JPH0363920A - Magnetic recording medium and its production - Google Patents

Magnetic recording medium and its production

Info

Publication number
JPH0363920A
JPH0363920A JP1197946A JP19794689A JPH0363920A JP H0363920 A JPH0363920 A JP H0363920A JP 1197946 A JP1197946 A JP 1197946A JP 19794689 A JP19794689 A JP 19794689A JP H0363920 A JPH0363920 A JP H0363920A
Authority
JP
Japan
Prior art keywords
magnetic
coercive force
magnetic film
film
oxygen content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1197946A
Other languages
Japanese (ja)
Inventor
Michiyoshi Aida
合田 倫佳
Shuichi Kojima
修一 小島
Noriyuki Shige
重 則幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1197946A priority Critical patent/JPH0363920A/en
Priority to DE4023770A priority patent/DE4023770A1/en
Publication of JPH0363920A publication Critical patent/JPH0363920A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/658Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing oxygen, e.g. molecular oxygen or magnetic oxide

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To enhance the coercive force of the medium and to control the variance of the coercive force by adjusting the oxygen content of the magnetic film to <3atom% based on the metallic elements in the entire magnetic film. CONSTITUTION:A base layer 2 is formed on a nonmagnetic substrate 1. An intermediate layer 3 of Cr, the magnetic layer 4 of a Co-Ni-Zn alloy and a protective layer 5 of C are successively formed. A corrosion-resistant additive such as Zr and Pt is incorporated into a metallic magnetic film, especially a Co-Ni-based metallic magnetic film, to obtain the magnetic recording medium consisting of an alloy magnetic film of >=3 element, and the oxygen content is controlled to <3atom%. Consequently, the variance of the coercive force is reduced, and a high coercive force is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気記録媒体及びその製造方法に係り、特に
、磁性膜の酸素含有量を制御することにより、保磁力H
cの最適化及び保磁力のばらつきの低減化を図った磁気
記録媒体及びその製造方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a magnetic recording medium and a method for manufacturing the same, and in particular, by controlling the oxygen content of a magnetic film, coercive force H
The present invention relates to a magnetic recording medium that optimizes c and reduces variations in coercive force, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来、磁気記録媒体の静磁気特性特に保磁力を向上させ
、酸素腐食による特性の経時的な劣化を防ぎ、その特性
を維持する目的で、磁性膜成膜中の雰囲気ガスの酸素分
圧を高くする方法が知られている。例えばGoもしくは
Go−Niの金属磁性膜の蒸着による成膜法において、
特開昭57−58231号公報や特開昭57−5823
2号公報、さらには特開昭57−58238号公報に記
載のように、ArガスもしくはKrガス、Xeガスまた
はこれらの混合ガスとOzガスのガス圧比(Ar10z
)を1〜1000とし、析出速度102ガス圧比を20
〜6700μm/分/トールにすることによって、磁気
特性を保証しているものがある。また、上記混合ガス以
外にもHeを使用したり、O!ガスのガス圧比を100
0以下で制御することで磁気特性を保証したりする技術
もある(例えば、特開昭57−55537号公報。
Conventionally, in order to improve the magnetostatic properties, especially the coercive force, of magnetic recording media, and to prevent deterioration of properties over time due to oxygen corrosion and maintain the properties, the oxygen partial pressure of the atmospheric gas during magnetic film deposition has been increased. There are known ways to do this. For example, in a film formation method by vapor deposition of a Go or Go-Ni metal magnetic film,
JP-A-57-58231 and JP-A-57-5823
As described in Japanese Patent Publication No. 57-58238, the gas pressure ratio of Ar gas, Kr gas, Xe gas, or a mixture thereof and Oz gas (Ar10z
) is 1 to 1000, and the deposition rate is 102 and the gas pressure ratio is 20.
There are some materials that guarantee magnetic properties by setting the speed to ~6700 μm/min/Torr. In addition to the above mixed gases, He or O! Gas pressure ratio of gas is 100
There is also a technique that guarantees magnetic properties by controlling the magnetic properties to be less than 0 (for example, Japanese Patent Laid-Open No. 57-55537).

特開昭57−58236号公報、特開昭57−5823
7号公報、特開昭57−152546号公報、特開昭5
7−152547号公報、および特開昭57−1525
48号公報参照、)。
JP-A-57-58236, JP-A-57-5823
Publication No. 7, JP-A-57-152546, JP-A-5
Publication No. 7-152547, and JP-A-57-1525
(See Publication No. 48).

また、特開昭57−113417号公報に記載のように
、蒸着技術で、Coが磁性膜中のCo酸酸化物上金属C
oXとの体積比が、Y/ (X+Y)の値で0.25〜
0.40になるように合金磁性薄膜を基板に形成する技
術もある。
In addition, as described in Japanese Patent Application Laid-open No. 57-113417, Co is deposited on Co acid oxide in a magnetic film using vapor deposition technology.
The volume ratio with oX is 0.25 to Y/(X+Y)
There is also a technique in which an alloy magnetic thin film is formed on a substrate so that the magnetic flux density is 0.40.

さらには、特公昭60−33289号公報に記載のよう
に、GoとNiの組成比をNiの重量%で10〜55重
量%の範囲とし、磁性膜中のG。
Furthermore, as described in Japanese Patent Publication No. 60-33289, the composition ratio of Go and Ni is set in the range of 10 to 55% by weight of Ni, and G in the magnetic film.

とNiの原子数の和に対して酸素含有量を3〜45at
%と規定して高保磁力を得、保磁力のばらつきの低減を
図った技術もある。
The oxygen content is 3 to 45 at to the sum of the number of atoms of Ni and Ni.
There is also a technique in which a high coercive force is obtained by specifying %, and the variation in coercive force is reduced.

