JPH0364078A - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element

Info

Publication number
JPH0364078A
JPH0364078A JP1200481A JP20048189A JPH0364078A JP H0364078 A JPH0364078 A JP H0364078A JP 1200481 A JP1200481 A JP 1200481A JP 20048189 A JP20048189 A JP 20048189A JP H0364078 A JPH0364078 A JP H0364078A
Authority
JP
Japan
Prior art keywords
region
light emitting
type semiconductor
junction
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1200481A
Other languages
Japanese (ja)
Other versions
JP2692971B2 (en
Inventor
Takeo Tsukamoto
健夫 塚本
Nobuo Watanabe
信男 渡辺
Masahiko Okunuki
昌彦 奥貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP20048189A priority Critical patent/JP2692971B2/en
Priority to US07/560,769 priority patent/US5107311A/en
Priority to DE69017301T priority patent/DE69017301T2/en
Priority to EP90114775A priority patent/EP0411612B1/en
Publication of JPH0364078A publication Critical patent/JPH0364078A/en
Application granted granted Critical
Publication of JP2692971B2 publication Critical patent/JP2692971B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To manufacture a uniform light emitting unit with satisfactory controllability by providing a lower breakdown voltage region than that of other part on a part of a flat part of a P-N junction in a semiconductor light emitting element using electron avalanche breakdown. CONSTITUTION:A semiconductor light emitting element in which P-type semiconductor layer is so provided as to form a planar P-N junction on the surface of N-type semiconductor, a reverse bias is applied to the P-N junction to generate electron avalanche breakdown to emit a light, a high concentration N-type region 3 different from regions is provided on the N-type semiconductor. Thus, a high concentration region is provided to form a high electric field, electron- hole pair generating efficiency is enhanced to increase the probability of light emission to control intensity and large energy is applied to the electron-hole pairs to emit a light having larger energy than a pad gap Eg.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、プレ−ナー型PN接合を有し、このPN接合
に逆バイアスを印加し、電子なだれ降伏を生じさせるこ
とによって光を発する半導体光放出素子に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a semiconductor that has a planar PN junction and that emits light by applying a reverse bias to the PN junction to cause electron avalanche breakdown. It relates to a light emitting device.

[従来の技術] 従来より、アバランシェ状態からの光放出は、学術論文
Phys、Rev、 、Vol、102.P2S5,1
956゜’Photo emission from 
avalanche break down」、A、G
、Chynoweth、and H,に、l1lcke
y等において報告されている。一方、この光放出現象を
光放出半導体素子として応用した例として、(:onf
、Proc。
[Prior Art] Conventionally, light emission from an avalanche state has been described in the academic paper Phys, Rev., Vol. 102. P2S5,1
956゜'Photo emission from
Avalanche break down”, A, G
, Chynoweth, and H., l1lcke
It has been reported in y et al. On the other hand, as an example of applying this light emission phenomenon to a light emission semiconductor device, (:onf
, Proc.

IEEE、sou theagtcon、P2S5,1
988 ’Astudy ofthe  nature
  and  characteristics  o
f  Lightradiation  in  re
verse−biased  5iliconjunc
tionsJ C,B、Williams  and 
 K、Daneshver  が知られている。この論
文においては、SiのPN接合界面における光放出強度
は、0.01W/cm”であると報告されている。そし
て、これらの文献の半導体素子は、 S、M、Sze著
r Physics ofsemiconductor
 DeviceJJohn 91i1ey&5ons 
P73に記載されているようなプレ−ナー型のPN接合
で構成されていた。
IEEE, so theagtcon, P2S5,1
988 'Study of the nature
and characteristics o
f Lightradiation in re
verse-biased 5iliconjunc
tionsJ C, B, Williams and
K. Daneshver is known. In this paper, it is reported that the light emission intensity at the Si PN junction interface is 0.01 W/cm''.The semiconductor devices in these documents are
DeviceJJohn 91i1ey&5ons
It was composed of a planar type PN junction as described in P.73.

