JPH036344A - Aluminum alloy having heat resistance and wear resistance - Google Patents

Aluminum alloy having heat resistance and wear resistance

Info

Publication number
JPH036344A
JPH036344A JP13748189A JP13748189A JPH036344A JP H036344 A JPH036344 A JP H036344A JP 13748189 A JP13748189 A JP 13748189A JP 13748189 A JP13748189 A JP 13748189A JP H036344 A JPH036344 A JP H036344A
Authority
JP
Japan
Prior art keywords
alloy
aluminum alloy
strength
particles
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13748189A
Other languages
Japanese (ja)
Inventor
Yoshimasa Okubo
喜正 大久保
Kazuhisa Shibue
渋江 和久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP13748189A priority Critical patent/JPH036344A/en
Publication of JPH036344A publication Critical patent/JPH036344A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a heat- and wear-resisting Al alloy excellent in strength at high temp. and impact strength by dispersing specific amounts of hard grains into an Al alloy matrix which contains specific amounts of Si, Fe, Cu, and Mg and in which Si, etc., are finely dispersed. CONSTITUTION:The heat- and wear-resisting Al alloy applicable to various sliding members can be obtained by dispersing 1-8%, by weight, of hard grains of one or more kinds among SiC, Si3N4, Al2O3, TiN, TiC, etc., having 1-20mum average grain size into an A2 alloy matrix which has a composition consisting of 4-9% Si, 3-10% Fe, 1-6% Cu, 0.3-3% Mg, and the balance Al with inevitable impurities and further containing, if necessary, 0.3-3%, in total, of one or more elements among Mn, Mo, V, Zr, Ni, Ti, and Cr and in which Si grains and intermetallic compound grains are finely dispersed into a state of <=10mum.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、バルブスプリングリテーナ−ピストン、ロッ
カーアーム、コンプレッサーベーン、バルブリフター等
各種摺動部材に応用し得る耐熱耐摩耗性アルミニウム合
金に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a heat-resistant and wear-resistant aluminum alloy that can be applied to various sliding members such as valve spring retainers and pistons, rocker arms, compressor vanes, and valve lifters. be.

[従来の技術] 最近、エンジンを従来の鋼Hに代えてアルミニウム合金
を用いて作製し、軽量化して省エネルギーを図ることが
行われている。しかし、特にバルブスプリングリテーナ
−ピストン、ロッカーアーム、バルブリフター コンプ
レッサ−ベーン等の各種摺動部材は高温強度、耐摩耗性
および衝撃特性が必要とされるところから、かかる特性
を満足させるアルミニウム合金は得られ難い。そこで、
鋼材が多く使オ)れていたが、最近では、5i−Ni−
Al系ないしは5iFe又はM n −A I系合金基
地中に、硬質粒子を分散させた高力アルミニウム合金が
提案されている。(例えば、特公昭63−20297号
公報、特公昭B3−20298号公報参照) [発明が解決しようとする課題] 特にエンジンにおいて高回転(例えば1万回転近くまた
はそれ以上)になるとバルブ系の運動の追従性が悪くな
り、さらにはバルブがスプリングの力でしまりきらなく
なる現象いわゆるバルブサージングが起ることがある。
[Prior Art] Recently, engines have been manufactured using aluminum alloy instead of conventional steel H to reduce weight and save energy. However, since various sliding parts such as valve spring retainer pistons, rocker arms, valve lifters, and compressor vanes require high-temperature strength, wear resistance, and impact properties, aluminum alloys that satisfy these properties are difficult to find. It's hard to get caught. Therefore,
Steel was often used, but recently 5i-Ni-
A high-strength aluminum alloy in which hard particles are dispersed in an Al-based, 5iFe, or Mn-A I-based alloy matrix has been proposed. (For example, see Japanese Patent Publication No. Sho 63-20297 and Japanese Patent Publication No. Sho B3-20298.) [Problems to be Solved by the Invention] Particularly in an engine, when the engine rotates at high speeds (for example, close to 10,000 revolutions or more), the movement of the valve system The followability of the valve may deteriorate, and furthermore, a phenomenon known as valve surging may occur, where the valve is unable to close completely due to the force of the spring.

