methane
CA1166825A (en) Two pass endothermic generator
US4253867A (en) Method of using a methane-containing gas for reducing iron ore
US7152394B2 (en) System and method for reducing nitrogen oxides in the exhaust of an internal combustion engine
US5084247A (en) Apparatus for performing catalytic reactions
GB1380288A (en) Method and apparatus for reducing particulate ore
KR840001371B1 (en) Process for the preparation of gases which contain hydrogen and nitrogen
JPS63282410A (en) Method and device for forming high-temperature pressurized gas flow by catalyst type combustion
GB2058841A (en) Method of making sponge iron
JPH0364441B2 (en)
EP1400282A3 (en) Catalyst regeneration
JPS61127602A (en) Steam reforming of hydrocarbon
JP2001152313A (en) Apparatus and method for generating controlled atmospheric gas for high temperature rapid carburizing
GB1003147A (en) Naphtha reforming process
US1920858A (en) Process of converting gases rich in methane into more valuable products
JP3884326B2 (en) Carburizing atmosphere gas generator and method
JP2001152314A (en) Apparatus and method for generating controlled atmospheric gas for high temperature rapid carburizing
JPS6127964Y2 (en)
JPH08511063A (en) Method and apparatus for heat treatment of workpieces
CZ197695A3 (en) Heat treatment, particularly carburization of metal workpieces
GB948085A (en) Method of carrying out exothermic catalytic gas reactions
US2589810A (en) Process for preparing gas atmosphere