[発明が解決しようとしている問題点]しかしながら、
上記従来例は、その構成がプレ−ナー型PN接合である
ため、接合部の周囲に円筒状の曲率な持つ部分や球状の
曲率を持つ部分が存在していた。そして、接合部に作用
する電界は、平面状の接合部よりも球状の曲率なもつ部
分や円筒状の曲率を持つ部分の方が高いので、アバラン
シェ降伏現象による光放出はこの高い電界領域、即ち接
合部の周囲でのみ生じ、接合部を均一に光らせることは
出来なかった。また、このようなプレ−ナー接合では、
接合を形成する時のバターニング形状の不均一に伴なう
電界集中による発光や、欠陥等に伴なう電界集中による
発光があり、偶発的な要素による発光が素子発光の光強
度や光の発光場所を支配する。このため、制御性よく光
放出デバイスを形成することは出来なかった。
[Problem that the invention seeks to solve] However,
Since the conventional example described above has a planar type PN junction, there are parts with cylindrical curvature and parts with spherical curvature around the joint. The electric field acting on a junction is higher in a part with spherical curvature or a part with cylindrical curvature than in a planar joint, so light emission due to avalanche breakdown occurs in this high electric field region, i.e. It occurred only around the joint, and it was not possible to make the joint glow uniformly. In addition, in such a planar joint,
There is light emission due to electric field concentration due to uneven patterning shape when forming a bond, and light emission due to electric field concentration due to defects, etc., and light emission due to accidental factors may affect the light intensity of device light emission or the light intensity. Control the luminous location. For this reason, it was not possible to form a light emitting device with good controllability.

本発明の目的は、上記従来技術の問題点を解決し、制御
性良く作製することが出来、均一な発光を行なう半導体
光放出素子を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art described above, to provide a semiconductor light emitting device that can be manufactured with good controllability and emits uniform light.

[問題点を解決するための手段] 本発明の上記目的は、n型半導体の表面に、プレ−ナー
型PN接合を形成するようにp型半導体層を設けて成り
、前記PN接合に逆バイアスを印加し、電子なだれ降伏
を生じさせることによって光を発する半導体光放出素子
において、前記PN接合の平面部の一部に、他の部分よ
りも降伏電圧の低い領域を設けることによって達成され
る。
[Means for Solving the Problems] The above object of the present invention is to provide a p-type semiconductor layer on the surface of an n-type semiconductor so as to form a planar PN junction, and to apply a reverse bias to the PN junction. In a semiconductor light-emitting device that emits light by applying a voltage to cause electron avalanche breakdown, this is achieved by providing a region in a part of the plane part of the PN junction with a lower breakdown voltage than the other part.

[実施例] 第1図(A)及び第1図(B)は、夫々本発明の半導体
光放出素子の第1実施例を示す平面図及びA−A’部に
おける断面図である。このような素子は、以下のような
プロセスで作製された。
[Example] FIG. 1(A) and FIG. 1(B) are a plan view and a cross-sectional view taken along the line AA', respectively, showing a first example of a semiconductor light emitting device of the present invention. Such an element was manufactured by the following process.

まず、n型半導体基体l(本実施例ではGaAs(10
0) )上に、3 x 10 ”cm−3の不純物濃度
を持つn型半導体層2を1分子線エピタキシー(MBE
)!&長によって形成した。そして、フォトリソグラフ
ィーのレジストプロセスを用いて、領域3の位置のフォ
トレジストを開口し、ここにSiイオンを80 KeV
の加速電圧で注入した。更に、同様なレジストプロセス
を用いて領域5の位置のフォトレジストを開口しここに
Znイオンを40 KeVの加速電圧で注入した。
First, an n-type semiconductor substrate l (in this example, GaAs (10
0) ), an n-type semiconductor layer 2 having an impurity concentration of 3 x 10"cm-3 is formed by single molecular beam epitaxy (MBE).
)! Formed by & long. Then, using a resist process of photolithography, the photoresist at the position of region 3 is opened, and Si ions are injected here at 80 KeV.
was injected at an accelerating voltage of Furthermore, using a similar resist process, the photoresist at the position of region 5 was opened, and Zn ions were implanted therein at an accelerating voltage of 40 KeV.