いずれにしても、上記従来技術は、磁性膜中の酸素含有
量をなるべく高くすることで酸化による腐食を防ぎ、経
時変化による静磁気特性、特に保磁力の劣化をおさえ磁
気記録媒体の高品質化を行なってきたものである。
In any case, the above-mentioned conventional technology prevents corrosion due to oxidation by increasing the oxygen content in the magnetic film as much as possible, suppresses deterioration of magnetostatic properties, especially coercive force, due to changes over time, and improves the quality of magnetic recording media. This is what we have been doing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、近年、材料開発が活発になるにつれ、Co系の
磁性膜は耐食性を向上させるために、co−Ni合金か
らさらにこの合金にTi、V、Cr、 Zr、 Nb、
 Mo、 Hf、 Ta、 W、 PCなどの第3.第
4元素を添加したものが用いられるようになってきてい
る。このような耐食性の第3゜第4元素を添加したもの
では、高酸素含有を目的とした従来技術によって静磁気
特性を改良することは不可能となってきている。特に静
磁気特性の中でも保磁力に関しては、上記3元素以上の
磁性材料(上記Co−Ni系に’l’i、V、Cr、Z
r。
However, in recent years, as material development has become more active, Co-based magnetic films have been modified from co-Ni alloys to include Ti, V, Cr, Zr, Nb,
3rd such as Mo, Hf, Ta, W, PC, etc. Materials to which a fourth element is added are increasingly being used. It has become impossible to improve the magnetostatic properties of materials to which such corrosion-resistant tertiary and quaternary elements have been added using conventional techniques aimed at increasing oxygen content. In particular, regarding coercive force among magnetostatic properties, magnetic materials containing three or more of the above elements ('l'i, V, Cr, Z in the above Co-Ni system)
r.

Nb、Mo、Hf、Ta、WおよびPtの一種または二
種以上を添加したもの)において高濃度酸素含有により
特性を向上することは難しく、かえって磁性膜中の含有
酸素量が保磁力の低下及び、保磁力のばらつきの大きな
要因となってきている。
It is difficult to improve the characteristics by containing a high concentration of oxygen in magnetic films (adding one or more of Nb, Mo, Hf, Ta, W, and Pt), and on the contrary, the amount of oxygen contained in the magnetic film causes a decrease in coercive force and , has become a major factor in the variation in coercive force.

そのため新たな技術として、磁性膜中の含有酸素を制御
することにより、高保磁力を獲得し、静磁気特性の優れ
た磁気記録媒体の開発が急務となってきている。
Therefore, there is an urgent need to develop a magnetic recording medium with high coercive force and excellent magnetostatic properties by controlling the oxygen content in the magnetic film as a new technique.

本発明者等は、色々と実験を重ねた結果、従来の高濃度
に酸素を含有させる技術の傾向とは逆に、酸素含有量を
かえって少なくすることにより、保磁力を高め保磁力の
ばらつきを抑える等、磁気特性を改善し得ることを見出
した。特に、この特性改善は、Co−Ni系に上記の添
加物を入れた3元素系以上の磁性材料において顕著に現
れる。
As a result of various experiments, the present inventors found that, contrary to the conventional tendency of technology to contain oxygen at a high concentration, by reducing the oxygen content, the coercive force was increased and the variation in coercive force was reduced. It has been found that the magnetic properties can be improved, such as by suppressing the magnetic properties. In particular, this improvement in properties is remarkable in magnetic materials containing three or more elements in which the above-mentioned additives are added to the Co--Ni system.

従って、本発明の第1の目的は、改良された磁性材料中
の酸素含有量を3at%以下に制御することにより、保
磁力が向上し、保磁力のばらつきを抑えて安定した高品
質の磁気記録媒体を提供することにある。
Therefore, the first object of the present invention is to improve the coercive force by controlling the oxygen content in the improved magnetic material to 3 at% or less, thereby suppressing variations in the coercive force and producing stable, high-quality magnetic material. The goal is to provide recording media.

また、本発明の第2の目的は、磁性膜中の酸素含有量を
3at%以下にし、その酸素含有量範囲中でさらに酸素
量を制御することにより、特定磁性材料で保磁力を最大
値に引き出す磁気記録媒体およびその製造方法を提供す
ることにある。
A second object of the present invention is to reduce the oxygen content in the magnetic film to 3 at% or less, and further control the oxygen content within that oxygen content range, thereby increasing the coercive force to the maximum value with a specific magnetic material. An object of the present invention is to provide a magnetic recording medium that can be drawn out and a method for manufacturing the same.

さらに、本発明の第3の目的は、材料組成比が異なる磁
性膜であっても、それぞれの材料組成比に適合した3a
t%以下の酸素含有量に制御することにより、同一の保
磁力の磁気記録媒体およびその製造方法を提供すること
にある。
Furthermore, the third object of the present invention is to provide 3a that is compatible with each material composition ratio, even if the magnetic films have different material composition ratios.
It is an object of the present invention to provide a magnetic recording medium having the same coercive force by controlling the oxygen content to t% or less, and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

上記第1〜3の目的を達成するため、本発明の磁気記録
媒体は、磁性膜中の酸素含有量が該磁性膜全体の金属元
素に対し3原子%未満となるように調整される。
In order to achieve the first to third objects, the magnetic recording medium of the present invention is adjusted such that the oxygen content in the magnetic film is less than 3 atomic % based on the metal element in the entire magnetic film.

磁性膜は、Co−Ni系材料で構成され、特に、添加物
として、周期律表の4a、5a、6a族の元素(すなわ
ち、Ti、 V、 Cr、 Zr、 Nb。
The magnetic film is composed of a Co-Ni-based material, and in particular contains elements of groups 4a, 5a, and 6a of the periodic table (i.e., Ti, V, Cr, Zr, Nb) as additives.

Mo、Hf、Ta、W)、および、Ptの少なくとも一
種を含むものに適用される。
This applies to materials containing at least one of Mo, Hf, Ta, W), and Pt.

