JPS59146910A - Endothermic gas converter - Google Patents

Endothermic gas converter

Info

Publication number
JPS59146910A
JPS59146910A JP58021829A JP2182983A JPS59146910A JP S59146910 A JPS59146910 A JP S59146910A JP 58021829 A JP58021829 A JP 58021829A JP 2182983 A JP2182983 A JP 2182983A JP S59146910 A JPS59146910 A JP S59146910A
Authority
JP
Japan
Prior art keywords
gas
reaction vessel
endothermic
vessel
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58021829A
Other languages
Japanese (ja)
Other versions
JPH0364441B2 (en
Inventor
Masayoshi Taki
正佳 滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP58021829A priority Critical patent/JPS59146910A/en
Publication of JPS59146910A publication Critical patent/JPS59146910A/en
Publication of JPH0364441B2 publication Critical patent/JPH0364441B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To prevent local overheating and to obtain a uniform temp. distribution in a catalytic reaction vessel by enlarging gradually the sectional area of the gas flow passage in the vessel from the suction side to delivery side. CONSTITUTION:In a catalytic reaction vessel 7 wherein the sectional area of the gas flow passage is enlarged gradually from the suction side to delivery side, Co catalyst 6 having low-temp. activity is packed. The vessel 7 is heated by supplying an electric current to a heating furnace 4 from an electric source 5. Gaseous hydrocarbon and air are supplied into the vessel 7 through flowmeters 1, and the hydrocarbon is converted into an endothermic gas. In this way, the temp. in the vessel is kept at a comparatively low temp. and the durability of the catalytic reaction vessel and the Co catalyst can be increased.

Description

【発明の詳細な説明】 本発明は、鋼部品の焼入・焼もどしあるいは、浸炭焼入
等の熱処理に使用する、吸熱型ガスを変成させる吸熱型
ガス変成装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an endothermic gas transformation device for transforming endothermic gas used in heat treatment such as hardening and tempering of steel parts or carburizing and quenching.

鋼部品の焼入・焼もどしあるいは浸炭焼入などの熱処理
において使用する吸熱型ガスは、従来、第1図に示すよ
うな、吸熱型ガス発生炉と呼ばれる吸熱型ガス変成装置
により生成されている。
Endothermic gas used in heat treatments such as quenching, tempering, and carburizing of steel parts is conventionally generated by an endothermic gas conversion device called an endothermic gas generator, as shown in Figure 1. .

この吸熱型ガス発生炉は、ニッケル触媒3を充填し、加
熱炉4に′より1000〜1100°Cに加熱・保持し
たレトルト2内へ、炭化水素ガス、例えば、メタン、プ
ロパン、ブタンガスと空気の混合ガスを送給し、Co、
H2、N2を主成分とし、微量のメタン、CO2、H2
Oを含む吸熱型ガスを変成させるものである。
This endothermic gas generating furnace is a retort 2 filled with a nickel catalyst 3 and heated and maintained at 1000 to 1100°C in a heating furnace 4. Hydrocarbon gas, such as methane, propane, or butane gas, and air Supplying a mixed gas, Co,
Main components are H2 and N2, with trace amounts of methane, CO2, and H2
It transforms an endothermic gas containing O.

この炭化水素ガスを空気により部分酸化させる反応が、
吸熱反応であることから、吸熱型ガスといわれる。
The reaction of partially oxidizing this hydrocarbon gas with air is
Because it is an endothermic reaction, it is called an endothermic gas.

この吸熱型ガス発生炉による吸熱型ガス変成法において
は、レトルト2を高温に加熱・保持するための加熱炉4
の設備費が過大であるという欠点がある。
In this endothermic gas conversion method using an endothermic gas generating furnace, a heating furnace 4 is used to heat and maintain the retort 2 at a high temperature.
The disadvantage is that the equipment cost is excessive.

また、吸熱型ガス発生炉では、加熱炉4のヒーターの断
線頻度が高く、ニッケル触媒3の反応性の劣化が著しい
ことと、一旦、ヒーターが断線したり、ニッケル触媒3
の反応性が劣化すると、吸熱型ガス発生炉の反応性を回
復するための操作・ニッケル触媒3の交換等に要する維
持費が高くなる欠点がある。
In addition, in an endothermic gas generating furnace, the heater of the heating furnace 4 is frequently disconnected, and the reactivity of the nickel catalyst 3 is significantly deteriorated.
When the reactivity of the nickel catalyst 3 deteriorates, there is a disadvantage that the maintenance cost required for operations to restore the reactivity of the endothermic gas generating furnace, replacement of the nickel catalyst 3, etc. increases.

このような、従来の吸熱型ガス発生炉の欠点に鑑み、発
明者は、従来のニッケル触媒に比べ、低温(850〜9
50°C)で活性なコバルト触媒を発明し、触媒反応容
器内に、上記低温で活性なコバルト触媒を充填し、85
0〜950°Cに加熱・保持した触媒反応容器に、炭化
水素(CH4、C,H8、C4H、。等)ガスと空気の
混合ガスを送給し、CC、H2、N2を主成分とし、微
量のCH4、c C2、H20、Cを含む吸熱型ガスを
変成する方法を提案(特願昭57−134952)した
In view of these shortcomings of conventional endothermic gas generating furnaces, the inventors have developed a method that can be used at lower temperatures (850 to 90°C) compared to conventional nickel catalysts.
invented a cobalt catalyst that is active at a temperature of 50°C), filled a catalytic reaction vessel with the cobalt catalyst that is active at a low temperature, and
A mixed gas of hydrocarbon (CH4, C, H8, C4H, etc.) gas and air is supplied to a catalytic reaction vessel heated and maintained at 0 to 950 °C, and the main components are CC, H2, N2, We proposed a method for converting endothermic gases containing trace amounts of CH4, cC2, H20, and C (Japanese Patent Application No. 134952/1982).

この吸熱型ガス変成法によれば、例えば、ブタンを例に
とってみると、 C4HIO+ 202  →4CO+5H2の反応によ
って、吸熱型ガスか変成される。
According to this endothermic gas conversion method, taking butane as an example, it is converted into an endothermic gas through the reaction C4HIO+ 202 → 4CO+5H2.

この時、ブタンと空気との混合比に応して、若干のCH
4、CO2、H20等が生成される。
At this time, depending on the mixing ratio of butane and air, some CH
4, CO2, H20, etc. are generated.

ところで、この吸熱型ガス変成法においては、炭化水素
ガスと空気との反応が、発熱反応と吸熱反応から成って
いるため、触媒反応容器の発熱反応の活性な部位では、
容器内温度が著しく上昇して、触媒反応容器及び触媒自
体の劣化を早め、維持コストが高(なる欠点がある。
By the way, in this endothermic gas conversion method, the reaction between hydrocarbon gas and air consists of an exothermic reaction and an endothermic reaction, so at the active site of the exothermic reaction in the catalytic reaction vessel,
The disadvantage is that the temperature inside the container increases significantly, which accelerates the deterioration of the catalyst reaction container and the catalyst itself, resulting in high maintenance costs.

さらに、この吸熱型ガス変成法を具体例で説明すると、
第2図において、0.86β/minのブタンと8.6
 n / m i nの空気からなる混合ガスを、93
0°Cに加熱・保持され、100CCのコバルト触媒6
を充填した触媒反応容器7に送給すると、15j!/m
inの吸熱型ガスが変成される。
Furthermore, to explain this endothermic gas conversion method using a specific example,
In Figure 2, 0.86β/min of butane and 8.6
A mixed gas consisting of n/min air is mixed with 93
100 CC cobalt catalyst heated and held at 0°C6
When fed to the catalytic reaction vessel 7 filled with 15j! /m
The endothermic gas of in is transformed.

その時、触媒反応容器7の入り口付近(A部)では、第
、3図に示すように、発熱反応により部分的に1050
°C程度まで温度が上昇し、触媒反応容器7、コバルト
触媒6自体の耐久性が著しく劣化する欠点がある。
At that time, as shown in FIG.
There is a disadvantage that the temperature rises to about .degree. C. and the durability of the catalyst reaction vessel 7 and the cobalt catalyst 6 itself is significantly deteriorated.

一方、触媒反応容器7の中央部付近(B部)では、吸熱
反応によりやや容器内温度が低下するものの、ガス変成
反応に影響する程のものではない。
On the other hand, near the center of the catalytic reaction vessel 7 (section B), the temperature inside the vessel decreases slightly due to the endothermic reaction, but this is not enough to affect the gas shift reaction.

本発明は、触媒反応容器形状を改善することにより、触
媒反応容器内の部分的オーバーヒートを防止し、触媒反
応容器全体の温度分布を均一化して、触媒反応容器なら
びに触媒自体の耐久性を向上した吸熱型ガス変成装置を
提供することを目的とする。
By improving the shape of the catalyst reaction vessel, the present invention prevents partial overheating within the catalyst reaction vessel, equalizes the temperature distribution throughout the catalyst reaction vessel, and improves the durability of the catalyst reaction vessel and the catalyst itself. The purpose of the present invention is to provide an endothermic gas shift device.

このような目的は、本発明によれば、低温で活性なコバ
ルト触媒を充填し、コバルト触媒の反応温度に設定した
触媒反応容器に、炭化水素ガスと空気の混合ガスを送給
して、吸熱型ガスを変成する吸熱型ガス変成装置であっ
て、前記触媒反応容器のガス流路断面積を、炭化水素ガ
スと空気の混合ガス吸入側から、変成された吸熱型ガス
搬出側に向かって、徐々に拡大せしめるように形成する
ことを特徴とした熱熱型ガス変成装置によって達成され
る。
According to the present invention, such a purpose is achieved by feeding a mixed gas of hydrocarbon gas and air into a catalytic reaction vessel filled with a cobalt catalyst that is active at low temperature and set at the reaction temperature of the cobalt catalyst to absorb heat. An endothermic gas shift device for converting type gas, wherein the cross-sectional area of the gas flow path of the catalytic reaction vessel is directed from the intake side of the mixed gas of hydrocarbon gas and air toward the output side of the endothermic gas that has been converted, This is achieved by a thermothermal gas shift device characterized by being formed so as to gradually expand.

以下添付図面に基づいて、本発明の詳細な説明する。The present invention will be described in detail below based on the accompanying drawings.

第4図に本発明にかかる吸熱型ガス変成装置を示す。FIG. 4 shows an endothermic gas shift apparatus according to the present invention.

触媒反応容器を、第2図に示すような円筒状触媒反応容
器7から、体積、長さとも一定のまま、3.3゛のテー
パのついた円筒台状触媒反応容器に変更し、炭化水素ガ
スと空気の混合カス吸入口でのガス流速を、変成された
吸熱型ガス排出口のガス流速の約4倍とした。
The catalytic reaction vessel was changed from the cylindrical catalytic reaction vessel 7 shown in Fig. 2 to a cylindrical platform-shaped catalytic reaction vessel with a 3.3゜ taper while keeping the volume and length constant. The gas flow rate at the gas-air mixed gas inlet was approximately four times the gas flow rate at the modified endothermic gas outlet.

この結果、第5図に示すように、触媒反応容器7′内の
温度分布が均一となり、混合ガス送給口付近の発熱反応
部(A部)でも、発熱反応か広い領域に分散されて、部
分的に容器内温度が高くなることがない。
As a result, as shown in FIG. 5, the temperature distribution inside the catalytic reaction vessel 7' becomes uniform, and even in the exothermic reaction section (A section) near the mixed gas feed port, the exothermic reaction is dispersed over a wide area. The temperature inside the container does not rise partially.

この実施例において、従来装置(第2図)と同様に、0
.861!、/minのブタンと3.5A/minの空
気からなる混合ガスを、930°Cに加熱・保持され、
100 CCのコバルト触媒6を充填した触媒反応容器
7′に送給して、1511!/minの吸熱型ガスを変
成した。
In this embodiment, like the conventional device (FIG. 2), 0
.. 861! A mixed gas consisting of butane at ,/min and air at 3.5 A/min was heated and held at 930°C,
100 CC of cobalt catalyst 6 was fed to the catalytic reaction vessel 7', and 1511! /min of endothermic gas was converted.

この時の触媒反応容器7′内温度分布は、第5図に示す
ように、容器内最高温度を960°Cに押さえることが
でき、触媒反応容器7′及びコバルト触媒6自体の耐久
性を向上することができた。
At this time, the temperature distribution inside the catalytic reaction vessel 7' can suppress the maximum temperature inside the vessel to 960°C as shown in Fig. 5, improving the durability of the catalytic reaction vessel 7' and the cobalt catalyst 6 itself. We were able to.