かかる現象を防ぐためにも、バルブ系のアルミニウム合
金による軽量化が必要となる。この中にバルブスプリン
グリテーナ−やバルブリフターの軽量化が含まれる。
In order to prevent this phenomenon, it is necessary to reduce the weight of the valve system by using an aluminum alloy. This includes reducing the weight of valve spring retainers and valve lifters.

本発明はかかるバルブスプリングリテーナ−をはじめと
する激しい衝撃的な振動および摺動を受ける部材に用い
るアルミニウム合金を提供せんとするものである。
The present invention aims to provide an aluminum alloy for use in valve spring retainers and other members that are subject to severe impact vibrations and sliding.

[課題を解決するための手段] 本発明は、Sl;4〜9%、Fe:3〜to%、Cu:
1〜6%、Mg:  0.3〜3%を含みあるいはさら
にこれらにMns Mo、V、Z r。
[Means for Solving the Problems] The present invention provides Sl: 4 to 9%, Fe: 3 to %, Cu:
1-6%, Mg: 0.3-3% or further Mns Mo, V, Zr.

Ni、Ti5Crの中から1種または2種以上を合計で
0.3〜3%含み、残部が不可避的不純物を含むA1か
らなり、Si粒子および金属間化合物粒子の平均粒径が
lOμI以下に微細分散しているアルミニウム合金マト
リックスの中に、平均粒径が1〜20μmであるS i
 C。
Contains a total of 0.3 to 3% of one or more of Ni, Ti5Cr, and the remainder is A1 containing unavoidable impurities, and the average particle size of Si particles and intermetallic compound particles is fine to 10 μI or less. Si having an average particle size of 1 to 20 μm is dispersed in the aluminum alloy matrix.
C.

Si3N4、Al2O3、TiNの如き硬質粒子の1種
または2種以上を1〜8%分散させてなる耐熱耐摩耗性
アルミニウム合金である。
It is a heat-resistant and wear-resistant aluminum alloy in which 1 to 8% of one or more types of hard particles such as Si3N4, Al2O3, and TiN are dispersed.

上記において合金成分、硬質粒子の限定理由は下記のと
おりである。
The reasons for limiting the alloy components and hard particles in the above are as follows.

St :Si粒子およびFeと共存することによるAl
−5i−Fe系金属間化合物として分散し、引張強度を
高める。4%未満では強度が不足し、9%を越えると強
度への効果か飽和するとともに衝撃強度が低下する。
St: Al due to coexistence with Si particles and Fe
-Dispersed as a 5i-Fe intermetallic compound to increase tensile strength. If it is less than 4%, the strength will be insufficient, and if it exceeds 9%, the effect on strength will be saturated and the impact strength will decrease.

Fe:Al−Fe系金属間化合物およびSiと共存する
ことによるAl−5i−Fe系金属箔化合物として分散
し、強度を高める。3%未満では強度が不足し、10%
を越えると衝撃強度が低下する。
Fe: By coexisting with an Al-Fe based intermetallic compound and Si, it is dispersed as an Al-5i-Fe based metal foil compound and increases strength. If it is less than 3%, the strength is insufficient, and 10%
If the value exceeds 100%, the impact strength decreases.

Cu:Mgと共存して時効硬化性を付与する。Cu: Coexists with Mg and imparts age hardening properties.

時効硬化により引張強度、疲労強度が向上する。1%未
満では効果が十分でなく、6%を越えると効果が飽和す
るとともに、耐食性、衝撃強度が低下する。
Age hardening improves tensile strength and fatigue strength. If it is less than 1%, the effect will not be sufficient, and if it exceeds 6%, the effect will be saturated and the corrosion resistance and impact strength will decrease.

M g : Cuと共存して時効硬化性を付与する。Mg: Coexists with Cu and imparts age hardenability.

時効硬化により引張強度、疲労強度が向上する。0,3
%未満では効果が十分でなく、3%を越えると効果が飽
和する。
Age hardening improves tensile strength and fatigue strength. 0,3
If it is less than 3%, the effect is insufficient, and if it exceeds 3%, the effect is saturated.

MnSMo、V、Zr、Ni、Ti、Cr :Alある
いはA1と他の添加元素と金属間化合物を形成し、引張
強度を高める。0.3%未満では効果が十分でなく、3
%を越えると衝撃強度が低下する。
MnSMo, V, Zr, Ni, Ti, Cr: Forms an intermetallic compound with Al or A1 and other additive elements to increase tensile strength. If it is less than 0.3%, the effect is not sufficient;
%, the impact strength decreases.