次に、これをアルシン雰囲気中で850℃−30sec
のアニールな行ない、不純物原子を活性化した。そして
領域3を、不純物濃度のピーク値が約I X 101a
cIl−”の高濃度n型領域に領域5を不純物濃度のピ
ーク値が約lx10 ”cm−”以上のp型半導体層と
した。高濃度n型領域3の大きさは直径5pm以下が望
ましく、これ以上の大きさでは均一な光放出が得られず
、また発熱が大きかった。また、p型半導体層5の厚さ
は0.1μm以下とするのが望ましく、これ以上では光
の透過率が急激に低下した。
Next, this was heated at 850°C for 30 seconds in an arsine atmosphere.
Annealing was performed to activate the impurity atoms. Then, in region 3, the peak value of impurity concentration is about I x 101a
The region 5 is formed into a p-type semiconductor layer with a peak impurity concentration of approximately lx10 cm- or more in the highly-concentrated n-type region of cIl-''.The size of the highly-concentrated n-type region 3 is preferably 5 pm or less in diameter; If the size is larger than this, uniform light emission cannot be obtained and a large amount of heat is generated.Also, it is desirable that the thickness of the p-type semiconductor layer 5 is 0.1 μm or less, and if it is larger than this, the light transmittance will decrease. It declined rapidly.

上述の半導体層上に、絶縁層9をSiO2のスパッタで
形成し、同様なレジストプロセスを用いて所定の位置の
フォトレジストを開口した。そして、この上にCr /
 A uを蒸着して。
An insulating layer 9 was formed on the above semiconductor layer by sputtering SiO2, and a similar resist process was used to open the photoresist at a predetermined position. And on top of this Cr/
Deposit Au.

適当にエツチングで不要部分を取り除き、P型半導体へ
のオーくツクコンタクト電極6を形成した。そして、こ
の電極6に接続して、AfLのコンタクト電極11を形
成した。また、基体lの底面にも、オーミックコンタク
ト電極8を形成した。このように作製された素子に、電
極6及び8を介して電源7より逆バイアスの電界を印加
すると、領域3の上方より光hアを放出した。
Unnecessary portions were removed by appropriate etching to form an open contact electrode 6 to the P-type semiconductor. Then, connected to this electrode 6, an AfL contact electrode 11 was formed. Furthermore, an ohmic contact electrode 8 was also formed on the bottom surface of the base 1. When a reverse bias electric field was applied from the power supply 7 to the device thus manufactured through the electrodes 6 and 8, light ha was emitted from above the region 3.

次に、本発明の素子の動作について説明する。Next, the operation of the device of the present invention will be explained.

第3図は、本発明の半導体光放出素子のエネルギーバン
ド図である。第3図に示すように、n型半導体層にp型
半導体層を接合し、逆バイアスを印加することにより、
アバランシェ降伏な生ぜしめると、空乏層内で電子とホ
ールが多数生成される。この生成された電子やホールは
、第4図に示される様に、(a)で示される通常のバン
ド間遷移だけでなく、(b)に示される高いエネルギー
を持つキャリアの再結合、或は、(C)に示されるバン
ド内遷移により光が放出される。
FIG. 3 is an energy band diagram of the semiconductor light emitting device of the present invention. As shown in FIG. 3, by joining a p-type semiconductor layer to an n-type semiconductor layer and applying a reverse bias,
When avalanche breakdown occurs, many electrons and holes are generated within the depletion layer. As shown in Figure 4, these generated electrons and holes not only undergo the normal interband transition shown in (a), but also the recombination of high-energy carriers shown in (b), or , (C), light is emitted by the intraband transition shown in FIG.

そこで本発明では、n型半導体層に他領域と異なる高濃
度n型領域3を設けることで、第1図(B)に破線4で
示されるような空乏層を形成した。そして、この高濃度
n型領域3全体に均一かつ高電界領域を形威することに
よって、光放出がこの高濃度領域でのみ均一に生じるよ
うにしたものである。
Therefore, in the present invention, a depletion layer as shown by the broken line 4 in FIG. 1(B) is formed by providing a high concentration n-type region 3 different from other regions in the n-type semiconductor layer. By forming a uniform high electric field region over the entire high-concentration n-type region 3, light emission occurs uniformly only in this high-concentration region.

