JPH036342A - Sintered alloy and its production - Google Patents

Sintered alloy and its production

Info

Publication number
JPH036342A
JPH036342A JP13740189A JP13740189A JPH036342A JP H036342 A JPH036342 A JP H036342A JP 13740189 A JP13740189 A JP 13740189A JP 13740189 A JP13740189 A JP 13740189A JP H036342 A JPH036342 A JP H036342A
Authority
JP
Japan
Prior art keywords
powder
sintered
sintered alloy
raw material
remainder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13740189A
Other languages
Japanese (ja)
Inventor
Isamu Kikuchi
勇 菊池
Masanori Kikuchi
菊池 眞紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP13740189A priority Critical patent/JPH036342A/en
Publication of JPH036342A publication Critical patent/JPH036342A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To easily and accurately produce a sintered alloy having stable strength, corrosion resistance, and compatibility to mating members by mixing bronze powder and brass powder having respectively specified compositions into a specific ratio and subjecting the resulting powder mixture to compacting and sintering. CONSTITUTION:Brass powder consisting of, by weight, 5-40% Zn and the balance essentially Cu is mixed with bronze powder consisting of 2-12% Sn and the balance essentially Cu by 25-400 pts.wt. based on 100 pts.wt. of the bronze powder. Further, a solid lubricant of graphite or MoS2 is mixed with the above by 0.6-25 pts.wt., if necessary. The resulting powdery raw material is compacted and sintered. By this method, a sintered alloy consisting of 1.5-12% Sn, 8-40% Zn, and the balance essentially Cu and having 15-25vol.% porosity or a sintered alloy consisting of 1.5-12% Sn, 8-40% Zn, 0.6-5% solid lubricant, and the balance essentially Cu and having 18-22vol.% porosity can be obtained. These sintered alloys have stable strength and corrosion resistance and also have superior compatibility to mating members.

Description

【発明の詳細な説明】 「発明の目的」 本発明は焼結合金の製造法に係り、安定した強度および
耐食性と相手部材に対するなじめ性をもった焼結合金の
比較的簡易で的確な製造法を提供しようとするものであ
る。
[Detailed Description of the Invention] "Object of the Invention" The present invention relates to a method for producing a sintered alloy, and provides a relatively simple and accurate method for producing a sintered alloy that has stable strength, corrosion resistance, and conformability to a mating member. This is what we are trying to provide.

(産業上の利用分野) 耐食性と強度性に優れ、しかも相手部材に対する適切な
なじみ性をもった焼結合金についての製造技術。
(Industrial application field) Manufacturing technology for sintered alloys that have excellent corrosion resistance and strength, as well as appropriate compatibility with mating parts.

(従来の技術) 焼結合金としては従来から種々のものが提案されている
が、鉄系のものは強度的に優れているとしても相手部材
に対するなじみ性に劣り、一方銅系のものはこのなじみ
性か良好であっても強度的に不充分である。
(Prior art) Various sintered alloys have been proposed in the past, but iron-based alloys have excellent strength but are inferior in compatibility with mating parts, while copper-based alloys have poor compatibility with mating parts. Even if the compatibility is good, the strength is insufficient.

そこでこれらの焼結合金における有利点を共に具備せし
むべく、特公昭3B−22103号公報のような技術も
発表されている。即ち銅粉と錫粉からなる圧粉成形体を
亜鉛蒸気中で焼結せしめ、表面にCu −Sn−Znの
3元合金を形成したもので、それによって銅系焼結合金
としての相手部材に対するなじみ性を具備すると共に耐
食性および強度性をも改善せしめることができ、従って
軸受などに採用するに好ましい焼結合金製品を提供する
ことができる。
Therefore, techniques such as Japanese Patent Publication No. 3B-22103 have been published in order to provide all of the advantages of these sintered alloys. That is, a powder compact made of copper powder and tin powder is sintered in zinc vapor to form a ternary alloy of Cu-Sn-Zn on the surface, which makes it difficult to form a mating member as a copper-based sintered alloy. It is possible to provide a sintered alloy product that not only has conformability but also has improved corrosion resistance and strength, and is therefore suitable for use in bearings and the like.