成膜には、DC(直流)またはRF(高周波)スパッタ
リング法、プラズマCVD法、蒸着法などが用いられる
が、その製造チャンバー内の残留ガスもしくは膜の形成
時に導入した雰囲気ガス中の酸素量を制御することによ
り磁性膜中の酸素含有量(金属元素全体に対する酸素の
比率)を上記の3at%未満に調整する。
For film formation, DC (direct current) or RF (radio frequency) sputtering method, plasma CVD method, vapor deposition method, etc. are used, but the amount of oxygen in the residual gas in the manufacturing chamber or the atmospheric gas introduced during film formation is Through control, the oxygen content (ratio of oxygen to all metal elements) in the magnetic film is adjusted to less than the above-mentioned 3 at %.

また、酸素含有量をこの数値未満に調整するためには、
基体及び基体を支持する基体ホルダーが成膜装置の真空
チャンバー内に持ち込む酸素及び酸素の原因となる水を
排除する必要があるので、成膜前の予備加熱を行ない、
基体及び基体ホルダーを焼き出し、さらに真空チャンバ
ー内で加熱を行なう。これにより、成膜時の磁性膜中の
酸素含有量の制御を行ない易くすることができる。
Also, in order to adjust the oxygen content to below this value,
Since it is necessary to eliminate oxygen and water that causes oxygen that the substrate and the substrate holder that supports the substrate bring into the vacuum chamber of the film forming apparatus, preheating is performed before film formation.
The substrate and substrate holder are baked out and further heated in a vacuum chamber. This makes it easier to control the oxygen content in the magnetic film during film formation.

また、酸素含有量を上記の数値以下に調整するために、
成膜前の成膜真空チャンバーの到達真空圧を5X10−
’トル以下に規定することにより予め成膜時の酸素ガス
圧の制御が行ない易い状態にし、しかる後に所要の酸素
分圧の成膜雰囲気ガス中で磁性膜の成膜を行なうことに
より、磁性膜中の酸素含有量を所定値に制御する。
In addition, in order to adjust the oxygen content to below the above value,
The ultimate vacuum pressure of the deposition vacuum chamber before deposition is 5X10-
The oxygen gas pressure during film formation can be easily controlled in advance by specifying the oxygen gas pressure to be less than The oxygen content inside is controlled to a predetermined value.

〔作用〕[Effect]

上記構成に基づく作用を説明する。 The operation based on the above configuration will be explained.

本発明によれば、金属磁性膜、特に、Co−Ni系の金
属磁性膜に、周期律表の4a、5a、6a族元素(すな
わち、Ti、V、Cr、Zr、Nb。
According to the present invention, a metal magnetic film, particularly a Co--Ni metal magnetic film, contains elements of groups 4a, 5a, and 6a of the periodic table (i.e., Ti, V, Cr, Zr, and Nb).

Mo、Hf、Ta、W)、および、Ptなどの耐食性を
考慮した添加物を含有させた三元素以上の合金磁性膜か
らなる磁気記録媒体において、(従来の、なるべく酸素
含有量を多くすることで、保磁力を高める技術とは逆に
、)酸素含有量を3原子%未滴に抑えることにより、ば
らつきが少なくかつ高い値の保磁力を得ることができる
In a magnetic recording medium made of an alloy magnetic film of three or more elements containing additives such as Mo, Hf, Ta, W) and Pt for corrosion resistance, (conventional method of increasing the oxygen content as much as possible) Contrary to the technique of increasing the coercive force, by suppressing the oxygen content to less than 3 atomic %, it is possible to obtain a high value of coercive force with less variation.

なお、以下に、各種の組成において酸素含有量を上記3
原子%未満の範囲で所要値に調整して所望の保磁力を得
るための製造方法の概要について説明する。
In addition, below, the oxygen content in various compositions is calculated according to the above 3.
An outline of a manufacturing method for obtaining a desired coercive force by adjusting it to a desired value within a range of less than atomic % will be explained.

まず、基体及び基体ホルダーの焼き出しを行ない、基体
ホルダーに付着した磁気記録媒体の前回の成膜時の膜(
汚れ)を除去することにより、基体及び基体ホルダーが
成膜時に成膜真空チャンバーに持ち込む酸素及び水を排
除する。その後、基体及び基体ホルダーを成膜チャンバ
ー内に装填し、到達真空圧を5×lO−″’Torr以
下にする。上記指定の真空圧に達したところでさらに基
体及び基体ホルダーを加熱し、さらに十分に脱ガスを行
なう。脱ガス後の真空圧が5X10−’Torrに達す
るまで十分に真空ポンプにて排気を行なう。
First, the substrate and substrate holder are baked out, and the previously formed film (
By removing dirt), oxygen and water brought into the deposition vacuum chamber by the substrate and substrate holder during deposition are eliminated. Thereafter, the substrate and substrate holder are loaded into the film forming chamber, and the ultimate vacuum pressure is set to 5×lO-'''Torr or less. When the specified vacuum pressure is reached, the substrate and substrate holder are further heated, and Perform degassing. Sufficient evacuation is performed using a vacuum pump until the vacuum pressure after degassing reaches 5×10 −' Torr.

以上の操作により膜形成真空チャンバー内の酸素ガスと
水は十分に排除される。その後、成膜雰囲気ガスを導入
する。雰囲気ガス中の酸素ガスが成膜時の磁性膜に入り
込み、これにより磁性膜中の酸素含有量が決定される。
By the above operations, oxygen gas and water in the film forming vacuum chamber are sufficiently removed. After that, a film forming atmosphere gas is introduced. Oxygen gas in the atmospheric gas enters the magnetic film during film formation, and this determines the oxygen content in the magnetic film.

したがって、雰囲気ガス中の酸素分圧の高低により酸素
含有量の大小が決まる。酸素分圧の決定は、組成比によ
り最大の保磁力を得ることができる酸素含有量が異なる
ため、事前に行なわなければいけない、それにより、成
膜時の雰囲気ガス中の酸素分圧を決め成膜を行なう。こ
れにより最大の保磁力を容易に再現することができる。
Therefore, the oxygen content is determined by the level of the oxygen partial pressure in the atmospheric gas. The oxygen partial pressure must be determined in advance because the oxygen content at which the maximum coercive force can be obtained differs depending on the composition ratio. Perform membrane. This makes it possible to easily reproduce the maximum coercive force.

また、上記の方法で各組成に対して雰囲気中の酸素分圧
を変化させることにより、異なる組成の磁性膜で同一の
保磁力を持たせる様に制御することができる。
Further, by changing the oxygen partial pressure in the atmosphere for each composition using the above method, it is possible to control magnetic films of different compositions so that they have the same coercive force.

さらに組成がただ1つに決まっている場合、上記の方法
にて磁性膜中の酸素含有量を制御することで、保磁力を
容易に変化させることができる。
Furthermore, when only one composition is determined, the coercive force can be easily changed by controlling the oxygen content in the magnetic film using the method described above.

その上、制御した磁性膜中の酸素含有量に対して、ばら
つきの少ない安定した保磁力を持つ磁気記録媒体を製造
できるので、同質の磁気記録媒体を継続的に安定して供
給することができる。
Furthermore, it is possible to manufacture magnetic recording media with a stable coercive force with little variation in relation to the controlled oxygen content in the magnetic film, making it possible to continuously and stably supply magnetic recording media of the same quality. .

さらに上記持ち込み酸素及び水を排除するために持ち込
みの要因である基体ホルダーの使用回数を規定し、基体
ホルダーに付着した磁気記録媒体形成膜の膜除去を行な
い、酸素の持ち込みをおさえることにより磁性膜中の酸
素含有量の制御を行ない易くすることもできる。
Furthermore, in order to eliminate the oxygen and water brought in, the number of times the substrate holder is used, which is a factor in bringing in oxygen, is stipulated, and the magnetic recording medium forming film attached to the substrate holder is removed. It also makes it easier to control the oxygen content inside.

〔実施例〕〔Example〕

以下に、本発明の実施例を図面により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明の磁気記録媒体の一例である、磁気デ
ィスクの断面図である。本実施例の媒体において、Al
−Mg合金の非磁性基板l上にN1−Pメツキの下地層
2を形成する。中間層3より上の層をDC(直流)スパ
ッタリングにより形成する。中間層3はCrであり、磁
性層4はCo−Ni−Zr合金により形成され、保護層
5はCにより形成している。保護層の上には潤滑膜6が
デイツプ法により形成しである。
FIG. 1 is a sectional view of a magnetic disk, which is an example of the magnetic recording medium of the present invention. In the medium of this example, Al
- An underlayer 2 of N1-P plating is formed on a nonmagnetic substrate l of Mg alloy. The layers above intermediate layer 3 are formed by DC (direct current) sputtering. The intermediate layer 3 is made of Cr, the magnetic layer 4 is made of Co-Ni-Zr alloy, and the protective layer 5 is made of C. A lubricating film 6 is formed on the protective layer by a dip method.

上記構造でN1−Pの下地層2を10.czmとした。In the above structure, the base layer 2 of N1-P is 10. czm.

さらにCr中間層3゛を0゜25μm、磁性膜4を0.
05μm、保護層を0.05μmとした。磁性膜4中の
Zrは耐食性を得るためである。またN1−P層2には
(深さが)約0.01μm程度のテクスチャー(磁気デ
ィスクの円周方向に配列した細かい溝)が付けである。
Further, the thickness of the Cr intermediate layer 3 is 0.25 μm, and the thickness of the magnetic film 4 is 0.25 μm.
05 μm, and the protective layer was 0.05 μm. The purpose of Zr in the magnetic film 4 is to obtain corrosion resistance. Further, the N1-P layer 2 has a texture (fine grooves arranged in the circumferential direction of the magnetic disk) with a depth of about 0.01 μm.

次に、本実施例による磁気媒体を製造する磁気記録媒体
成膜装置を第2図に示す。本実施例では、パッチ式の成
膜を行なった。仕込み室21に基板ホルダーを、これに
基板を装着した状態で仕込み、ポンプ22.23により
真空排気を行なう。基板及び基板ホルダーは事前に焼出
し炉によって150°Cで6時間焼出しである。焼出し
温度及び焼出し時間は高温で長時間が望ましいが、N1
−Pメツキの構造が温度により変化しないように注意を
はらう必要がある。
Next, FIG. 2 shows a magnetic recording medium film forming apparatus for manufacturing the magnetic medium according to this embodiment. In this example, patch-type film formation was performed. A substrate holder with a substrate attached thereto is placed in the preparation chamber 21, and pumps 22 and 23 are used to perform vacuum evacuation. The substrate and substrate holder were previously baked out in a baking oven at 150° C. for 6 hours. It is desirable that the baking temperature and baking time are high and long, but N1
- Care must be taken to ensure that the structure of the P plating does not change due to temperature.

真空排気により真空チャンバー内が5X10−’Tor
rとなったら、成膜装置内搬送装置により基板ホルダー
を一定の搬送速度で、中間層ターゲット24.磁性層タ
ーゲット25.保護層ターゲット26の順に移動させる
。本実施例では移動させなから成膜を行なった。中間層
及び磁性層はArと0□の混合ガス雰囲気圧10ミリT
o r r。
The inside of the vacuum chamber is 5X10-'Tor due to evacuation.
When it reaches the intermediate layer target 24. Magnetic layer target 25. The protective layer targets 26 are moved in this order. In this example, film formation was performed without moving. The intermediate layer and magnetic layer are prepared under a mixed gas atmosphere pressure of 10 mmT of Ar and 0□.
o r r.

保護膜は同じArと02雰囲気の混合ガス圧1ミ+J 
T o r rで成膜を行なった。成膜の直前で再度基
板温度180°Cで加熱を行ない所定の膜厚になる様、
投入パワーを決定した。
The protective film is the same Ar and 02 atmosphere mixed gas pressure 1mm+J
Film formation was performed using Torr. Immediately before film formation, heat the substrate again to 180°C to achieve the desired film thickness.
The input power was determined.

成膜後の磁性膜中の酸素含有量は便宜的に蛍光X線測定
装置により測定を行なった。さらに蛍光X線の酸素カウ
ント数を定量化するためにμmオージェ電子分光分析機
により成膜中の酸素量分析を行ないat%を算出した。
The oxygen content in the magnetic film after film formation was conveniently measured using a fluorescent X-ray measuring device. Furthermore, in order to quantify the number of oxygen counts of fluorescent X-rays, the amount of oxygen during film formation was analyzed using a μm Auger electron spectrometer, and the at% was calculated.

この酸素量は、全金属元素(Co+Ni+Zr)に対す
るOの比率で表したものである。また静磁気特性はVS
M (振動型磁気測定装置)によって測定した。
This amount of oxygen is expressed as a ratio of O to all metal elements (Co+Ni+Zr). Also, the magnetostatic characteristics are VS
Measured by M (vibrating magnetic measuring device).

まず、実施例1として、上記実施条件のうち、磁性膜形
成時の雰囲気ガス中の酸素分圧を変化させた結果を、第
3図により説明する。縦軸に保磁力(そのばらつきを併
せて示す)、横軸に成膜後の磁性膜中の酸素含有量(a
t%)をとっである。
First, as Example 1, the results of changing the oxygen partial pressure in the atmospheric gas during magnetic film formation among the above-mentioned implementation conditions will be explained with reference to FIG. The vertical axis shows the coercive force (its variation is also shown), and the horizontal axis shows the oxygen content in the magnetic film after film formation (a
t%).

また、磁性膜の組成比は、63Co−3ONi−7Zr
である。
In addition, the composition ratio of the magnetic film is 63Co-3ONi-7Zr
It is.

本組成の磁性材料において、約1.5at%のところで
保磁力が最大となり、それ以上の酸素量に対しては保磁
力が減少の傾向を示す。また、酸素量が3at%を越え
てからは、保磁力のばらつきが大きくなる。なお、一般
に、酸素含有量は、酸素分圧のほか、成膜条件(DC,
RFいずれのスパッタか、スパッタ投入電力、ターゲツ
ト材の作り方や選び方など)によっても左右されるが、
本実施例の場合、到達真空圧をlXl0−’Torrに
してベーキングを施すと、酸素分圧(%)が、それぞれ
0.001.0.01.0.1.および、1.0のとき
、酸素含有量(at%)は、それぞれ、0.5,1.0
,3.0,10.0であった。いずれにせよ、3at%
以下の含有酸素量を得るのは容易であり、4N(99,
99%純度)のArを用いて、本実施例のようにすれば
よい。
In the magnetic material having this composition, the coercive force reaches its maximum at about 1.5 at%, and the coercive force tends to decrease as the amount of oxygen exceeds that amount. Moreover, after the amount of oxygen exceeds 3 at%, the variation in coercive force increases. Note that, in general, the oxygen content is determined not only by the oxygen partial pressure but also by the film forming conditions (DC,
It also depends on the type of RF sputtering, the sputtering power input, how to prepare and select the target material, etc.
In the case of this example, when baking is performed at the ultimate vacuum pressure of lXl0-'Torr, the oxygen partial pressure (%) is 0.001.0.01.0.1. And, when it is 1.0, the oxygen content (at%) is 0.5 and 1.0, respectively.
, 3.0, 10.0. In any case, 3at%
It is easy to obtain the following oxygen content, 4N (99,
It is sufficient to use Ar with a purity of 99% as in this embodiment.

次に、実施例2として、磁性膜組成比を54Co−4O
Ni−6Zrに変え、実施例1と同様に酸素分圧を変化
させた。第4図を用いて説明する。
Next, as Example 2, the magnetic film composition ratio was changed to 54Co-4O.
The material was changed to Ni-6Zr, and the oxygen partial pressure was changed in the same manner as in Example 1. This will be explained using FIG.

実施例2では実施例1と同様に酸素含有量の変化に伴い
、保磁力が変化するが、保磁力が最大となる酸素量が実
施例1とは異なり、酸素量の少ないところで最大値をむ
かえている。また、保磁力のばらつきは約3at%を越
える酸素量で増加していることがわかる。
In Example 2, as in Example 1, the coercive force changes as the oxygen content changes, but the amount of oxygen at which the coercive force reaches its maximum is different from Example 1, and reaches its maximum value when the amount of oxygen is low. ing. It is also seen that the variation in coercive force increases when the amount of oxygen exceeds about 3 at%.

さらにZr以外のTi、 V、 Cr、 Nb、 Mo
Furthermore, Ti, V, Cr, Nb, Mo other than Zr
.

Hf、Ta、W、PLなどの添加元素についても、添加
物に応じて特性に若干の幅が生じるが、はぼ同様の結果
が得られた。
Regarding additive elements such as Hf, Ta, W, and PL, similar results were obtained, although the characteristics varied slightly depending on the additive.

すなわち、Co−Ni系の3元系以上の磁性合金におい
て、磁性膜中の酸素含有量の変化により保磁力は変化し
、材料組成または&[l酸比固有の保磁力最大ピークを
持つ。また酸素量が増加するにしたがい、保磁力にばら
つきが現れ始め、3at%を越えると安定した保磁力は
得られない。したがって、本実施例によれば、保磁力を
安定させる(ばらつきをなくする)ためには、磁性膜中
の酸素含有量を3at%未満とすることが有効である。
That is, in a Co--Ni-based ternary or higher magnetic alloy, the coercive force changes with changes in the oxygen content in the magnetic film, and has a maximum coercive force peak that is unique to the material composition or the &[l acid ratio. Further, as the amount of oxygen increases, variations in coercive force begin to appear, and if it exceeds 3 at%, stable coercive force cannot be obtained. Therefore, according to this embodiment, in order to stabilize the coercive force (eliminate variations), it is effective to set the oxygen content in the magnetic film to less than 3 at %.

また本実施例によれば酸素含有量に対する保磁力の関係
を予め求めておくことによって、各組成比ごとに最大の
保磁力が得られるように酸素含有量を3at%未満の範
囲内で制御することができるし、また、組成比が異なっ
ても常に一定の保磁力が得られるように、酸素含有量を
3at%未満の範囲内で制御することができる。
Further, according to this embodiment, by determining the relationship between the coercive force and the oxygen content in advance, the oxygen content is controlled within a range of less than 3 at% so that the maximum coercive force is obtained for each composition ratio. Moreover, the oxygen content can be controlled within a range of less than 3 at % so that a constant coercive force is always obtained even if the composition ratio is different.

さらに、本実施例によれば、ただ1つの組成比において
磁性膜中の酸素含有量を制御、変化させることにより、
保磁力の目標値への選定が可能である。
Furthermore, according to this example, by controlling and changing the oxygen content in the magnetic film at only one composition ratio,
It is possible to select the target value of coercive force.

次に、実施例3として、真空チャンバー内到達真空圧(
成膜用の雰囲気ガスを与える前に到達される真空圧であ
って、所期の02含有量を得るために必要な最高限度の
真空圧)を変化させた。第5図を用いて到達真空条件と
保磁力の関係について説明する。ここで雰囲気ガスの全
ガス圧は10ミリTo r r、雰囲気ガス中の酸素分
圧は0.01以下(4Nすなわち99.99%のAr使
用)で−定であり、基板及び基板ホルダーの加熱条件も
一定とした。到達真空圧が上昇するにつれ、保磁力の低
下が見られる。また、ばらつきも大きくなる。
Next, as Example 3, the ultimate vacuum pressure in the vacuum chamber (
The vacuum pressure reached before applying the atmospheric gas for film formation (the highest vacuum pressure necessary to obtain the desired 02 content) was varied. The relationship between the ultimate vacuum condition and the coercive force will be explained using FIG. Here, the total gas pressure of the atmospheric gas is 10 mTorr, the oxygen partial pressure in the atmospheric gas is constant at 0.01 or less (4N or 99.99% Ar used), and the heating of the substrate and substrate holder is The conditions were also kept constant. As the ultimate vacuum pressure increases, a decrease in coercive force is observed. Further, the variation becomes large.

このとき磁性膜中の酸素含有量は到達真空圧と比例関係
にあり、到達真空圧が低い時には酸素量は少なく、到達
真空圧が高い時には酸素量も多い結果となった。本実施
例によれば、成膜真空チャンバー内の到達真空圧が5X
10−’Torr以下で成膜を行なえば、磁性膜中の酸
素含有量を3at%未満にすることができ、高保磁力及
びばらつき低減に効果がある。また、到達真空圧のベー
スが一定になることにより、成膜雰囲気中の酸素分圧を
制御しやすくなる効果がある。
At this time, the oxygen content in the magnetic film was proportional to the ultimate vacuum pressure, and when the ultimate vacuum pressure was low, the amount of oxygen was small, and when the ultimate vacuum pressure was high, the amount of oxygen was large. According to this example, the ultimate vacuum pressure in the film forming vacuum chamber is 5X.
If the film is formed at a pressure of 10-' Torr or less, the oxygen content in the magnetic film can be made less than 3 at %, which is effective in increasing coercive force and reducing variations. Furthermore, since the base of the ultimate vacuum pressure is constant, there is an effect that it becomes easier to control the oxygen partial pressure in the film forming atmosphere.

ここで、以上の実施例を第6図にまとめる。Here, the above embodiments are summarized in FIG. 6.

従来法では保磁力にばらつきが大きく、最大保磁力も約
9000eであるが、本実施例によれば同−組成で保磁
力のばらつきを約1/2に抑え。
In the conventional method, the variation in coercive force is large and the maximum coercive force is about 9000e, but according to this embodiment, the variation in coercive force is suppressed to about 1/2 with the same composition.

最大保磁力を従来よりも約1000e上げることができ
る。
The maximum coercive force can be increased by about 1000e compared to the conventional one.

過去の報告において、磁性膜中の酸素含有量が3%未満
でばらつきが顕著になるとの報告があったが(前記特公
昭60−33289号公報参照)、本実施例においては
その傾向は見られず、かえって、酸素含有量が大きくな
るほどばらつきも大きい結果となっている。
In a past report, it was reported that variations become noticeable when the oxygen content in the magnetic film is less than 3% (see the above-mentioned Japanese Patent Publication No. 60-33289), but this tendency was not observed in this example. On the contrary, the results show that the greater the oxygen content, the greater the variation.

上記実施例において、基板1としてAl−Mg等のアル
ミニウム合金に代えて、AI単体もしくはガラスを用い
、他は上記実施例同様、下地層2にN1−Pメツキ、中
間層3にCr、磁性層4にGo−Ni系合金を用いるこ
とができる。又、保護膜層5はカーボンに代えて、カー
バイド系セラミックもしくはナイトライド系のセラミッ
クを用いることができる。各層の厚さとしては、下地層
を10μm以下、中間膜を1μm以下、磁性膜を0.1
μm以下、保護膜を0.1μm以下に形成するのがよい
In the above embodiment, the substrate 1 is made of aluminum alone or glass instead of an aluminum alloy such as Al-Mg, and the rest is the same as the above embodiment, the base layer 2 is N1-P plating, the intermediate layer 3 is Cr, and the magnetic layer is 4, a Go-Ni alloy can be used. Further, the protective film layer 5 may be made of carbide ceramic or nitride ceramic instead of carbon. The thickness of each layer is 10 μm or less for the base layer, 1 μm or less for the intermediate film, and 0.1 μm or less for the magnetic film.
It is preferable to form the protective film to a thickness of 0.1 μm or less.

中間層3より上の基膜の形成には、DC(直流)または
RF(高周波)スパッタリング法、もしくは蒸着法、も
しくはプラズマCVD法が用いられ形成される磁性膜中
の酸素含有量が上記のように(3at%以下に)制御さ
れる。
To form the base film above the intermediate layer 3, a DC (direct current) or RF (radio frequency) sputtering method, vapor deposition method, or plasma CVD method is used, and the oxygen content in the formed magnetic film is as described above. (to 3 at% or less).

酸素含有量は理論上は零であってもよいが、量産技術の
点で、効率的に実施できるのは、0.1at%程度迄で
ある。
Theoretically, the oxygen content may be zero, but in terms of mass production technology, it can be efficiently implemented up to about 0.1 at%.

〔発明の効果〕〔Effect of the invention〕

以上詳しく説明したように、本発明によれば、金属磁性
膜、特に、Go−Ni系の磁性膜に、Zrなどの耐食静
を考慮した添加物を加えた3元素以上の合金磁性膜を有
する磁気記録媒体において、磁性膜中の酸素含有量を3
at%未満に制御することにより、保磁力のばらつきを
抑えると共に高い(最大の)保磁力を得ることができる
等、優れた効果を奏する。
As explained in detail above, according to the present invention, a metal magnetic film, particularly a Go-Ni magnetic film, has an alloy magnetic film containing three or more elements, in which additives such as Zr are added in consideration of corrosion resistance. In magnetic recording media, the oxygen content in the magnetic film is
By controlling the coercive force to less than at %, excellent effects such as suppressing variations in coercive force and obtaining a high (maximum) coercive force can be achieved.

また、磁性膜の成膜真空槽内の到達真空圧を5×10−
?トル以下にした後、酸素分圧の制御された雰囲気ガス
中で成膜を行なうことにより、酸素含有量を上記3at
%未満の範囲で、所望の値に容易に調整することができ
る。
In addition, the ultimate vacuum pressure in the vacuum chamber for forming the magnetic film was set to 5×10−
? After reducing the oxygen content to below 3 at.
It can be easily adjusted to a desired value within a range of less than %.

また、種々の組成の磁性膜についても、最大の保磁力に
なるように酸素含有量を調整し、又は、常に同一の保磁
力になるように酸素含有量を調整して、保磁力のばらつ
きを抑えることができる。
In addition, for magnetic films with various compositions, variations in coercive force can be reduced by adjusting the oxygen content to achieve the maximum coercive force, or by adjusting the oxygen content so that the coercive force is always the same. It can be suppressed.

このようにして、高品質の安定した磁気記録媒体を継続
的に提供することができる。
In this way, high quality and stable magnetic recording media can be continuously provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の磁気ディスクの記録媒体の
断面図、第2図は同実施例の磁気ディスク記録媒体を製
造する磁気記録媒体成膜装置の縦断面図、第3図は磁性
膜組成が63Co−3ONt−7Zrである場合の磁性
膜中酸素含有量対保磁力の特性図、第4図は磁性膜組成
が54Co−4ONi−6Zrである場合の同様な特性
図、第5図は保磁力と成膜真空チャンバー内の到達真空
圧の関係を示す図、第6図は本発明の各実施例および従
来例を対比した特性を示す図である。 1・・−一−−−非磁性基板、2−・−・・−・下地層
、3−−−−−−−一中間層、4−一−−−・・磁性層
(磁性膜) 、5−−−−−−一保護層(保護膜)、6
・−一−−−−−−潤滑膜。 第1図 第3図 112図 磁性/11すの酪東ケ4量 (a 1% )63Co−
3ONI−7zr 第4図 1.0  2.0 3,0 4.0 5.0 6.Q徊
ト岐膚中の餞索含膚量(at%J 54Co−4ONi−6i!r 第5図 lXl0’−’ IxlO−’  IxlO−’ 到dL′Jjkg:圧 Xl0−6 <Torr) IxlO−’
FIG. 1 is a cross-sectional view of a magnetic disk recording medium according to an embodiment of the present invention, FIG. 2 is a longitudinal cross-sectional view of a magnetic recording medium film forming apparatus for manufacturing the magnetic disk recording medium of the same embodiment, and FIG. A characteristic diagram of the oxygen content in the magnetic film versus coercive force when the magnetic film composition is 63Co-3ONt-7Zr, FIG. 4 is a similar characteristic diagram when the magnetic film composition is 54Co-4ONi-6Zr, and FIG. The figure shows the relationship between the coercive force and the ultimate vacuum pressure in the film-forming vacuum chamber, and FIG. 6 shows the characteristics comparing each embodiment of the present invention and the conventional example. 1..--1--nonmagnetic substrate, 2--..--base layer, 3--.--1 intermediate layer, 4--1--.magnetic layer (magnetic film), 5-------Protective layer (protective film), 6
・−1−−−−−Lubricating film. Fig. 1 Fig. 3 Fig. 112 Magnetism / 11 Suno Ryotoke 4 amount (a 1%) 63Co-
3ONI-7zr Fig. 4 1.0 2.0 3,0 4.0 5.0 6. Content of chordae in Q-wandering skin (at%J 54Co-4ONi-6i!r Figure 5 lXl0'-'IxlO-'IxlO-' reached dL'Jjkg: Pressure '

Claims (1)

【特許請求の範囲】 1、磁性膜中の酸素含有量が該磁性膜全体の金属元素に
対し3原子%未満に制御された金属磁性膜からなること
を特徴とする磁気記録媒体。 2、前記磁性膜は、CoおよびNiを主成分とし、添加
物として、4a、5a、6a族の各元素、および、Pt
の少なくとも一種を含むことを特徴とする請求項1記載
の磁気記録媒体。 3、磁性膜中の酸素含有量が該磁性膜全体の金属元素に
対し3原子%未満に制御するために、前記磁性膜の成膜
真空槽内の到達真空圧を5×10^−^7トル以下にし
た後、酸素分圧の制御された成膜雰囲気ガス中で該磁性
膜の成膜を行なうことを特徴とする請求項1または2記
載の磁気記録媒体の製造方法。
[Scope of Claims] 1. A magnetic recording medium comprising a metal magnetic film in which the oxygen content in the magnetic film is controlled to less than 3 atomic % based on the metal element of the entire magnetic film. 2. The magnetic film has Co and Ni as main components, and each element of groups 4a, 5a, and 6a and Pt as additives.
2. The magnetic recording medium according to claim 1, comprising at least one of the following. 3. In order to control the oxygen content in the magnetic film to less than 3 atomic % with respect to the metal elements in the entire magnetic film, the ultimate vacuum pressure in the vacuum chamber for forming the magnetic film was set to 5×10^-^7 3. The method of manufacturing a magnetic recording medium according to claim 1, wherein the magnetic film is formed in a film forming atmosphere gas with a controlled oxygen partial pressure after the temperature is reduced to below Torr.
JP1197946A 1989-08-01 1989-08-01 Magnetic recording medium and its production Pending JPH0363920A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1197946A JPH0363920A (en) 1989-08-01 1989-08-01 Magnetic recording medium and its production
DE4023770A DE4023770A1 (en) 1989-08-01 1990-07-26 Optimisation of coercive strength of magnetic recording medium - based on cobalt and nickel, by incorporation of up to 3 atom per cent of oxygen during deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1197946A JPH0363920A (en) 1989-08-01 1989-08-01 Magnetic recording medium and its production

Publications (1)

Publication Number Publication Date
JPH0363920A true JPH0363920A (en) 1991-03-19

Family

ID=16382933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1197946A Pending JPH0363920A (en) 1989-08-01 1989-08-01 Magnetic recording medium and its production

Country Status (2)

Country Link
JP (1) JPH0363920A (en)
DE (1) DE4023770A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003050786A1 (en) 2001-12-13 2003-06-19 Murakami Corporation Direction regulator of display
WO2003050787A1 (en) 2001-12-13 2003-06-19 Murakami Corporation Elevation regulator of display

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2062154C (en) * 1991-05-14 1997-01-21 David Alvoid Edmonson Underlayer doping in thin film magnetic recording media
US5232566A (en) * 1991-05-14 1993-08-03 International Business Machines Corporation Underlayer doping in thin film magnetic recording media
JPH05120663A (en) * 1991-10-24 1993-05-18 Fuji Electric Co Ltd Magnetic recording medium, production of the same and its device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59203238A (en) * 1983-04-30 1984-11-17 Tdk Corp Magnetic recording medium and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003050786A1 (en) 2001-12-13 2003-06-19 Murakami Corporation Direction regulator of display
WO2003050787A1 (en) 2001-12-13 2003-06-19 Murakami Corporation Elevation regulator of display

Also Published As

Publication number Publication date
DE4023770A1 (en) 1991-02-07

Similar Documents

Publication Publication Date Title
JP2000282229A (en) CoPt SPUTTERING TARGET, ITS PRODUCTION, MAGNETIC RECORDING FILM AND CoPt MAGNETIC RECORDING MEDIUM
US8197891B2 (en) Perpendicular magnetic recording medium and method for manufacturing same
JP4207684B2 (en) Magnetic recording medium manufacturing method and manufacturing apparatus
EP0333101B1 (en) Process for manufacturing magnetic recording material
US5232566A (en) Underlayer doping in thin film magnetic recording media
JPH0363920A (en) Magnetic recording medium and its production
US5989673A (en) Caromium-tantalum oxides (Cr-TaOx), sputtering targets and thin film seedlayer/sublayers for thin film magnetic recording media
JPH0635654B2 (en) Target material with high stability of thin-film magnetic properties against atmospheric changes
JPH06248445A (en) Sputtering target and magnetic thin film and thin-film magnetic head formed by using the same
JP2008310849A (en) Protective film forming method and magnetic recording medium including protective film
JPH0817032A (en) Magnetic recording medium and its production
KR20050107725A (en) Improved grain structure for magnetic recording media
JP2000038660A (en) CoPt SPUTTERING TARGET, ITS PRODUCTION AND CoPt-MAGNETIC RECORDING MEDIUM
EP0514308A1 (en) Underlayer doping in thin film magnetic recording media
EP0417951B1 (en) Fe-Si-Al alloy magnetic thin film and method of manufacturing the same
JP2004288328A (en) Method of manufacturing magnetic recording medium
JPH03265105A (en) Soft magnetic laminate film
JP3304382B2 (en) Magnetic recording medium and method of manufacturing the same
JP3230212B2 (en) Magnetic recording media
JP2607288B2 (en) Magnetic recording medium and method of manufacturing the same
JP2003178416A (en) Magnetic recording medium and magnetic recording device
JP2546275B2 (en) Soft magnetic thin film
JP3098245B2 (en) Manufacturing method of magnetic recording medium
JP2020073715A (en) Co-Pt-Re SYSTEM SPUTTERING TARGET, METHOD OF MANUFACTURING THE SAME, AND MAGNETIC RECORDING LAYER
JPH06306594A (en) Sputtering target for magnetic recording medium having high coercive force