また、本発明においては、前述のように高濃度領域を設
けることによって、高い電界を形成し、電子−ホール対
の生成効率を高めて光放出の確率を増加させて輝度制御
を行なうとともに、電子−ホールに大きなエネルギーを
与えることで、バンドギャップEgよりも大きなエネル
ギーを持つ光の放出が可能となった。
In addition, in the present invention, by providing a high concentration region as described above, a high electric field is formed, the generation efficiency of electron-hole pairs is increased, the probability of light emission is increased, and the brightness is controlled. - By giving a large amount of energy to the hole, it became possible to emit light with an energy larger than the band gap Eg.

更に、本発明では、半導体基体としてn型半導体を用い
たことにより、表面のp型半導体直下に最も高い電界が
形成されるため、p型半導体内の小数キャリアである電
子が最もアバランシェ増幅に作用する。このため、キャ
リアの種類により電子−ホールベアの生成効率が異なり
、電子により電子−ホールベアが生成される確率がホー
ルにより電子−ホールベアが生成される確率よりも大き
いような基板(例えばシリコン)を用いる場合1本発明
のような構成にすることで、電子の生成効率を高めるこ
とが出来る。
Furthermore, in the present invention, by using an n-type semiconductor as the semiconductor substrate, the highest electric field is formed directly under the p-type semiconductor on the surface, so that electrons, which are minority carriers in the p-type semiconductor, have the greatest effect on avalanche amplification. do. For this reason, the generation efficiency of electron-hole bears varies depending on the type of carrier, and when using a substrate (e.g. silicon) in which the probability that electron-hole bears are generated by electrons is greater than the probability that electron-hole bears are generated by holes. 1. By adopting the configuration of the present invention, the electron generation efficiency can be increased.

本発明において、p型半導体層の厚さは、PN接合界面
で生成した光を十分に透過し、光の透過損失を減少させ
るため、極めて薄く形成される必要がある。
In the present invention, the p-type semiconductor layer needs to be formed extremely thin in order to sufficiently transmit light generated at the PN junction interface and reduce light transmission loss.

以上述べた構成により、第2図に示すような光エネルギ
ーと光強度との関係を持つ光放出素子を制御性良く作製
することが可能になった。
With the configuration described above, it has become possible to fabricate a light emitting element having a relationship between light energy and light intensity as shown in FIG. 2 with good controllability.

第5図に1本発明の第2の実施例を示す、第5図は、第
1図(B)と同様に素子の断面図を示す、また、第5図
において、第1図(B)と同一の部材には同一の符号を
付した。このような素子は、以下のプロセスで作製され
た。
FIG. 5 shows a second embodiment of the present invention. FIG. 5 shows a cross-sectional view of the element similarly to FIG. 1(B). The same members are given the same reference numerals. Such an element was manufactured by the following process.

まず、n型半導体基体!(本実施例では5i(100)
 )上に5 X l O”Cm−”の不純物濃度を持つ
n型半導体層2を気相成長(CVD)法にてエピタキシ
ャル成長させて形成した0次にSin。
First, the n-type semiconductor substrate! (5i (100) in this example)
) is formed by epitaxially growing an n-type semiconductor layer 2 having an impurity concentration of 5XlO"Cm-" on it by a vapor phase growth (CVD) method.