硬質粒子:SiC,5L3N4、Al2O3、TiN5
TiCの如き硬質粒子を添加することによって耐摩耗性
が大幅に向上する。平均粒径が1μm未満では十分な耐
摩耗性を得られない。さらに粒子の均一分散が困難とな
り、粒子が偏在する場合には衝撃強度および疲労強度が
不足する。平均粒径が20μmを越すと切削性が悪くな
る。添加量が1%未満では耐摩耗性が十分でない。又8
%を越すと衝撃強度が低下する。
Hard particles: SiC, 5L3N4, Al2O3, TiN5
Wear resistance is greatly improved by adding hard particles such as TiC. If the average particle size is less than 1 μm, sufficient wear resistance cannot be obtained. Further, it becomes difficult to uniformly disperse the particles, and if the particles are unevenly distributed, the impact strength and fatigue strength will be insufficient. When the average particle size exceeds 20 μm, machinability deteriorates. If the amount added is less than 1%, wear resistance will not be sufficient. Also 8
%, the impact strength decreases.

本発明の合金を製造する一例を示すと下記のとおりであ
る。アルミニウム合金粉末と硬質粒子とを所定の混合割
合で混合し、これを冷間圧縮、脱ガス、熱間押出、熱処
理する。各項目ごとに下記に詳述する。
An example of manufacturing the alloy of the present invention is as follows. Aluminum alloy powder and hard particles are mixed at a predetermined mixing ratio, and this is subjected to cold compression, degassing, hot extrusion, and heat treatment. Each item will be explained in detail below.

アルミニウム合金粉末二所定組成の合金材料の溶湯をア
トマイズ法、単ロール法や噴霧ロール法などの、100
℃/sec以上の冷却速度の得られる方法によって金属
間化合物およびSi粒子が微細に分散した急冷体を作成
する。冷却速度が速いほど金属間化合物、Si粒子が微
細となり、引張強度、疲労強度が向上する。
100% aluminum alloy powder, such as atomization method, single roll method, spray roll method, etc.
A quenched body in which intermetallic compounds and Si particles are finely dispersed is prepared by a method that allows a cooling rate of ℃/sec or higher. The faster the cooling rate is, the finer the intermetallic compounds and Si particles become, and the tensile strength and fatigue strength are improved.

また、Al粉末粒径は微細であるほうが、硬質粒子を均
一に分散させるためには望ましい。
Further, it is desirable that the Al powder particle size be fine in order to uniformly disperse the hard particles.

混合:硬質粒子をA1合金粉末と均一に混合するための
処理で、■ブレンダー等の撹拌式混合機やボールミル等
の粉砕機によって混合する。
Mixing: A process for uniformly mixing hard particles with A1 alloy powder. (1) Mixing is performed using an agitating mixer such as a blender or a pulverizer such as a ball mill.

冷間圧縮:粉末のハンドリングを容易にするため、また
粉体をカプセルに装入するとき、多くの粉末を装入でき
るように、粉体を真密度の65〜80%に緻密化させる
。これは省略することもできる。
Cold compaction: The powder is densified to 65-80% of its true density in order to facilitate handling of the powder and to allow a large amount of powder to be charged when charging the powder into capsules. This can also be omitted.

脱ガス:粉体表面特にAl合金粉末表面に吸着している
水分を取り除き、最終の熱処理時に生じるフクレや孔を
防ぐ。脱ガスは300℃〜520℃に加熱保持しながら
真空引きすることによって行う。300℃未満では水分
の除去が十分でなく、熱処理によってフクレや孔を生じ
て引張強度および疲労強度を低下させる。
Degassing: Removes moisture adsorbed on the powder surface, especially the Al alloy powder surface, to prevent blisters and pores that occur during final heat treatment. Degassing is performed by evacuation while heating and maintaining the temperature at 300°C to 520°C. If the temperature is lower than 300°C, moisture removal is not sufficient, and heat treatment causes blisters and pores, reducing tensile strength and fatigue strength.

520℃を越すと金属間化合物やSi粒子が粗大化して
、強度、疲労強度および衝撃強度が低下する。
When the temperature exceeds 520°C, intermetallic compounds and Si particles become coarse, and strength, fatigue strength, and impact strength decrease.

熱間押出:粉体を100%密度に緻密化させるために行
う。粉体同志を強固に結合させるためには押出比を4以
上とることが望ましい。
Hot extrusion: Performed to densify the powder to 100% density. In order to firmly bond the powders together, it is desirable to have an extrusion ratio of 4 or more.

熱処理:引張強度、疲労強度を高めるために必要である
。溶体化処理→焼入、あるいは溶体化処理−焼入=焼戻
しによって行われる。
Heat treatment: Necessary to increase tensile strength and fatigue strength. It is performed by solution treatment → quenching, or solution treatment - quenching = tempering.

[実施例] エアアトマイズ法によって各種A1合金粉末を製造後1
49μm以下に分級し、これと硬質粒子を表1に示す各
割合でロータリーミキサーにて混合した。この粉末を冷
間金型圧縮によりφG3X 150 nunの圧縮物(
相対密度約70%)とし、アルミニウム缶に装入して4
80℃にて1時間の真空脱ガス処理をした。そしてアル
ミニウム缶を封じ、これを押出用ビレットとした。その
後、ビレットを400 ℃に加熱し、間接押出(コンテ
ナ径70IIII11)により直径18++unの棒を
得て(押出比15)、480℃で1時間の溶体化処理、
水焼入、175℃で5時間の時効処理を行った。
[Example] After manufacturing various A1 alloy powders by air atomization method 1
The particles were classified to 49 μm or less, and mixed with hard particles in the proportions shown in Table 1 using a rotary mixer. This powder was compressed with a cold mold to form a compressed product of φG3X 150 nun (
relative density of about 70%) and charged into an aluminum can.
Vacuum degassing treatment was performed at 80° C. for 1 hour. The aluminum can was then sealed and used as a billet for extrusion. Thereafter, the billet was heated to 400 °C, a rod with a diameter of 18++ un was obtained by indirect extrusion (container diameter 70III11) (extrusion ratio 15), and solution treatment was performed at 480 °C for 1 hour.
Water quenching and aging treatment at 175°C for 5 hours were performed.

こうして得られた材料についてL 50 ’Cにおける
引張強度、疲労寿命および室温におけるシャルピー衝撃
値の測定をし、また、ピン・ディスク式摩耗試験を行っ
た。結果を表1に併記する。
The thus obtained material was measured for tensile strength at L 50 'C, fatigue life and Charpy impact value at room temperature, and was also subjected to a pin-disc wear test. The results are also listed in Table 1.

ここで厚耗量とは、摩耗試験(120’Cのマシン浦の
中でピンを供試合金、ディスクをFe12として、10
0kgf’/antの面圧、速度0.5m1secで摩
擦を1時間行う)におけるピンの長さ減量である。
Here, the amount of wear refers to the wear test (120'C mashinura with the pin as gold and the disk as Fe12, 10
This is the reduction in the length of the pin when friction is performed for 1 hour at a surface pressure of 0 kgf'/ant and a speed of 0.5 ml/sec.

疲労寿命は、回転曲げ疲労試験において切欠形状係数α
=3.1の試験片で応力振幅7kgr/mn+2とした
ときの破断までの繰返し数で示した。シャルピー衝撃試
験片は平滑材とした。
Fatigue life is determined by notch shape factor α in rotating bending fatigue tests.
It is expressed as the number of repetitions until breakage when a stress amplitude of 7 kgr/mn+2 is applied to a test piece of =3.1. The Charpy impact test piece was made of a smooth material.

上記表1から明らかなとおり、本発明合金No。As is clear from Table 1 above, the alloy No. of the present invention.

1〜11は良好な引張強度、疲労強度、衝撃強度、耐♀
耗性を示している。引張強さは30kg1’/mm’以
上を、疲労寿命は106以上を、シャルピー衝撃値は1
.3kgf−m/cm’以上をそれぞれ良好とした。
1 to 11 have good tensile strength, fatigue strength, impact strength, and resistance♀
It shows wear and tear. Tensile strength is 30kg1'/mm' or more, fatigue life is 106 or more, Charpy impact value is 1
.. A value of 3 kgf-m/cm' or more was considered good.

