JPH0363535A - Infrared sensor - Google Patents

Infrared sensor

Info

Publication number
JPH0363535A
JPH0363535A JP19993289A JP19993289A JPH0363535A JP H0363535 A JPH0363535 A JP H0363535A JP 19993289 A JP19993289 A JP 19993289A JP 19993289 A JP19993289 A JP 19993289A JP H0363535 A JPH0363535 A JP H0363535A
Authority
JP
Japan
Prior art keywords
temperature
reflecting mirror
infrared
infrared rays
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19993289A
Other languages
Japanese (ja)
Inventor
Nobuo Tanaka
伸雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP19993289A priority Critical patent/JPH0363535A/en
Publication of JPH0363535A publication Critical patent/JPH0363535A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To increase the sensitivity of a temperature detecting means and to accurately detect the temperature of a body to be detected and its temperature variation by reflecting and converging infrared rays by the concave surface of a main reflecting mirror which has a light through hole in the center. CONSTITUTION:The infrared rays 16 emitted by the body to be detected pass through an infrared-ray transmission window 9 and reflected and converged by the concave surface of the main reflection mirror L1 which has the light through hole 15 at the center part. The converged infrared rays 16 are reflected and converged by the convex surface of a 2nd reflection mirror L2. The converged infrared rays 16 pass through the light through hole 15 of the main reflection mirror L1 and are photodetected by a heat reception part 14 to raise the temperature of the outer peripheral part from the center part, so that the sensitivity of the temperature detecting means 6 arranged closely at the outer peripheral part of the heat reception part 14 is increased. Consequently, the termperature detecting means 6 accurately detects the temperature of the body to be detected and its temperature variation.

Description

【発明の詳細な説明】 〔アブストラクト〕 本発明赤外線センサは中心部に通光孔を有する主反射鏡
の凹面で赤外線を反射させて集光し、この集光した赤外
線を第2反射鏡の凸面で反射させて集光する2つの鏡面
反射鏡からなるカセグレン集光系を使用し、第2反射鏡
の凸面で反射して集光した赤外線を主反射鏡の通光孔を
通して後方中心部外周に設けられた受熱部で受け、この
受熱部に近設した温度桧出手梗によりその温度を検出し
て被検出物体の温度、温度変化を検知するものである。
[Detailed Description of the Invention] [Abstract] The infrared sensor of the present invention reflects and condenses infrared rays on the concave surface of a main reflecting mirror having a light passing hole in the center, and directs the condensed infrared rays to the convex surface of a second reflecting mirror. A Cassegrain condensing system consisting of two specular reflection mirrors is used, and the infrared rays reflected and condensed by the convex surface of the second reflection mirror are transmitted to the rear center outer periphery through the light passing hole of the main reflection mirror. The temperature of the object to be detected and the temperature change are detected by receiving the temperature at the provided heat receiving section and detecting the temperature using a temperature sensor located near the heat receiving section.

〔産業上の利用分野〕[Industrial application field]

本発明は被検出物体の温度、温度変化を的確に検知する
カセグレン集光系の赤外線センサに関する。
The present invention relates to an infrared sensor with a Cassegrain focusing system that accurately detects the temperature and temperature changes of an object to be detected.

〔従来の技術〕[Conventional technology]

従来の赤外線センサは、赤外線透過窓を設けたセンサ容
器の前方部に第4図示のフレネルレンズ(望遠鏡タイプ
)等を設け、赤外線透過窓を透過する赤外線16をフレ
ネルレンズの鋸歯状面(中心に行くに従って歯を徐々に
小さくしである)より透過して集光するグローブアップ
タイプ(Grooveup type )とするかまた
はフレネルレンズの平面より透過して集光するグローブ
ダウンタイプ(Gr。
In a conventional infrared sensor, a Fresnel lens (telescope type) shown in Figure 4 is installed in the front part of a sensor container provided with an infrared transmission window, and the infrared rays 16 that pass through the infrared transmission window are focused on the serrated surface (in the center) of the Fresnel lens. Grooveup type (Grooveup type) which transmits light from the surface of the Fresnel lens and collects light (Gr.

ova down type)とし、グローブアップタ
イプとしたときの焦点Fまたはグローブダウンタイプと
したときの焦点F′近傍に受熱部を設け、この受熱部の
温度、温度変化を当該受熱部に近設した温度検出手段で
検出することにより被検出物体の温度。
ova down type), and a heat receiving part is provided near the focal point F when the glove up type is used or the focal point F' when the glove down type is used, and the temperature and temperature change of this heat receiving part are calculated as the temperature near the heat receiving part. The temperature of the object to be detected is detected by the detection means.