を、熱拡散を用いて4000人の厚さに形成し、レジス
トプロセスを用いて所定の位置のレジストを開口後、5
insをフッ酸系のエツチング液を用いて取り除き、領
域10の上部にドーナツ状の開口部を形成した0次に熱
拡散を用いて適当なドーパントを用いてB(ボロン)を
拡散し、p型のガードリング領域lOを形成した0次に
光放出部上部のSin、領域を前述のレジストプロセス
及びエツチング液を用いて除去し、第1実施例と同様な
手法を用いて、領域3にはP(リン)イオンを注入し、
領域5にはGa(ガリウム)イオンを注入し、領域3を
不純物濃度のピーク値が約8 X 10 ”cs−”の
n型半導体に、領域5を不純物濃度のピーク値が約lX
1019以上のp型半導体になるようにした。また、領
域5の厚さが500Å以下になるように低加速で注入し
、適当なエツチングも行なった0次にオーミックコンタ
クト電極6及び電極8を形成し、光放出素子を構成した
0本実施例のように、高濃度n型領域3の周囲にガード
リング領域10を構成することで破線4で示される空乏
層を形威し、より一層電界を領域3に集中し。
was formed to a thickness of 4,000 mm using thermal diffusion, and after opening the resist at a predetermined position using a resist process,
Ins is removed using a hydrofluoric acid-based etching solution, and a donut-shaped opening is formed in the upper part of the region 10. B (boron) is diffused using an appropriate dopant using zero-order thermal diffusion to form a p-type The area above the 0-order light emitting part where the guard ring area IO was formed was removed using the resist process and etching solution described above, and P was etched in area 3 using the same method as in the first embodiment. (phosphorus) ions are implanted,
Ga (gallium) ions are implanted into region 5, and region 3 is made into an n-type semiconductor with a peak impurity concentration of about 8 x 10 "cs-", and region 5 is made into an n-type semiconductor with a peak impurity concentration of about 1X.
It was made to be a p-type semiconductor of 1019 or more. In addition, a zero-order ohmic contact electrode 6 and an electrode 8 were formed by implantation at low acceleration and appropriate etching so that the thickness of the region 5 was 500 Å or less, and a light emitting device was constructed. By configuring the guard ring region 10 around the heavily doped n-type region 3, a depletion layer shown by the broken line 4 is formed as shown in FIG.

発光効率を向上することが出来た。We were able to improve the luminous efficiency.

[発明の効果] 以上説明したように1本発明は、電子なだれ降伏を用い
る半導体光放出素子において、PN接合の平面部の一部
に他の部分よりも降伏電圧の低い領域を設けたことによ
って、均一な発光部を制御性良く作製出来る効果が得ら
れたものである。
[Effects of the Invention] As explained above, one aspect of the present invention is that, in a semiconductor light emitting device using electron avalanche breakdown, a region having a lower breakdown voltage than other parts is provided in a part of the plane part of the PN junction. , it was possible to produce a uniform light emitting section with good controllability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)及び第1図(B)は夫々本発明の半導体光
放出素子の第1実施例を示す平面図及び断面図、第2図
は本発明の素子の典型的な光エネルギーと光強度との関
係を示す図2第3図は本発明の素子のエネルギーバンド
を示す図、第4図は本発明の素子における光の発生過程
を説明する図、第5図は本発明の第2実施例を説明する
断面図である。 1−−− n型半導体基体 2 ・・−n型半導体層 3・・・高濃度n型領域 4・・・空乏層 5・・・P型半導体層 6.8・・・オーミックコンタク 7・・・電源 9・・・絶縁層 10・・・ガードリング領域 ト電極 富 3 図
FIG. 1(A) and FIG. 1(B) are a plan view and a sectional view, respectively, showing a first embodiment of a semiconductor light emitting device of the present invention, and FIG. 2 is a typical light energy diagram of the device of the present invention. FIG. 2 shows the relationship with light intensity. FIG. 3 shows the energy band of the device of the invention. FIG. 4 shows the process of light generation in the device of the invention. FIG. 5 shows the energy band of the device of the invention. It is a sectional view explaining a second example. 1---- N-type semiconductor substrate 2...-N-type semiconductor layer 3...High concentration n-type region 4...Depletion layer 5...P-type semiconductor layer 6.8...Ohmic contact 7...・Power source 9...Insulating layer 10...Guard ring area To electrode wealth 3 Figure

Claims (5)