合金No、12はSiが過剰であるためシャルピー衝撃
値が劣る。合金No、13はFeが少ないため引張強さ
、疲労強度が劣る。合金No、14はFeが過剰である
ためシャルピー衝撃値が劣る。
Alloy No. 12 has an excessive amount of Si, so its Charpy impact value is poor. Alloy No. 13 has poor tensile strength and fatigue strength due to low Fe content. Alloy No. 14 has an excessive Fe content, so its Charpy impact value is poor.

合金No、15は硬質粒子を含まないため耐摩耗性が劣
る。合金No、1Gは硬質粒子が小さいため耐摩耗性に
劣る。又硬質粒子が均一に分散しなかったので疲労強度
も劣る。合金No、17は硬質粒子が多いためシャルピ
ー衝撃値か劣る。また、硬質粒子が均一に分散しなかっ
たので疲労強度も劣る。合金No、+8はCuSMgを
含まないため疲労強度が劣る。合金No、19はSiが
過剰であるためシャルピー衝撃値が劣る。合金No、2
0はSiを含まないため疲労強度が劣る。合金1 No、21は硬質粒子が大きいため切削性が悪くなり実
用的でない。
Alloy No. 15 does not contain hard particles and therefore has poor wear resistance. Alloy No. 1G has small hard particles and therefore has poor wear resistance. Furthermore, since the hard particles were not uniformly dispersed, the fatigue strength was also poor. Alloy No. 17 has a lot of hard particles, so its Charpy impact value is poor. Furthermore, since the hard particles were not uniformly dispersed, the fatigue strength was also poor. Alloy No. +8 does not contain CuSMg and therefore has poor fatigue strength. Alloy No. 19 has an excessive amount of Si, so its Charpy impact value is poor. Alloy No. 2
0 has poor fatigue strength because it does not contain Si. Alloys 1 No. and 21 have large hard particles and have poor machinability, making them impractical.

[発明の効果] 本発明によれば高温強度、衝撃強度および耐摩耗性にす
ぐれたアルミニウム合金を得ることができる。したがっ
て、本発明合金はバルブスプリングリテーナ−をはじめ
バルブリフターロッカーアーム、ピストン等従来の鋼製
品と置き換え得る材料である。
[Effects of the Invention] According to the present invention, an aluminum alloy having excellent high-temperature strength, impact strength, and wear resistance can be obtained. Therefore, the alloy of the present invention is a material that can replace conventional steel products such as valve spring retainers, valve lifters, rocker arms, and pistons.

Claims (2)

【特許請求の範囲】[Claims] (1)Si:4〜9%(重量%:以下同じ)Fe:3〜
10%、Cu:1〜6%、Mg:0.3〜3%を含み、
残部が不可避的不純物を含むAlからなり、Si粒子お
よび金属間化合物粒子の平均粒径が10μm以下に微細
分散しているアルミニウム合金マトリックスの中に、平
均粒径が1〜20μmであるSiC、Si_3N_4、
Al_2O_3、TiN、TiCの如き硬質粒子の1種
または2種以上を1〜8%分散させてなる耐熱耐摩耗性
アルミニウム合金。
(1) Si: 4-9% (weight%: same below) Fe: 3-9%
10%, Cu: 1-6%, Mg: 0.3-3%,
SiC, Si_3N_4 with an average particle size of 1 to 20 μm is contained in an aluminum alloy matrix in which the remainder is Al containing unavoidable impurities and in which Si particles and intermetallic compound particles are finely dispersed with an average particle size of 10 μm or less. ,
A heat-resistant and wear-resistant aluminum alloy comprising 1 to 8% of one or more hard particles such as Al_2O_3, TiN, and TiC dispersed therein.
(2)Si:4〜9%、Fe:3〜10%、Cu:1〜
6%、Mg:0.3〜3%とさらにMn、Mo、V、Z
r、Ni、Ti、Crの中から1種または2種以上を合
計で0.3〜3%を含み、残部が不可避的不純物を含む
Alからなり、Si粒子および金属間化合物粒子の平均
粒径が10μm以下に微細分散しているアルミニウム合
金マトリックスの中に、平均粒径が1〜20μmである
SiC、Si_3N_4、Al_2O_3、TiN、T
iCの如き硬質粒子の1種または2種以上を1〜8%分
散させてなる耐熱耐摩耗性アルミニウム合金
(2) Si: 4-9%, Fe: 3-10%, Cu: 1-
6%, Mg: 0.3-3% and further Mn, Mo, V, Z
Contains a total of 0.3 to 3% of one or more of r, Ni, Ti, and Cr, and the remainder consists of Al containing inevitable impurities, and the average particle size of Si particles and intermetallic compound particles. SiC, Si_3N_4, Al_2O_3, TiN, T with an average particle size of 1 to 20 μm are contained in an aluminum alloy matrix in which particles are finely dispersed to a size of 10 μm or less.
A heat-resistant and wear-resistant aluminum alloy containing 1 to 8% of one or more types of hard particles such as iC dispersed therein.
JP13748189A 1989-06-01 1989-06-01 Aluminum alloy having heat resistance and wear resistance Pending JPH036344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13748189A JPH036344A (en) 1989-06-01 1989-06-01 Aluminum alloy having heat resistance and wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13748189A JPH036344A (en) 1989-06-01 1989-06-01 Aluminum alloy having heat resistance and wear resistance