温度変化を検知できるように構成されている。It is configured to be able to detect temperature changes.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来例にあっては、フレネルレンズを使用している
ため、フレネルレンズの材質または厚みにより赤外線を
吸収し、その結果、赤外線の特定波長線が吸収されて被
測定物温度と受熱部の受光線量との相関性が悪化したり
、温度検出手段の感度が低下して被検出物体の温度、温
度変化を的確に検知できなくなるおそれがあって要求性
能の実現が難しいという課題があるばかりでなく、レン
ズ系であるため視野角を広範囲に亘って選択できず、各
種のバリエーションが得難いという課題があり、また、
レンズ構造が複雑であり、高価になるという課題もある
In the conventional example above, since a Fresnel lens is used, the material or thickness of the Fresnel lens absorbs infrared rays, and as a result, a specific wavelength of infrared rays is absorbed, and the temperature of the object to be measured and the light received by the heat receiving part are Not only is there a problem that it is difficult to achieve the required performance because there is a risk that the correlation with the dose will deteriorate and the sensitivity of the temperature detection means will decrease, making it impossible to accurately detect the temperature of the object to be detected and temperature changes. Since it is a lens system, it is not possible to select a wide range of viewing angles, making it difficult to obtain various variations.
Another problem is that the lens structure is complicated and expensive.

〔発明の目的〕[Purpose of the invention]

本発明の第1目的はフレネルレンズを使用せず、2つの
鏡面反射鏡よりなるカセグレン集光系を使用することに
より赤外線の吸収を回避し、受熱部への赤外線線量の低
減を防止して受熱部の温度を高め、実質的に温度検出手
段の感度を向上して被検出物体の温度、温度変化を的確
に検知できる赤外線センサを提供することである。
The first object of the present invention is to avoid absorption of infrared rays by using a Cassegrain condensing system consisting of two specular reflection mirrors without using a Fresnel lens, and to prevent a reduction in the amount of infrared rays to the heat receiving part. An object of the present invention is to provide an infrared sensor capable of accurately detecting the temperature of an object to be detected and temperature changes by increasing the temperature of the object and substantially improving the sensitivity of a temperature detecting means.

本発明の第2目的は、反射鏡を近軸光線収差補正を行っ
ていない球面鏡とし、受熱部に温接点を環状又は多角形
状に集積された多数の熱電対からなる温度検出器を用い
ることによって測定感度を大きく向上した赤外線センサ
を提供することである。
A second object of the present invention is to use a spherical mirror without paraxial ray aberration correction as the reflecting mirror, and use a temperature detector consisting of a large number of thermocouples integrated in a ring or polygon shape as a hot junction in the heat receiving part. An object of the present invention is to provide an infrared sensor with greatly improved measurement sensitivity.

〔目的を達成するための手段〕[Means to achieve the purpose]

本発明の第1赤外線センサは、上記第1目的を達成する
ため、第1図示のように赤外線透過窓9を設けたセンサ
容器12の後方部に、赤外線透過窓9を透過する赤外線
16を凹面で反射して集光する。
In order to achieve the above-mentioned first object, the first infrared sensor of the present invention has an infrared ray 16 that passes through the infrared ray transmitting window 9 on a concave surface of the rear part of the sensor container 12 provided with the infrared ray transmitting window 9 as shown in the first figure. reflects and focuses the light.