【特許請求の範囲】[Claims] (1)n型半導体の表面に、プレ−ナー型PN接合を形
成するようにp型半導体層を設け て成り、前記PN接合に逆バイアスを印加 し、電子なだれ降伏を生じさせることに よって光を発する半導体光放出素子におい て、 前記PN接合の平面部の一部に、他の部 分よりも降伏電圧の低い領域を設けたこと を特徴とする半導体光放出素子。
(1) A p-type semiconductor layer is provided on the surface of an n-type semiconductor to form a planar PN junction, and light is emitted by applying a reverse bias to the PN junction and causing electron avalanche breakdown. What is claimed is: 1. A semiconductor light emitting device for emitting light, characterized in that a region having a lower breakdown voltage than other portions is provided in a part of the plane portion of the PN junction.
(2)前記領域は、前記n型半導体の一部に他の部分よ
りも不純物濃度の高い領域を設け て成る特許請求の範囲第1項記載の半導体 光放出素子。
(2) The semiconductor light emitting device according to claim 1, wherein the region is formed by providing a region having a higher impurity concentration in a part of the n-type semiconductor than in other parts.
(3)前記領域の周囲のp型半導体層の厚さを他の部分
よりも厚くした特許請求の範囲第 1項記載の半導体光放出素子。
(3) The semiconductor light emitting device according to claim 1, wherein the p-type semiconductor layer around the region is thicker than other parts.
(4)前記領域の大きさが5μm以下である特許請求の
範囲第1項記載の半導体光放出素 子。
(4) The semiconductor light emitting device according to claim 1, wherein the size of the region is 5 μm or less.
(5)前記領域のp型半導体層の厚さが0.1μm以下
である特許請求の範囲第1項記載 の半導体光放出素子。
(5) The semiconductor light emitting device according to claim 1, wherein the p-type semiconductor layer in the region has a thickness of 0.1 μm or less.
JP20048189A 1989-08-02 1989-08-02 Semiconductor light emitting device Expired - Fee Related JP2692971B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP20048189A JP2692971B2 (en) 1989-08-02 1989-08-02 Semiconductor light emitting device
US07/560,769 US5107311A (en) 1989-08-02 1990-07-31 Semiconductor light-emitting device
DE69017301T DE69017301T2 (en) 1989-08-02 1990-08-01 Semiconductor light emitting device.
EP90114775A EP0411612B1 (en) 1989-08-02 1990-08-01 Semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20048189A JP2692971B2 (en) 1989-08-02 1989-08-02 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH0364078A true JPH0364078A (en) 1991-03-19
JP2692971B2 JP2692971B2 (en) 1997-12-17

Family

ID=16425033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20048189A Expired - Fee Related JP2692971B2 (en) 1989-08-02 1989-08-02 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2692971B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013518402A (en) * 2010-01-22 2013-05-20 インシアヴァ (ピーテーワイ) リミテッド Silicon light emitting device and method of manufacturing the device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013518402A (en) * 2010-01-22 2013-05-20 インシアヴァ (ピーテーワイ) リミテッド Silicon light emitting device and method of manufacturing the device

Also Published As

Publication number Publication date
JP2692971B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
TW548725B (en) Activating acceptors in buried p-type GaN layers
JPH01220328A (en) Semiconductor electron emission element
US5107311A (en) Semiconductor light-emitting device
US4017881A (en) Light emitting semiconductor device and a method for making the same
US3514846A (en) Method of fabricating a planar avalanche photodiode
CN108091744B (en) Ge light-emitting device with transverse p-n-n microcavity structure and preparation method thereof
US6410943B1 (en) Light emitting device contact layers having substantially equal spreading resistance and method of manufacture
JPH0364078A (en) Semiconductor light emitting element
JP2675867B2 (en) Semiconductor light emitting device
JP3674412B2 (en) AlGaInP light emitting diode and method for manufacturing the same
JPH07326793A (en) Compound semiconductor light emitting diode
JPS6024592B2 (en) Manufacturing method of wide-gap emitter transistor
JP3723314B2 (en) Semiconductor light emitting device
KR20030066957A (en) Method for manufacturing a light emitting device made from Ⅲ-Ⅴgroup chemical compound semiconductor
KR100395660B1 (en) Method for fabricating nitride compound semiconductor light emitting device having tunnel junction layer
JPH0395824A (en) Semiconductor electron emitting element
JPS63248168A (en) Hetero-junction bipolar transistor and manufacture thereof
JPH0669539A (en) Light-emitting semiconductor device and its manufacture
JPH11177119A (en) Photodiode and its manufacture
CN116266603A (en) Light-emitting diode with self-constant current function and preparation method thereof
JPS6048915B2 (en) Injection type light emitting semiconductor device and its manufacturing method
JP2820450B2 (en) Semiconductor electron-emitting device
CN117253900A (en) Luminance self-adaptive light-emitting diode and preparation method thereof
JP2912782B2 (en) Semiconductor light emitting device
KR20120103817A (en) Method of manufacturing light emitting diode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees