JPH0363592B2 - - Google Patents

Info

Publication number
JPH0363592B2
JPH0363592B2 JP57048017A JP4801782A JPH0363592B2 JP H0363592 B2 JPH0363592 B2 JP H0363592B2 JP 57048017 A JP57048017 A JP 57048017A JP 4801782 A JP4801782 A JP 4801782A JP H0363592 B2 JPH0363592 B2 JP H0363592B2
Authority
JP
Japan
Prior art keywords
magnetic
beads
mixing
paint
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57048017A
Other languages
Japanese (ja)
Other versions
JPS58164662A (en
Inventor
Yutaka Takei
Yasumitsu Tanaka
Katsuyoshi Kawamata
Nobuyuki Nakano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP4801782A priority Critical patent/JPS58164662A/en
Publication of JPS58164662A publication Critical patent/JPS58164662A/en
Publication of JPH0363592B2 publication Critical patent/JPH0363592B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、磁気記録媒体用磁性塗料の製法に
関するものであり、更に詳細には、ビーズ径が1
〜2mmの窒化珪素及び/又は炭化珪素のビーズを
用いての磁気記録媒体用磁性塗料の製法に関する
ものである。 磁性塗料は、通常ボールミル、サンドミルなど
の混合装置を用いて、磁性粒子、高分子結合剤、
添加剤などを溶剤中に分散混合させて調製され
る。 オーデイオおよびビデオレコーダをはじめとす
る各種機器に用いられる塗布型磁気記録媒体の製
造工程において、磁性粒子を結合剤を含む溶媒中
に均一に分散混合させる工程は、得られる磁気記
録媒体の最終性能を決定する上で極めて重要な位
置を占めている。磁性粒子の分散混合が不十分な
場合には、磁性粒子の凝集体が塗膜中にできてノ
イズの原因となつたり、磁性塗料中の磁性粒子の
分散状態に依存している塗膜表面の平滑性が劣化
したりして不都合が生じる。しかし、分散混合を
十分にするために強力に混合すれば、磁性粒子が
混合中に物理的な力によつて破壊されてしまい
Hcなどの磁気特性が劣化したり、転写量が多く
なるなどという問題が生じる。 また、近年高密度記録媒体の必要性が高まり、
磁性粒子の微粉化の傾向に伴つて分散混合率を高
める必要が生じている。従来の磁性塗料の混合に
際しては、ボールまたはビーズなどを磁性塗料に
加えてブレードを回転させたりまたは容器全体を
回転振動させたりしてボールまたはビーズを運動
させてそれらの相互の衝突時の衝撃力を利用して
磁性粒子の凝集体をほぐしていた。しかし、従来
の方法では、使用されるボールやビーズの材質は
一般には鋼がガラスであるので、その材質がガラ
スのように衝撃的に破砕したり、逆に鋼のように
磁性粉の粒子を破壊したりして磁気記録媒体に好
ましくない結果を与えていた。すなわち、ガラス
ビーズはビーズ衝突時の衝撃が比較的小さく元来
混合効率が低いために、ビーズを撹拌するブレー
ドの回転数を上昇させてその効率を上げているの
で、そのビーズが磁性粉の混合中に破壊されるの
を避けることができず、そのガラス破砕片がテー
プ塗膜中に残留した場合には、ドロツプアウトの
原因となつている。またそれ自体が破壊され難い
鋼球ビーズを用いると、ドロツプアウトは改善さ
れるけれども、その代りに鋼球ビーズ相互間の衝
突により磁性粉の粒子が破壊され、Hcなどの磁
気特性の悪化、転写量の増大などを生じるので混
合条件の制御が極めて困難である。そのため、鋼
球ビーズを使用する場合には、塗料粘度を高める
などしてビーズ相互間の衝突時の衝撃力を緩和さ
せねばならない。しかし、このように磁性塗料の
粘度を高めれば、コーテイング自体が困難になる
という新たな問題が生じてくる。 したがつて、この発明は、従来技術における諸
欠点を改善した磁気記録媒体用磁性塗料の製法を
提供するものである。 この発明に係る方法は、磁性粒子を、ビーズ径
が1〜2mmの窒化珪素及び/又は炭化珪素のビー
ズと共に撹拌混合することからなつている。これ
らのビーズ径が1〜2mmの窒化珪素及び/又は炭
化珪素のビーズは、元来磁性塗料の混合に使用さ
れるビーズの材質として必要な混合時に破壊しな
いこと、摩擦が少ないこと、磁性粒子を破壊せず
に凝集をほぐすだけの衝撃力が得られること、そ
れにビーズ状に加工し易いことなどの特性を満た
している。すなわち、これらのビーズ径が1〜2
mmの窒化珪素及び/又は炭化珪素のビーズは、従
来使用されているガラスビーズに比べると著しく
強度が高いが、鋼材ほどにはその密度は高くな
く、また金属材料に比較しても優れた耐摩耗性を
有しているので、特に酸化物系磁性粉末のように
その粒子自体は硬いが極めて脆性であつて、混合
中に粒子が破壊されると粒子の針状性が損われ直
ちに磁気特性の劣化に結びつくようなものの分散
混合には好適である。 この発明において使用される磁性粉としては、
特に塗布型磁気記録媒体に使用されるものであれ
ば何ら限定されるものではなく、例えば、γ−
Fe2O3、Fe3O4、γ−Fe2O3とFe3O4の中間の酸化
状態の酸化鉄、Co含有γ−Fe2O3、Co含有のγ
−Fe2O3とFe3O4の中間の酸化状態の酸化鉄、前
記酸化鉄にさらに一種以上の金属元素(特に遷移
金属元素)を含有させたもの、前記酸化鉄にCo
酸化物又は水酸化物を主体とした被覆層を有する
もの、CrO2、CrO2の表面を還元処理してCr2O3
層を形成したものなどの酸化物系磁性粉または
Fe、Co、Ni等の金属。あるいはFe−Co合金、
Fe−Ni合金、Fe−Co−Ni合金、Co−Ni−P合
金、Co−Ni−Fe−B合金、Fe−Ni−Zn合金、
Fe−Mn−Zn合金、Fe−Co−Ni−P合金などの
合金などの強磁性微粉末などが挙げられる。また
磁性塗料には、研摩材として酸化アルミニウム、
酸化クロム、酸化シリコンなど、帯電防止剤とし
てカーボンブラツクなど、潤滑剤として二硫化モ
リブデン、グラフアイト、シリコーンオイル、オ
リーブオイルなど、分散剤としてレシチンなどを
添加することができる。また、使用することので
きるバインダーとしては、例えば、塩化ビニル−
酢酸ビニル共重合体、塩化ビニル−プロピオン酸
ビニル共重合体、塩化ビニル−酢酸ビニル−ビニ
ルアルコール共重合体、塩化ビニル−プロピオン
酸ビニル−ビニルアルコール共重合体、塩化ビニ
ル−酢酸ビニル−マレイン酸共重合体、塩化ビニ
ル−塩化ビニリデン共重合体、塩化ビニル−アク
リロニトリル共重合体、アクリル酸エステル−ア
クリロニトル共重合体、アクリル酸エステル−塩
化ビニリデン共重合体、メタクリル酸エステル−
塩化ビニリデン共重合体、メタクリル酸エステル
−スチレン共重合体、塩化ビニリデン−アクリロ
ニトリル共重合体、プタジエン−アクリロニトリ
ル共重合体、アクリロニトリル−プタジエン−ア
クリル酸共重合体、アクリロニトリル−ブタジエ
ン−メタクリル酸共重合体、スチレン−ブタジエ
ン共重合体、ホルマール樹脂、アセタール樹脂、
ブチラール樹脂、フエノール樹脂、ポリエステル
樹脂、ポリウレタン樹脂、ポリアミド樹脂、尿素
樹脂、尿素−ホルムアルデヒド樹脂、メラミン樹
脂、エポキシ樹脂、アルキド樹脂、フエノキシ樹
脂、ポリフツ化ビニルまたはこれらの混合物など
が挙げられる。更に、使用できる溶剤としては、
アセトン、メチルエチルケトン、メチルイソブチ
ルケトン、シクロヘキサノンなどのケトン類、メ
タノール、エタノールなどのアルコール類、酢酸
メチル、酢酸エチル、酢酸ブチル、酪酸エチルな
どのエステル類、エチレングリコールモノエチル
エーテル、エチレングリコールジメチルエーテ
ル、ジオキサンなどのグリコールエーテル類、ベ
ンゼン、トルエン、キシレンなどの芳香族炭化水
素、ヘキサン、ヘプタンなどの脂肪族炭化水素な
どが挙げられる。 前述したようにして得られる磁性塗料は、ドク
ターブレード法、グラビアコート法などの通常の
塗布法に従つて非磁性支持体に塗布されて所望の
磁気記録媒体とされる。使用される非磁性支持体
としては、例えば、ポリエチレンテレフタートな
どのポリエステル類、ポリプロピレンなどのポリ
オレフイン類、セルロースジアセテート、セルロ
ーストリアセテートなどのセルロース誘導体、ポ
リカーボネート、ポリ塩化ビニル、ポリイミド、
ポリアミド、アルミニウムや銅などの金属、紙な
どが挙げられる。 以下、この発明を比較例を参照の上実施例によ
り説明する。 実施例1〜2及び比較例1〜2 下記組成を有する磁性塗料を次のようにして調
製した。組 成 量(重量部) Co−γ−Fe2O3(Hc=600Oe、粒径0.3〜0.4μm、
軸比=10) 100組 成 量(重量部) 塩化ビニル−酢酸ビニル共重合体(商品名
「VYHH」;UCC社製) 18 熱可塑性ポリウレタン(商品名「エスタン
5701」;ビー・エフ・グツドリツチ社製)
7 Cr2O3 3 PHP レシチン 1.5PHP ヘキシルラウレート 1.5PHP メチルエチルケトン:トルエン(1:1)
300 上記組成を有する磁性塗料約15リツトルを予備
撹拌した後、25リツトル容量のサンドミルにて、
下表に示す材質ならびに性質からなるビーズを使
用して約3時間混合した。ビーズ量は容積で約10
リツトルであつた。なお、混合機の回転ブレード
の材質は鋼で、回転数は1200rpmであつた。 このようにして得られた磁性塗料を、5インチ
幅のポリエチレンテレフタレートフイルム上に約
4μmの厚みに塗布してビデオ用1/2インチ幅に裁
断した。この磁気テープを用いて種々の特性を測
定し、その結果を下表に示す。
The present invention relates to a method for producing a magnetic paint for magnetic recording media, and more specifically, the present invention relates to a method for producing a magnetic paint for magnetic recording media, and more specifically,
This invention relates to a method for producing a magnetic paint for magnetic recording media using silicon nitride and/or silicon carbide beads of ~2 mm. Magnetic paint is usually made by mixing magnetic particles, polymer binder,
It is prepared by dispersing and mixing additives in a solvent. In the manufacturing process of coated magnetic recording media used in various devices such as audio and video recorders, the process of uniformly dispersing and mixing magnetic particles in a solvent containing a binder improves the final performance of the resulting magnetic recording media. It occupies an extremely important position in making decisions. If the dispersion and mixing of the magnetic particles is insufficient, aggregates of magnetic particles may form in the paint film, causing noise, or the surface of the paint film may be affected, which depends on the dispersion state of the magnetic particles in the magnetic paint. This may cause problems such as deterioration of smoothness. However, if you mix strongly to ensure sufficient dispersion, the magnetic particles will be destroyed by physical force during mixing.
Problems arise such as deterioration of magnetic properties such as Hc and an increase in the amount of transfer. In addition, the need for high-density recording media has increased in recent years,
As magnetic particles tend to become finer, it is necessary to increase the dispersion mixing ratio. When mixing conventional magnetic paints, balls or beads are added to the magnetic paint and the blade is rotated or the entire container is rotated and vibrated to move the balls or beads and reduce the impact force when they collide with each other. was used to loosen aggregates of magnetic particles. However, in conventional methods, the materials used for the balls and beads used are generally steel or glass, so the materials do not shatter under impact like glass, or conversely can generate particles of magnetic powder like steel. This has caused undesirable effects on magnetic recording media, such as destruction. In other words, since glass beads have a relatively low impact when they collide and have low mixing efficiency, the efficiency is increased by increasing the rotational speed of the blade that stirs the beads. If glass fragments cannot be avoided and remain in the tape coating, they cause dropouts. Furthermore, if steel ball beads that are difficult to break themselves are used, dropout will be improved, but instead, the magnetic powder particles will be destroyed due to collisions between the steel ball beads, resulting in deterioration of magnetic properties such as Hc, and transfer amount. This makes it extremely difficult to control the mixing conditions. Therefore, when using steel ball beads, it is necessary to reduce the impact force when the beads collide with each other by increasing the viscosity of the paint. However, if the viscosity of the magnetic paint is increased in this way, a new problem arises in that the coating itself becomes difficult. Therefore, the present invention provides a method for producing a magnetic coating material for magnetic recording media, which improves the various drawbacks of the prior art. The method according to the invention consists of stirring and mixing magnetic particles with silicon nitride and/or silicon carbide beads having a bead diameter of 1 to 2 mm. These silicon nitride and/or silicon carbide beads with a bead diameter of 1 to 2 mm are originally used as materials for beads used for mixing magnetic paints, and have the following characteristics: they do not break during mixing, they have low friction, and they do not contain magnetic particles. It satisfies the characteristics of being able to obtain enough impact force to loosen agglomerations without breaking them, and being easy to process into beads. That is, these beads have a diameter of 1 to 2
mm silicon nitride and/or silicon carbide beads are significantly stronger than conventionally used glass beads, but they are not as dense as steel and have superior durability compared to metal materials. Because it has abrasive properties, the particles themselves are hard but extremely brittle, especially like oxide-based magnetic powders, and if the particles are broken during mixing, the acicularity of the particles is lost and the magnetic properties immediately deteriorate. It is suitable for dispersive mixing of materials that may lead to deterioration of the product. The magnetic powder used in this invention includes:
In particular, it is not limited in any way as long as it is used in coating type magnetic recording media, for example, γ-
Fe 2 O 3 , Fe 3 O 4 , γ-Iron oxide in an oxidation state intermediate between Fe 2 O 3 and Fe 3 O 4 , Co-containing γ-Fe 2 O 3 , Co-containing γ
- Iron oxide in an oxidation state intermediate between Fe 2 O 3 and Fe 3 O 4 , iron oxide containing one or more metal elements (particularly transition metal elements), iron oxide containing Co
Those with a coating layer mainly composed of oxides or hydroxides, CrO 2 , CrO 2 by reducing the surface of CrO 2
Oxide-based magnetic powder such as layer-formed powder or
Metals such as Fe, Co, Ni, etc. Or Fe-Co alloy,
Fe-Ni alloy, Fe-Co-Ni alloy, Co-Ni-P alloy, Co-Ni-Fe-B alloy, Fe-Ni-Zn alloy,
Examples include ferromagnetic fine powder of alloys such as Fe-Mn-Zn alloy and Fe-Co-Ni-P alloy. Magnetic paint also uses aluminum oxide as an abrasive.
Chromium oxide, silicon oxide, etc., antistatic agents such as carbon black, lubricants such as molybdenum disulfide, graphite, silicone oil, olive oil, etc., and dispersants such as lecithin can be added. In addition, examples of binders that can be used include vinyl chloride-
Vinyl acetate copolymer, vinyl chloride-vinyl propionate copolymer, vinyl chloride-vinyl acetate-vinyl alcohol copolymer, vinyl chloride-vinyl propionate-vinyl alcohol copolymer, vinyl chloride-vinyl acetate-maleic acid copolymer Polymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, acrylic ester-acrylonitrile copolymer, acrylic ester-vinylidene chloride copolymer, methacrylic ester-
vinylidene chloride copolymer, methacrylic acid ester-styrene copolymer, vinylidene chloride-acrylonitrile copolymer, putadiene-acrylonitrile copolymer, acrylonitrile-ptadiene-acrylic acid copolymer, acrylonitrile-butadiene-methacrylic acid copolymer, Styrene-butadiene copolymer, formal resin, acetal resin,
Examples include butyral resin, phenolic resin, polyester resin, polyurethane resin, polyamide resin, urea resin, urea-formaldehyde resin, melamine resin, epoxy resin, alkyd resin, phenoxy resin, polyvinyl fluoride, and mixtures thereof. Furthermore, solvents that can be used include:
Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, alcohols such as methanol and ethanol, esters such as methyl acetate, ethyl acetate, butyl acetate, and ethyl butyrate, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, dioxane, etc. Examples include glycol ethers, aromatic hydrocarbons such as benzene, toluene, and xylene, and aliphatic hydrocarbons such as hexane and heptane. The magnetic coating material obtained as described above is applied to a non-magnetic support by a conventional coating method such as a doctor blade method or a gravure coating method to form a desired magnetic recording medium. Examples of the nonmagnetic support used include polyesters such as polyethylene tereftate, polyolefins such as polypropylene, cellulose derivatives such as cellulose diacetate and cellulose triacetate, polycarbonate, polyvinyl chloride, polyimide,
Examples include polyamide, metals such as aluminum and copper, and paper. Hereinafter, the present invention will be explained by Examples with reference to Comparative Examples. Examples 1-2 and Comparative Examples 1-2 Magnetic paints having the following compositions were prepared as follows. Composition (parts by weight) Co−γ−Fe 2 O 3 (Hc = 600 Oe, particle size 0.3 to 0.4 μm,
Axial ratio = 10) 100 Composition (parts by weight) Vinyl chloride-vinyl acetate copolymer (product name "VYHH"; manufactured by UCC) 18 Thermoplastic polyurethane (product name "Estan")
5701”; Manufactured by B.F. Gutdoritsu)
7 Cr 2 O 3 3 PHP Lecithin 1.5PHP Hexyllaurate 1.5PHP Methyl ethyl ketone:Toluene (1:1)
300 After pre-stirring about 15 liters of magnetic paint having the above composition, it was mixed in a 25 liter sand mill.
Mixing was carried out for about 3 hours using beads having the materials and properties shown in the table below. The amount of beads is approximately 10 by volume.
It was a little hot. The material of the rotating blade of the mixer was steel, and the rotation speed was 1200 rpm. The magnetic paint thus obtained was placed on a 5 inch wide polyethylene terephthalate film.
It was coated to a thickness of 4 μm and cut into 1/2 inch width for video use. Various properties were measured using this magnetic tape, and the results are shown in the table below.

【表】【table】

【表】 上記の表の結果から、非酸化物系セラミツクの
ビーズを用いた実施例1および2においては、密
度はガラスビーズよりやや高い程度であるので、
ビーズ同士の衝突による衝撃力はガラスビーズの
場合とほぼ同程度であつたために、磁性粒子の破
砕は殆んど認められなかつた。更に、ビーズ径が
1〜2mmの窒化珪素及び/又は炭化珪素のビーズ
はガラスビーズに比べ著しく強靭であるために、
ドロツプアウトの原因となるビーズ自体の破砕も
認められなかつた。実施例に対して、比較例1に
おけるガラスビーズでは、磁性粉の破砕は認めら
れなくテープ角型比は問題ないが、ガラスビーズ
の破壊片が多量存在しドロツプアウトの数が著し
かつた。また、比較例2で示した鋼球の場合に
は、そのビーズは破砕されないのでドロツプアウ
トは極めて少ないが、磁性粒子の破壊によつてテ
ープ角型比が低下した。 前述したように、この発明に係る方法は、ビー
ズ径が1〜2mmの窒化珪素及び/又は炭化珪素の
ビーズを使用することによつて、従来使用されて
いるガラスビーズの欠点であるビーズ破壊による
ドロツプアウトの増加、また鋼球ビーズの欠点で
ある密度の高いことに起因する磁性粒子への衝撃
力が強すぎることによる磁性粒子破壊によるテー
プ角型比の低下のいずれをも解決した磁性塗料の
有用な製造法である。
[Table] From the results in the table above, in Examples 1 and 2 using non-oxide ceramic beads, the density is slightly higher than that of glass beads.
Since the impact force caused by the collision between the beads was approximately the same as that for glass beads, almost no fragmentation of the magnetic particles was observed. Furthermore, since silicon nitride and/or silicon carbide beads with a bead diameter of 1 to 2 mm are significantly stronger than glass beads,
No fracture of the beads themselves, which would cause dropout, was observed. In contrast to the examples, in the glass beads of Comparative Example 1, no fracture of the magnetic powder was observed and the tape squareness ratio was satisfactory, but a large number of broken pieces of glass beads were present and the number of dropouts was significant. In addition, in the case of the steel ball shown in Comparative Example 2, the beads were not crushed, so there was very little dropout, but the tape squareness ratio decreased due to the destruction of the magnetic particles. As mentioned above, the method according to the present invention uses silicon nitride and/or silicon carbide beads with a bead diameter of 1 to 2 mm, thereby eliminating bead breakage, which is a drawback of conventionally used glass beads. The usefulness of a magnetic paint that solves both the increase in dropout and the decrease in tape squareness ratio due to magnetic particle destruction due to too strong impact force on the magnetic particles due to the high density, which is a disadvantage of steel ball beads. It is a manufacturing method.

Claims (1)

【特許請求の範囲】 1 少くとも磁性粒子、高分子結合剤を溶剤中に
分散混合させて磁性塗料を調製する磁気記録媒体
用磁性塗料の製法において、 磁性塗料を調製する際に、ビーズ径が1〜2mm
の窒化珪素及び/又は炭化珪素を加えることを特
徴とする磁気記録媒体用磁性塗料の製法。
[Claims] 1. In a method for producing a magnetic paint for magnetic recording media, in which a magnetic paint is prepared by dispersing and mixing at least magnetic particles and a polymeric binder in a solvent, when preparing the magnetic paint, the diameter of the beads is 1~2mm
1. A method for producing a magnetic paint for magnetic recording media, which comprises adding silicon nitride and/or silicon carbide.
JP4801782A 1982-03-25 1982-03-25 Preparation of magnetic coating Granted JPS58164662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4801782A JPS58164662A (en) 1982-03-25 1982-03-25 Preparation of magnetic coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4801782A JPS58164662A (en) 1982-03-25 1982-03-25 Preparation of magnetic coating

Publications (2)

Publication Number Publication Date
JPS58164662A JPS58164662A (en) 1983-09-29
JPH0363592B2 true JPH0363592B2 (en) 1991-10-01

Family

ID=12791535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4801782A Granted JPS58164662A (en) 1982-03-25 1982-03-25 Preparation of magnetic coating

Country Status (1)

Country Link
JP (1) JPS58164662A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263902A (en) * 1991-02-19 1992-09-18 Murata Mfg Co Ltd Manufacture of ceramic electronic parts

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53122405A (en) * 1977-04-01 1978-10-25 Hitachi Ltd Production of magnetic recording medium
JPS5580829A (en) * 1978-12-13 1980-06-18 Fujitsu Ltd Manufacture of magnetic recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53122405A (en) * 1977-04-01 1978-10-25 Hitachi Ltd Production of magnetic recording medium
JPS5580829A (en) * 1978-12-13 1980-06-18 Fujitsu Ltd Manufacture of magnetic recording medium

Also Published As

Publication number Publication date
JPS58164662A (en) 1983-09-29

Similar Documents

Publication Publication Date Title
US4316927A (en) Magnetic recording medium
JPH0715749B2 (en) Magnetic recording medium
US4761243A (en) Process for the preparation of magnetic paint
JPH0547894B2 (en)
EP0098307A1 (en) Disc-shaped magnetic recording medium
JPH0363592B2 (en)
JPH0518171B2 (en)
US4818608A (en) Magnetic recording medium
JPH0719364B2 (en) Magnetic recording medium
JPH0655912B2 (en) Method of manufacturing magnetic recording medium
JPH0630151B2 (en) Method of manufacturing magnetic recording medium
JP3852198B2 (en) Magnetic recording medium
JPS58177523A (en) Manufacture of paint for magnetic recording medium
JP2671340B2 (en) Magnetic recording media
JP2584660B2 (en) Manufacturing method of magnetic paint
JPH028372B2 (en)
JPH0770044B2 (en) Magnetic recording medium
JP2005004823A (en) Magnetic recording medium
JPH1027332A (en) Magnetic recording medium and its production
KR930002158B1 (en) Method of making magnetic recording medium
JP3021173B2 (en) Video tape
JPH1021538A (en) Kneading method for magnetic powder
JPH06349052A (en) Magnetic recording medium
JPS6352322A (en) Magnetic recording medium
JPH09320051A (en) Method for manufacturing magnetic recording medium