中心部に通光孔15を有する主反射鏡し、を設け、この
主反射鏡Llで反射した赤外線16を凸面で反射して集
光する第2反射鏡L2をセンサ容器12の前部中心部に
配置せしめ、この第2反射鏡L2で反射した赤外線16
を主反射鏡Llの通光孔15を通して受ける受熱部14
をセンサ容器12の後方中心部に設けると共にこの受熱
部14の温度、温度変化を検出する温度検出手段6を当
該受熱部14の外周部に近設せしめてなる構成としたも
のである。
A main reflecting mirror having a light passing hole 15 in the center is provided, and a second reflecting mirror L2 that reflects and condenses the infrared rays 16 reflected by the main reflecting mirror Ll on a convex surface is provided at the front center of the sensor container 12. The infrared rays 16 reflected by this second reflecting mirror L2
The heat receiving part 14 receives the heat through the light passing hole 15 of the main reflecting mirror Ll.
is provided at the rear center of the sensor container 12, and a temperature detecting means 6 for detecting the temperature and temperature change of the heat receiving section 14 is provided close to the outer periphery of the heat receiving section 14.

本発明の第2赤外線センサは上記第1.第2目的を達成
するため、上記第1赤外線センサにおいて反射鏡を近軸
光線収差補正を行っていない球面鏡とし、温度検出器を
、温接点を環状または多角形状に集積された多数の熱電
対からなる構成としたものである。
The second infrared sensor of the present invention is the first infrared sensor described above. In order to achieve the second objective, the reflecting mirror in the first infrared sensor is a spherical mirror without paraxial ray aberration correction, and the temperature detector is made of a large number of thermocouples whose hot junctions are integrated in an annular or polygonal shape. The structure is as follows.

〔作 用〕[For production]

第1赤外線センサにおいて被検出物体より発する赤外線
16は赤外線透過窓9を透過して中心部に通光孔15を
有する主反射鏡Llの凹面で反射され集光される。この
集光された赤外線16は第2反射鏡L2の凸面で反射さ
れ集光される。この集光された赤外線16は主反射鏡L
lの通光孔15を通り受熱部14で受光されその中心部
より外周部温度が高められ、受熱部14の外周部に近接
された温度検出手段6の感度が実質的に高められて温度
検出手段6により被検出物体の温度、温度変化が的確に
検知できることになる。
Infrared rays 16 emitted from an object to be detected in the first infrared sensor are transmitted through an infrared transmitting window 9, reflected and condensed by the concave surface of a main reflecting mirror Ll having a light passing hole 15 in the center. This focused infrared light 16 is reflected and focused by the convex surface of the second reflecting mirror L2. This focused infrared light 16 is reflected by the main reflecting mirror L.
The light passes through the light passing hole 15 of 1 and is received by the heat receiving section 14, and the temperature of the outer circumference is increased from that of the center, and the sensitivity of the temperature detecting means 6 placed close to the outer circumference of the heat receiving section 14 is substantially increased to detect the temperature. By means of the means 6, the temperature and temperature change of the object to be detected can be accurately detected.

第2赤外線センサにおいて上記第1赤外線センサと同様
の作用をなす以外、近軸光線収差補正のない反射鏡を用
いたから、焦点像がリング状となり、多数が集積された
熱電対の温接点上に結像するから測定効率がよく感度が
格段に向上する。
In the second infrared sensor, since a reflecting mirror without paraxial ray aberration correction was used, except that it had the same effect as the first infrared sensor, the focal image was ring-shaped, and the focal image was formed on the hot junction of a large number of integrated thermocouples. Because it forms an image, measurement efficiency is high and sensitivity is significantly improved.

C実施例〕 以下図面により本発明の詳細な説明する。C Example] The present invention will be explained in detail below with reference to the drawings.

第1図は本発明赤外線センサの一実施例の構成を示す半
断面図、第2図は本発明における第2反射鏡を取付ける
前枠の正面図である。
FIG. 1 is a half-sectional view showing the structure of an embodiment of the infrared sensor of the present invention, and FIG. 2 is a front view of the front frame to which the second reflecting mirror of the present invention is attached.

まず、その構成を説明する。First, its configuration will be explained.

第1図において2は鏡筒で、その前部には前枠1及びダ
ストキャップを兼ねた赤外線透過窓9が取付けられ、そ
の後部には主鏡枠3及び後枠4が取付けられている。前
枠l、鏡筒2.主鏡枠3及び後枠4はセンサ容器12を
構成している。前枠1の中心部にはアクリル樹脂等の基
材にアルミ、銅。
In FIG. 1, reference numeral 2 denotes a lens barrel, on the front of which a front frame 1 and an infrared transmitting window 9 which also serves as a dust cap are attached, and on the rear thereof a main lens frame 3 and a rear frame 4 are attached. Front frame l, lens barrel 2. The main lens frame 3 and the rear frame 4 constitute a sensor container 12. The center of the front frame 1 is made of aluminum and copper on a base material such as acrylic resin.

金、銀等を付着し反射率80以上とした球面第2反射鏡
し、が取付けられ、主鏡枠3には中心部に通光孔15を
有し、アクリル樹脂等の基材にアルミ、銅。
A second spherical reflector is attached with gold, silver, etc. to give a reflectance of 80 or more, and the main mirror frame 3 has a light passing hole 15 in the center, and is made of aluminum, acrylic resin, etc. as a base material. copper.

金、銀等を付着し反射率80以上とした球面主反射鏡L
lがミラー押さえ8で凸面側より押さえられて取付けら
れている。
Spherical main reflecting mirror L with gold, silver, etc. attached to it and a reflectance of 80 or more
1 is attached by being pressed from the convex side by a mirror holder 8.

主反射鏡Llは近軸光線収差の補正を行っていない球面
鏡を用いる。
The main reflecting mirror Ll is a spherical mirror that is not corrected for paraxial ray aberration.

後枠4の前方小径筒部4aは主反射鏡り、の通光孔15
に挿入され、その前方にフード5を有し、前方小径筒部
4aに段部4bを経て大径筒部4cが連設されている。
The front small-diameter cylindrical portion 4a of the rear frame 4 has a light passing hole 15 in the main reflecting mirror.
It has a hood 5 in front of it, and a large diameter cylindrical part 4c is connected to the front small diameter cylindrical part 4a via a stepped part 4b.

この後枠4の段部4bと大径筒部4cに当接して温度検
出手段6が取付けられ、その内側には受熱部14がセン
サ座7.センサ押さえ10で取付けられている。11は
固定ネジである。
A temperature detecting means 6 is mounted in contact with the stepped portion 4b and the large diameter cylindrical portion 4c of the rear frame 4, and a heat receiving portion 14 is installed inside the temperature detecting means 6 at the sensor seat 7. It is attached with a sensor holder 10. 11 is a fixing screw.

第3図(A)は本発明における温度検出手段と受熱部と
からなる温度検出器の一例を示す断面図である。この温
度検出器18はポリエステルフィルム等の高分子薄膜1
7の裏面に蒸着されて形成される全黒(Au Blac
k)の受熱部14と、他面に設けられた熱電対6とで構
成される。
FIG. 3(A) is a cross-sectional view showing an example of a temperature detector comprising a temperature detecting means and a heat receiving section according to the present invention. This temperature sensor 18 is a polymer thin film 1 such as a polyester film.
All black (Au Black) formed by vapor deposition on the back surface of 7
It is composed of the heat receiving section 14 (k) and a thermocouple 6 provided on the other surface.

第3図(B)はこのように構成される温度検出器18の
熱電対側平面図を示したものである。本図から解るよう
に、熱電対6は受熱部14を取り囲むように多数集積さ
れており、熱電対6には正リード19と負リード20と
が接続されている。
FIG. 3(B) shows a plan view of the thermocouple side of the temperature detector 18 constructed in this manner. As can be seen from this figure, a large number of thermocouples 6 are integrated so as to surround the heat receiving section 14, and a positive lead 19 and a negative lead 20 are connected to the thermocouple 6.

一方、受熱部14には熱電対を形成する一方の金属が短
冊状の受熱片14aとして一辺当たり25枚、図に示す
ように設けており、四辺全部では100枚が設けられて
いる。
On the other hand, in the heat receiving part 14, one metal forming the thermocouple is provided as a rectangular heat receiving piece 14a, 25 pieces per side, as shown in the figure, and 100 pieces are provided on all four sides.

第3図(C)はこのように構成される温度検出器18の
角部を示した部分拡大図である。
FIG. 3(C) is a partially enlarged view showing a corner of the temperature detector 18 constructed in this manner.

各熱電対6は、一方の金属23と他の金属24を接続し
て形成されており、温接点21は受熱片14aの周囲に
環状又は多角形状に配設され、冷接点22はその周囲に
設けられる。熱電対6は例えばアンチモン(化学記号、
Sb) 23とビスマス(化学記号Bi)24とで構成
される。
Each thermocouple 6 is formed by connecting one metal 23 and another metal 24, the hot junction 21 is arranged in an annular or polygonal shape around the heat receiving piece 14a, and the cold junction 22 is arranged around the heat receiving piece 14a. provided. The thermocouple 6 is, for example, antimony (chemical symbol,
Sb) 23 and bismuth (chemical symbol Bi) 24.

第3図(D)はこのように構成される熱電対6の回路図
を表したものである。図中、アンチモン(化学記号、S
b) 23とビスマス(化学記号、Bi)24とは接合
点21と22とで接合されて直列に全部で100対が接
続される。
FIG. 3(D) shows a circuit diagram of the thermocouple 6 constructed in this manner. In the figure, antimony (chemical symbol, S
b) 23 and bismuth (chemical symbol: Bi) 24 are joined at junctions 21 and 22 to form a total of 100 pairs in series.

ちなみに、熱電対は二種の金属で回路をつくり、その2
つの接合点の温度を異にすると熱起電力を生じ電流が流
れるゼーベック効果を利用したものである。したがって
、前述したように熱電対6を直列に接続することで微小
電位が増幅されることになる。
By the way, a thermocouple has a circuit made of two types of metals.
This utilizes the Seebeck effect, in which thermoelectromotive force is generated when the temperatures at two junctions are different, causing current to flow. Therefore, as described above, by connecting the thermocouples 6 in series, the minute potential is amplified.

この温度検出器18の熱電対6は受熱部14の温度。The thermocouple 6 of this temperature detector 18 measures the temperature of the heat receiving section 14.

温度変化を検出し、これによって被検出物体の温度、温
度変化を検知するものである。
It detects temperature changes and thereby detects the temperature of the object to be detected and the temperature changes.

次にその作用を説明する。Next, its effect will be explained.

第1赤外線センサにおいて被検出物体より発する赤外線
16は赤外線透過窓9を透過して中心部に通光孔15を
有する主反射鏡L+の凹面で反射され集光される。この
集光された赤外線16は第2反射鏡り、の凸面で反射さ
れ集光される。この集光された赤外線16はフード5、
主反射鏡Llの通光孔15(後枠4の小径筒部4a)を
通り受熱部14で受光され環状又は多角形状に配設され
た熱電対の温接点21の温度が高められ、受熱部14が
受光した赤外線量に応じた出力が得られる。
In the first infrared sensor, infrared rays 16 emitted from an object to be detected are transmitted through an infrared transmitting window 9, reflected and condensed by the concave surface of a main reflecting mirror L+ having a light passing hole 15 in the center. This focused infrared ray 16 is reflected and focused by the convex surface of the second reflecting mirror. This focused infrared light 16 is transmitted to the hood 5,
The light passes through the light passing hole 15 of the main reflecting mirror Ll (the small diameter cylindrical part 4a of the rear frame 4) and is received by the heat receiving part 14, and the temperature of the hot junction 21 of the thermocouple arranged in an annular or polygonal shape is increased. An output corresponding to the amount of infrared rays received by 14 is obtained.