Publications (1)

Publication Number Publication Date
JPH036344A true JPH036344A (en) 1991-01-11

Family

ID=15199639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13748189A Pending JPH036344A (en) 1989-06-01 1989-06-01 Aluminum alloy having heat resistance and wear resistance

Country Status (1)

Country Link
JP (1) JPH036344A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616192A (en) * 1994-07-21 1997-04-01 Fuji Oozx Inc. Coil retainer for engine valve and preparation of the same
CN111411270A (en) * 2020-05-21 2020-07-14 滨州渤海活塞有限公司 Method for changing morphology of ferrosilicon phase in aluminum alloy
CN113278854A (en) * 2021-05-24 2021-08-20 河北新立中有色金属集团有限公司 SiCp/Al-Si-Cu composite powder material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616192A (en) * 1994-07-21 1997-04-01 Fuji Oozx Inc. Coil retainer for engine valve and preparation of the same
CN111411270A (en) * 2020-05-21 2020-07-14 滨州渤海活塞有限公司 Method for changing morphology of ferrosilicon phase in aluminum alloy
CN113278854A (en) * 2021-05-24 2021-08-20 河北新立中有色金属集团有限公司 SiCp/Al-Si-Cu composite powder material and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH0625782A (en) High ductility aluminum sintered alloy and its manufacture as well as its application
JPH0610103A (en) Vane material excellent in wear resistance and sliding property
JPH036344A (en) Aluminum alloy having heat resistance and wear resistance
JP3426475B2 (en) Aluminum alloy composite material for brake discs with excellent wear resistance
JP2776645B2 (en) High-strength wear-resistant aluminum alloy with excellent cold forgeability
US6899844B2 (en) Production method of aluminum alloy for sliding bearing
JPH06322470A (en) Cast iron powder for powder metallurgy and wear resistant ferrous sintered alloy
JPS60125345A (en) Aluminum alloy having high heat resistance and wear resistance and manufacture thereof
JPS60121250A (en) Sintered al alloy for friction and sliding members
JPH03294446A (en) Heat-resistant and wear-resistant aluminum alloy
JPH03264639A (en) Al alloy product having high strength at high temperature
JPH07305130A (en) High strength wear resistant aluminum alloy
JPH04202736A (en) Hyper-eutectic al-si base alloy powder showing excellent deformability by hot powder metal forging
JP3413031B2 (en) Composite material for railway vehicle brake discs
JP3179095B2 (en) Valve train members for internal combustion engines
JP2787703B2 (en) A-l-Si alloy powder forged member with extremely low coefficient of thermal expansion
JP3309451B2 (en) Copper alloy valve guide for Ti alloy valve
JPS63307240A (en) High strength wear resistant al-si alloy forged member having low thermal expansion coefficient and its production
JPH03264636A (en) Forged member of al-si alloy powder reduced in attack on mating member
JPS63312942A (en) High strength high toughness wear resistant aluminum alloy material having excellent cold forgeability
JPS6335706B2 (en)
JPS6045266B2 (en) Aluminum alloy with excellent wear resistance
JPH0368729A (en) Copper-base sintered alloy having excellent high temperature wear resistance
JPS58130258A (en) Sintered fe alloy with superior wear and corrosion resistance
JPH08193250A (en) Iron-base sintered alloy with high temperature wear resistance and its production