(発明が解決しようとする課題) 上記のようにCu −Sn−Znの3元合金によるもの
は耐食性や強度性をも改善し得るものと言えるが表面の
みであり、合金体全般がそうした3元合金で形成される
わけでないから安定した均一な特性をもった製品を得る
ことができない。
(Problem to be solved by the invention) As mentioned above, it can be said that the Cu-Sn-Zn ternary alloy can improve corrosion resistance and strength, but only on the surface, and the entire alloy body does not have such ternary alloys. Since it is not made of an alloy, it is not possible to obtain a product with stable and uniform properties.

又焼結に当ってZn%気を発生、滲透せしめることが必
要であるからその7.n蒸気の濃度を適切に管理するこ
とが容易でなく、このZn蒸気濃度の管理如何で製品の
品質特性にばらつきが生ずる。
In addition, it is necessary to generate and permeate Zn% gas during sintering, so 7. It is not easy to appropriately control the concentration of Zn vapor, and the quality characteristics of products vary depending on how the concentration of Zn vapor is managed.

更にこのZn蒸気濃度の管理が適切であっても基本的に
はZn分が外部から滲透したものであるから合金成分組
成が不均一となり安定したものとならない。
Furthermore, even if the Zn vapor concentration is properly controlled, the Zn content basically seeps in from the outside, so the alloy composition becomes non-uniform and unstable.

更に圧粉体と亜鉛蒸気発生源とが各別に扱われるので作
業性に劣り、製造工程、特に焼結工程が煩雑であって、
Zn分のロスも不可避でコストアンプの原因となり、又
この点からも安定性に欠ける。
Furthermore, since the green compact and the zinc vapor generation source are handled separately, workability is poor, and the manufacturing process, especially the sintering process, is complicated.
Loss due to Zn is also unavoidable and causes cost increase, and also from this point of view, stability is lacking.

「発明の構成」 (課題を解決するための手段) 1、 Sn  : 1.5〜12wt%、Zn  : 
8〜40wt%を含有し、残部が実質的にCuであって
、気孔率15〜25VOI%とされたことを特徴とする
焼結合金。
"Structure of the invention" (Means for solving the problem) 1. Sn: 1.5-12wt%, Zn:
A sintered alloy characterized by containing 8 to 40 wt% of Cu, the remainder being substantially Cu, and having a porosity of 15 to 25 VOI%.

2、 Sn  : 1.5〜l 2wt%、Zn  :
 8〜40wt%を含有すると共に、黒鉛その他の固形
潤滑材を0.6〜5wt%を含有し、残部が実質的にC
uであって、気孔率18〜22vol%とされたことを
特徴とする焼結合金。
2. Sn: 1.5~l 2wt%, Zn:
It contains 8 to 40 wt%, and 0.6 to 5 wt% of graphite and other solid lubricants, with the remainder being substantially C.
A sintered alloy having a porosity of 18 to 22 vol%.

3、Sn:2〜12wt%を含有し残部が実質的にCu
である青銅粉100誓を部に対し、Zn:5〜40iv
t%を含有し残部が実質的にCuである黄銅粉を25〜
40Qwt部の割合で混合した原料粉末を用い、該原料
粉末を圧粉成形してから焼結することを特徴とする焼結
合金の製造法。
3. Contains Sn: 2 to 12 wt%, the remainder being substantially Cu
Zn: 5-40iv for 100 parts of bronze powder
t% of brass powder with the remainder being substantially Cu.
A method for producing a sintered alloy, which comprises using raw material powders mixed at a ratio of 40 Qwt parts, compacting the raw material powders, and then sintering the raw material powders.

4、Sn:2〜12wt%を含有し残部が実質的にCu
である青銅粉100騨を部に対し、Zn:5〜40wt
%を含有し残部が実質的にCuである黄銅粉を25〜4
00wt部と黒鉛または二硫化モリブデンの何れか一方
または双方である固形潤滑剤を0.6〜25wt部の割
合で混合した原料粉末を用い、該原料粉末を圧粉成形し
てから焼結することを特徴とする焼結合金の製造法。
4. Contains Sn: 2 to 12 wt%, the remainder being substantially Cu
Zn: 5-40wt for 100 parts of bronze powder
% and the remainder is substantially Cu.
0.00 wt part and a solid lubricant that is either graphite or molybdenum disulfide or both at a ratio of 0.6 to 25 wt part is used, and the raw material powder is compacted and then sintered. A method for producing a sintered alloy characterized by:

(実施例) 上記したような本発明によるものの具体的な実施態様を
説明すると、本発明においては青銅合金と黄銅合金の粉
末を混合したものを圧粉成形し焼結して焼結合金とする
ことを提案するもので、青銅合金は一般的にSnを2〜
12%含有し残部がCuであるのに対し、黄銅合金は一
般的にZnを5〜40%含有したCu系合金であって、
これらの粉末を混合し、又適宜に黒鉛や二硫化モリブデ
ンあるいは鉛の粉末を添加したものを圧粉成形してから
焼結するものである。
(Example) To explain the specific embodiment of the present invention as described above, in the present invention, a mixture of bronze alloy and brass alloy powder is compacted and sintered to form a sintered alloy. Bronze alloys generally contain Sn from 2 to 2.
Brass alloys are generally Cu-based alloys containing 5 to 40% Zn, while the balance is Cu.
These powders are mixed, graphite, molybdenum disulfide, or lead powder is added as appropriate, and the mixture is compacted and then sintered.

上記した青銅粉末と黄銅粉末とは一般的に双方が20〜
80wt%の範囲内で適宜に選ぶことができ、それによ
ってCu −Sn−Znの3元合金として少くともSn
が0.4〜9.6wt%、Znが1.0〜32.0wt
%の範囲内で含有され、残部がCuの合金が得られる。
The above-mentioned bronze powder and brass powder are generally both
It can be selected as appropriate within the range of 80 wt%, so that at least Sn as a ternary alloy of Cu-Sn-Zn
is 0.4 to 9.6 wt%, and Zn is 1.0 to 32.0 wt%.
% of Cu, and the balance is Cu.

又前記した黒鉛などの固形潤滑剤粉末は5wt%以下の
範囲で配合することが軸受などを得る上において好まし
い。
Further, it is preferable to mix the solid lubricant powder such as graphite in an amount of 5 wt % or less in order to obtain a bearing or the like.

圧粉成形、焼結されたものはサイジングされて的確な形
状、寸法をもった製品とされるが、このような製品にお
ける気孔率は一般的に15〜25%であり、特に軸受材
の場合は18〜22%である。何れの合金もCuを主体
とした本発明のものにおいては圧粉成形が容易であり、
Zn分を含有しているとしても合金としての含有である
から焼結時における亜鉛の気散による損失が非常に少く
均一な組成分布をもった安定品質の製品を適切に得しめ
ることができ、製造工程を単純化して低コストに目的の
製品を得ることができる。
Products that have been compacted and sintered are sized and made into products with precise shapes and dimensions, but the porosity of such products is generally 15 to 25%, especially in the case of bearing materials. is 18-22%. In any of the alloys of the present invention, which mainly consist of Cu, compaction is easy,
Even if it contains Zn, it is contained as an alloy, so the loss due to zinc diffusion during sintering is very small, and a stable quality product with a uniform composition distribution can be appropriately obtained. It is possible to simplify the manufacturing process and obtain the desired product at low cost.

本発明によるものの具体的な製造例について説明すると
以下の如くである。
A specific manufacturing example of the product according to the present invention will be described below.

製造例I Cu:91%で、Snが9%であって、粒度100メツ
シユの青銅粉末と、Cu:60%で、Znが40%で、
−100メソシユの黄銅粉末を用い、青銅粉末5Qwt
%と黄銅粉末49wt%および黒鉛1wt%の割合に配
合した原料粉を準備した。
Production Example I Bronze powder with Cu: 91%, Sn 9%, particle size 100 mesh, Cu: 60%, Zn 40%,
- Using 100 mesoyu brass powder, 5Qwt bronze powder
A raw material powder containing 49 wt % of brass powder and 1 wt % of graphite was prepared.

なお黒鉛については粒度−250メソシユのものを用い
、即ち合金粉末とは粒度を異にしたものを採用して比重
差によっても均一な混合状態を形成維持し得るようにし
た。
The graphite used had a particle size of -250 mS, that is, the particle size was different from that of the alloy powder, so that a uniform mixed state could be formed and maintained even due to the difference in specific gravity.

上記のようにして得られた原料粉は順次に金型内に装入
し、外径12m1で内径61■、高さが10龍の筒形軸
受として圧粉成形し、次いで800°Cのアンモニア分
解ガス雰囲気による20分間の焼結処理をなし、その後
サイジングして気孔率19%の軸受体を得た。
The raw material powder obtained as described above was sequentially charged into a mold and compacted into a cylindrical bearing with an outer diameter of 12 m1, an inner diameter of 61 mm, and a height of 10 mm. A sintering process was performed for 20 minutes in a decomposed gas atmosphere, and then sizing was performed to obtain a bearing body with a porosity of 19%.

上記のようにして得られた約100個の軸受体について
20個の試験体をランダムに選び、その圧環強度および
摩擦係数を測定し、その平均値を求めた結果は、圧環強
度が35.5 kgf/w2であり、摩擦係数は0.0
45であって、品質的に頗る安定且つ良好な軸受である
ことが確認された。
Of the approximately 100 bearing bodies obtained as described above, 20 test specimens were randomly selected, their radial crushing strength and friction coefficient were measured, and the average value was determined. kgf/w2, and the friction coefficient is 0.0
45, and it was confirmed that the bearing was extremely stable and good in terms of quality.

製造例2 製造例1におけると同じ青銅粉および黄銅粉を用い、そ
の配合比を次の第1表のように種々に変化せしめたもの
を準備し、圧粉成形、焼結およびサイジングの各処理を
同様に実施した。得られた各製品の品質についての測定
結果は第1表において併せて示す如くである。
Production Example 2 Using the same bronze powder and brass powder as in Production Example 1, the mixture ratios were varied as shown in Table 1 below, and the powder molding, sintering, and sizing processes were prepared. was carried out in the same manner. The measurement results regarding the quality of each product obtained are also shown in Table 1.

第  1  表 第2表 即ち何れのものも軸受材として略好ましい特性を有する
ものであることが確認され、又ランダムに選んだ各10
個のザンプルについてのバラツキ範囲は圧環強度が約4
kgf/璽*2、摩擦係数が0.01であって安定した
品質を有するものであった。
In other words, it was confirmed that all of the materials in Table 1 and Table 2 had approximately favorable characteristics as bearing materials, and each of the randomly selected 10
The variation range for each sample is approximately 4 in the radial crushing strength.
kgf/salt*2, the friction coefficient was 0.01, and the quality was stable.

製造例3 成分組成を異にした青銅粉末および黄銅粉末を採用して
各種の焼結合金を製造した。即ち採用した青銅粉末およ
び黄銅粉末の組成は次の第2表に示す如くであった。
Production Example 3 Various sintered alloys were produced using bronze powders and brass powders with different compositions. That is, the compositions of the bronze powder and brass powder employed were as shown in Table 2 below.

然してこのような■〜[相]の合金粉末を組合わせて配
合した原料粉末の混合比およびそれによって圧粉成形、
焼結した各製品の特性は次の第3表に示す如くであった
However, due to the mixing ratio of the raw material powder that is made by combining the alloy powders of ① to [phase], the powder compaction,
The characteristics of each sintered product were as shown in Table 3 below.

0 第 3 表 なじみ性においても優れた特性を有する焼結合金を簡易
且つ的確に製造し得るものであって、工業的にその効果
の大きい発明である。
0 Third This invention enables the simple and accurate production of a sintered alloy having excellent surface conformability, and is industrially highly effective.

即ち何れのものも略好ましい軸受性能を有しており、又
安定した焼結合金であることが確認された。
That is, it was confirmed that all of them had substantially favorable bearing performance and were stable sintered alloys.

「発明の効果」"Effect of the invention"

Claims (4)

【特許請求の範囲】[Claims] 1.Sn:1.5〜12wt%、Zn:8〜40wt%
を含有し、残部が実質的にCuであって、気孔率15〜
25vol%とされたことを特徴とする焼結合金。
1. Sn: 1.5-12wt%, Zn: 8-40wt%
, the remainder is substantially Cu, and the porosity is 15-15.
A sintered alloy characterized by having a content of 25 vol%.
2.Sn:1.5〜12wt%、Zn:8〜40wt%
を含有すると共に、黒鉛その他の固形潤滑材を0.6〜
5wt%を含有し、残部が実質的にCuであって、気孔
率18〜22vol%とされたことを特徴とする焼結合
金。
2. Sn: 1.5-12wt%, Zn: 8-40wt%
Contains graphite and other solid lubricants from 0.6 to
5 wt%, the remainder being substantially Cu, and having a porosity of 18 to 22 vol%.
3.Sn:2〜12wt%を含有し残部が実質的にCu
である青銅粉100wt部に対し、Zn:5〜40wt
%を含有し残部が実質的にCuである黄銅粉を25〜4
00wt部の割合で混合した原料粉末を用い、該原料粉
末を圧粉成形してから焼結することを特徴とする焼結合
金の製造法。
3. Contains Sn: 2 to 12 wt%, the remainder being substantially Cu
Zn: 5 to 40 wt for 100 wt part of bronze powder.
% and the remainder is substantially Cu.
A method for producing a sintered alloy, which comprises using raw material powders mixed at a ratio of 0.00 parts by weight, compacting the raw material powders, and then sintering the raw material powders.
4.Sn:2〜12wt%を含有し残部が実質的にCu
である青銅粉100wt部に対し、Zn:5〜40wt
%を含有し残部が実質的にCuである黄銅粉を25〜4
00wt部と黒鉛または二硫化モリブデンの何れか一方
または双方である固形潤滑剤を0.6〜25wを部の割
合で混合した原料粉末を用い、該原料粉末を圧粉成形し
てから焼結することを特徴とする焼結合金の製造法。
4. Contains Sn: 2 to 12 wt%, the remainder being substantially Cu
Zn: 5 to 40 wt for 100 wt part of bronze powder.
% and the remainder is substantially Cu.
Using a raw material powder in which 0.00 wt part and 0.6 to 25 w part of a solid lubricant of graphite or molybdenum disulfide or both are mixed in a ratio of 0.6 to 25 w part, the raw material powder is compacted and then sintered. A method for producing a sintered alloy characterized by the following.
JP13740189A 1989-06-01 1989-06-01 Sintered alloy and its production Pending JPH036342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13740189A JPH036342A (en) 1989-06-01 1989-06-01 Sintered alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13740189A JPH036342A (en) 1989-06-01 1989-06-01 Sintered alloy and its production

Publications (1)

Publication Number Publication Date
JPH036342A true JPH036342A (en) 1991-01-11

Family

ID=15197788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13740189A Pending JPH036342A (en) 1989-06-01 1989-06-01 Sintered alloy and its production

Country Status (1)

Country Link
JP (1) JPH036342A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126353A1 (en) * 2005-05-27 2006-11-30 Nippon Mining & Metals Co., Ltd. Cu-Sn MIXTURE POWDER AND PROCESS FOR PRODUCING THE SAME
US8679641B2 (en) 2007-01-05 2014-03-25 David M. Saxton Wear resistant lead free alloy bushing and method of making
KR20190069943A (en) * 2017-12-12 2019-06-20 충남대학교산학협력단 Method of manufacturing a layered friction machine parts made of ductile-phase dispersed copper alloy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52100310A (en) * 1976-02-19 1977-08-23 Mitsubishi Metal Corp Porous sintered material for mouthpiece of bubble generator
JPS5690954A (en) * 1979-12-22 1981-07-23 Tatsunosuke Kikuchi Sintered alloy
JPS61210155A (en) * 1985-03-15 1986-09-18 Hitachi Powdered Metals Co Ltd Iron-brass sintered sliding material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52100310A (en) * 1976-02-19 1977-08-23 Mitsubishi Metal Corp Porous sintered material for mouthpiece of bubble generator
JPS5690954A (en) * 1979-12-22 1981-07-23 Tatsunosuke Kikuchi Sintered alloy
JPS61210155A (en) * 1985-03-15 1986-09-18 Hitachi Powdered Metals Co Ltd Iron-brass sintered sliding material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126353A1 (en) * 2005-05-27 2006-11-30 Nippon Mining & Metals Co., Ltd. Cu-Sn MIXTURE POWDER AND PROCESS FOR PRODUCING THE SAME
US8679641B2 (en) 2007-01-05 2014-03-25 David M. Saxton Wear resistant lead free alloy bushing and method of making
US9657777B2 (en) 2007-01-05 2017-05-23 Federal-Mogul Llc Wear resistant lead free alloy bushing and method of making
KR20190069943A (en) * 2017-12-12 2019-06-20 충남대학교산학협력단 Method of manufacturing a layered friction machine parts made of ductile-phase dispersed copper alloy

Similar Documents

Publication Publication Date Title
TWI440514B (en) Powder, method of manufacturing a component and component
JP5504278B2 (en) Method for producing diffusion-alloyed iron or iron-based powder, diffusion-alloyed powder, composition comprising the diffusion-alloyed powder, and molded and sintered parts produced from the composition
US4676831A (en) Powder mixture containing talloil free of segregation
KR900006613B1 (en) Process for manufacturing copper base spinodal alloy articles
US3652261A (en) Iron powder infiltrant
US4000980A (en) Abrasion-resistant sliding material
GB2220421A (en) Sintered alloy material and process for the preparation of the same
US4190441A (en) Powder intended for powder metallurgical manufacturing of soft magnetic components
JPH036342A (en) Sintered alloy and its production
JP2013023707A (en) Mixed powder for powder metallurgy
US6676894B2 (en) Copper-infiltrated iron powder article and method of forming same
GB2220420A (en) Sintered alloy and method for manufacturing the same
JPH01136944A (en) Sintered metallic material
US4130422A (en) Copper-base alloy for liquid phase sintering of ferrous powders
US2945759A (en) Method for measuring the strength of sintered ferrous articles
CN1705760A (en) A method of controlling the dimensional change when sintering an iron-based power mixture
CA1049296A (en) Powder-metallurgy of cobalt containing brass alloys
JP2001131660A (en) Alloy powder for copper series high strength sintered parts
JPS58167696A (en) Material for sliding parts
JP2019123898A (en) Manufacturing method of copper alloy sintering material
RU2300446C2 (en) Method for producing composition material for electrical- engineering designation
RU2300445C2 (en) Method for producing composition material for electrical engineering designation
JPS5881946A (en) Al type sintered bearing alloy and preparation thereof
US4533392A (en) High strength sintered alloy
JP3694968B2 (en) Mixed powder for powder metallurgy