更に温度検出器6として熱電対を用いた場合にはこの熱
電対6を熱伝導部材よりなるセンサ容器12を構成する
後枠4に接触させると、熱電対6の温接点21と冷接点
22との間の温度上昇の遅延の防止が図られ誤測定が少
なくできることになる。
Furthermore, when a thermocouple is used as the temperature detector 6, when the thermocouple 6 is brought into contact with the rear frame 4 that constitutes the sensor container 12 made of a thermally conductive member, the hot junction 21 and the cold junction 22 of the thermocouple 6 are connected. This prevents delays in temperature rise during this period, and reduces erroneous measurements.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明によれば、中心部に通光孔15を有
する主反射鏡L+の凹面で赤外線16を反射させて集光
し、この集光した赤外線16を第2反射鏡L2の凸面で
反射させて集光する2つの鏡面反射鏡からなるグセグレ
ン集光系を使用していることにより赤外線の吸収を回避
し、受熱部14の赤外線線量の低減を防止して受熱部1
4の温度を高め、実質的に温度検出手段6の感度を向上
して被検出物体の温度、温度変化を的確に検知すること
ができる。
As described above, according to the present invention, the infrared rays 16 are reflected and focused on the concave surface of the main reflecting mirror L+ having the light passing hole 15 in the center, and the focused infrared rays 16 are reflected on the convex surface of the second reflecting mirror L2. By using a Gussegrain condensing system consisting of two specular reflecting mirrors that reflect and condense light at the
The temperature of the object to be detected and temperature changes can be accurately detected by increasing the temperature of the object to be detected and substantially improving the sensitivity of the temperature detection means 6.

また、反射鏡として、近軸光線収差の補正のない球面鏡
を用いたから焦点像がリング状に懲戒され、環状又は多
角形状に配設された熱電対の温接点に結像するから感温
速度が速く、また感度が高く実用性の高い赤外線センサ
が得られる。
In addition, since a spherical mirror without correction of paraxial ray aberration is used as a reflecting mirror, the focal image is formed into a ring shape, and the image is formed on the hot junction of the thermocouple arranged in an annular or polygonal shape, so the temperature sensing speed is reduced. A fast, highly sensitive, and highly practical infrared sensor can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明赤外線センサの一実施例の構成を示す半
断面図、第2図は本発明における第2反射鏡を取付ける
前枠の正面図、第3図(A)は本発明における温度検出
手段と受熱部とからなる温度検出器の一例を示す断面図
、第3図(B)は本発明における温度検出器の平面図、
第3図(C)はその温度検出器の角部を示した部分拡大
図、第3図(D)は本発明における熱電対の回路図、第
4図は従来の赤外線センサにおけるフレネルレンズによ
る集光系の説明図である。 6・・・・・・温度検出手段(熱電対)、9・・・・・
・赤外線透過窓(ダストキャップ)、Ll・・・・・(
球面)主反射鏡、L2・・・・・・(球面)第2反射鏡
、12・・・・・・センサ容器、14・・・・・・受熱
部、14a・・・・・・受熱片、15・・・・・・通光
孔、16・・・・・・赤外線。
FIG. 1 is a half-sectional view showing the configuration of an embodiment of the infrared sensor of the present invention, FIG. 2 is a front view of the front frame to which the second reflecting mirror of the present invention is attached, and FIG. 3(A) is the temperature sensor of the present invention. A sectional view showing an example of a temperature detector comprising a detection means and a heat receiving part, FIG. 3(B) is a plan view of the temperature detector in the present invention,
FIG. 3(C) is a partially enlarged view showing a corner of the temperature detector, FIG. 3(D) is a circuit diagram of a thermocouple in the present invention, and FIG. 4 is a collection using a Fresnel lens in a conventional infrared sensor. It is an explanatory diagram of an optical system. 6...Temperature detection means (thermocouple), 9...
・Infrared transmission window (dust cap), Ll...(
Spherical) main reflecting mirror, L2... (spherical) second reflecting mirror, 12... sensor container, 14... heat receiving section, 14a... heat receiving piece , 15... Light passing hole, 16... Infrared rays.

Claims (2)

【特許請求の範囲】[Claims] (1)赤外線透過窓(9)を設けたセンサ容器(12)
の後方部に、赤外線透過窓(9)を透過する赤外線(1
6)を凹面で反射して集光する、中心部に通光孔(15
)を有する主反射鏡L_1を設け、この主反射鏡L_1
で反射した赤外線間を凸面で反射して集光する第2反射
鏡L_2をセンサ容器(12)の前部中心部に配置せし
め、この第2反射鏡L_2で反射した赤外線(16)を
主反射鏡L_1の通光孔(15)を通して受ける受熱部
(14)をセンサ容器(12)の後方中心部に設けると
共にこの受熱部(14)の温度、温度変化を検出する温
度検出器(6)を設置してなる赤外線センサ。
(1) Sensor container (12) equipped with an infrared transmission window (9)
An infrared ray (1
6) is reflected by the concave surface and focused, there is a light passing hole (15) in the center.
) is provided, and this main reflecting mirror L_1
A second reflecting mirror L_2 that reflects and condenses the infrared rays reflected by the second reflecting mirror L_2 on its convex surface is placed in the center of the front part of the sensor container (12), and the infrared rays (16) reflected by this second reflecting mirror L_2 are mainly reflected. A heat receiving part (14) that receives heat through the light passing hole (15) of the mirror L_1 is provided at the rear center of the sensor container (12), and a temperature detector (6) that detects the temperature of this heat receiving part (14) and temperature changes is provided. Infrared sensor installed.
(2)主反射鏡L_1を近軸光線収差補正を行っていな
い球面鏡とし、温度検出器を、温接点を環状又は多角形
状に集積された多数の熱電対からなる請求項第1項記載
の赤外線センサ。
(2) The infrared rays according to claim 1, wherein the main reflecting mirror L_1 is a spherical mirror without paraxial ray aberration correction, and the temperature detector is composed of a large number of thermocouples whose hot junctions are integrated in an annular or polygonal shape. sensor.
JP19993289A 1989-07-31 1989-07-31 Infrared sensor Pending JPH0363535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19993289A JPH0363535A (en) 1989-07-31 1989-07-31 Infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19993289A JPH0363535A (en) 1989-07-31 1989-07-31 Infrared sensor

Publications (1)

Publication Number Publication Date
JPH0363535A true JPH0363535A (en) 1991-03-19

Family

ID=16415993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19993289A Pending JPH0363535A (en) 1989-07-31 1989-07-31 Infrared sensor

Country Status (1)

Country Link
JP (1) JPH0363535A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4633296B2 (en) * 2001-05-18 2011-02-16 株式会社堀場製作所 Thermopile sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4633296B2 (en) * 2001-05-18 2011-02-16 株式会社堀場製作所 Thermopile sensor

Similar Documents

Publication Publication Date Title
JP5054523B2 (en) Sensor
EP1060370B1 (en) Method and apparatus for measuring substrate temperature
US20110147573A1 (en) Sensor cap assembly sensor circuit
US7400347B2 (en) Camera system for monitoring a solid angle region and for detection of detailed information from the solid angle region
JP3003853B2 (en) Sensor with bridge structure
JP3580126B2 (en) Infrared sensor
JPH05133803A (en) Infrared-detecting element
JP2007101513A (en) Infrared sensor
US20040076217A1 (en) Wave-collecting device of non-contact type thermometer
JPH0363535A (en) Infrared sensor
JPH0249124A (en) Thermopile
KR101903510B1 (en) Medical radiation thermometer having an improved optics system
JP3672773B2 (en) Method for distinguishing glass coating surface
JPH0638057B2 (en) Optical device of heat ray detector
JPH1019670A (en) Human body detection sensor device
US20100053332A1 (en) Frustrated internal reflection uncooled infrared camera
TWI731795B (en) Infrared sensing module and forehead thermometer
JP2002048637A (en) Infrared detector and temperature measuring instrument equipped with it
JPS628508Y2 (en)
JPH08275925A (en) Radiative clinical thermometer
JPH09218086A (en) Infrared sensor
JPH04240527A (en) Radiometer for measuring low temperature distribution
JP2012103226A (en) Infrared sensor device
KR20160140255A (en) Optical gas sensor with the improvement of sensitivity and reliability
JPH0266416A (en) Thermopile