以上により明らかなように、本発明にかかる吸熱型ガス
変成装置によれば、触媒反応容器の形状を改善すること
により、容器内の部分的オーバーヒートを防止でき、触
媒反応容器全体の温度分布を均一化できることから、触
媒反応容器ならびにコバルト触媒自体の耐久性を向上で
きる利点かある。
As is clear from the above, according to the endothermic gas shift device according to the present invention, by improving the shape of the catalytic reaction vessel, partial overheating within the vessel can be prevented, and the temperature distribution throughout the catalytic reaction vessel can be made uniform. This has the advantage of improving the durability of the catalytic reaction vessel and the cobalt catalyst itself.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の吸熱型ガス発生機を示す図、第2図は特
願昭57−13j952にて提案した吸熱型カス変成装
置を示す図、第3図は第2図に示す触媒反応容器内の温
度分布を示す図、第4図は本発明にかかる吸熱型ガス変
成装置を示す図、第5図は第4図に示す触媒反応容器内
の温度分布を示す図である。 1−−−一流量計 2−−−−レトルト 3−−=−ニッケル触媒 4−−−一−−加熱炉 5−−−一電源 6−−−−−コバルト触媒 7.7 ’ −一触媒反応容器 A−−−−一発熱反応部位 B −−−一発熱反応部位 出頒人 トヨク釘乃皐悸式会社
Fig. 1 shows a conventional endothermic gas generator, Fig. 2 shows an endothermic gas conversion device proposed in Japanese Patent Application No. 57-13J952, and Fig. 3 shows the catalytic reaction vessel shown in Fig. 2. FIG. 4 is a diagram showing the endothermic gas shift apparatus according to the present invention, and FIG. 5 is a diagram showing the temperature distribution inside the catalytic reaction vessel shown in FIG. 4. 1---One flow meter 2---Retort 3---=-Nickel catalyst 4---1---Heating furnace 5---1 Power source 6------Cobalt catalyst 7.7' -1 Catalyst Reaction container A --- One exothermic reaction site B --- One exothermic reaction site Distributor: Toyoku Kuginogo Shikisha Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)、低温で活性なコバルト触媒を充填し、コバルト
触媒の反応温度に設定した触媒反応容器に、炭化水素ガ
スと空気の混合ガスを送給して、吸熱型ガスを変成する
吸熱型ガス変成装置であって、前記触媒反応容器のガス
流路断面積を、炭化水素ガスと空気の混合ガス吸入側か
ら、変成された吸熱型ガス搬出側に向かって、徐々に拡
大せしめるように形成することを特徴とした吸熱型ガス
変成装置。
(1) Endothermic gas that converts endothermic gas by feeding a mixed gas of hydrocarbon gas and air into a catalyst reaction vessel filled with a cobalt catalyst that is active at low temperatures and set at the reaction temperature of the cobalt catalyst. In the shift conversion device, the cross-sectional area of the gas flow path of the catalytic reaction vessel is formed so as to gradually expand from the intake side of the mixed gas of hydrocarbon gas and air toward the output side of the endothermic gas that has been converted. This is an endothermic gas shift equipment.
JP58021829A 1983-02-11 1983-02-11 Endothermic gas converter Granted JPS59146910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58021829A JPS59146910A (en) 1983-02-11 1983-02-11 Endothermic gas converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58021829A JPS59146910A (en) 1983-02-11 1983-02-11 Endothermic gas converter

Publications (2)

Publication Number Publication Date
JPS59146910A true JPS59146910A (en) 1984-08-23
JPH0364441B2 JPH0364441B2 (en) 1991-10-07

Family

ID=12065953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58021829A Granted JPS59146910A (en) 1983-02-11 1983-02-11 Endothermic gas converter

Country Status (1)

Country Link
JP (1) JPS59146910A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006508783A (en) * 2002-05-21 2006-03-16 バッテル メモリアル インスティチュート Reactor having a varying cross section, method for producing the same, and method for performing reaction by changing local contact time

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006508783A (en) * 2002-05-21 2006-03-16 バッテル メモリアル インスティチュート Reactor having a varying cross section, method for producing the same, and method for performing reaction by changing local contact time

Also Published As

Publication number Publication date
JPH0364441B2 (en) 1991-10-07

Similar Documents

Publication Publication Date Title
US6506359B1 (en) Auto-oxidation and internal heating type reforming method and apparatus for hydrogen production
EP4257542A1 (en) Ammonia decomposition apparatus
JPS6261521B2 (en)
JP3262354B2 (en) Reformer for non-adiabatic catalytic reaction
US20020020113A1 (en) Superadiabatic generation of hydrogen and hydrocarbons
JPH0123173B2 (en)
JP2021505515A (en) Methods and equipment for reforming hydrocarbon gases
US1960912A (en) Process for the preparation of hydrogen
JPS59146910A (en) Endothermic gas converter
JP4288179B2 (en) Hydrogen generator
JP4486832B2 (en) Steam reforming system
JP2001152313A (en) Apparatus and method for generating controlled atmospheric gas for high temperature rapid carburizing
JP3432298B2 (en) Fuel reformer
JP4823670B2 (en) Carburizing atmosphere gas generation method
JP3669672B2 (en) Operation method of hydrogen production equipment
JP2001152312A (en) Apparatus and method for generating controlled atmospheric gas for high temperature rapid carburizing
JPS61161133A (en) Endothermic reaction apparatus
JPH0611641B2 (en) Methanol reformer
JPH06287003A (en) Device for reforming fuel
TWI501462B (en) Anti-carbon reformer
JPS6227304A (en) Internal heat exchange type steam reformer
CZ197695A3 (en) Heat treatment, particularly carburization of metal workpieces
JP4488782B2 (en) Carburizing gas production equipment
JPS60149713A (en) Endothermic type gas converter
JP2002216827A (en) Co transformer in reforming system for fuel cell system