JPH036338A - Manufacture of composite material - Google Patents

Manufacture of composite material

Info

Publication number
JPH036338A
JPH036338A JP13826689A JP13826689A JPH036338A JP H036338 A JPH036338 A JP H036338A JP 13826689 A JP13826689 A JP 13826689A JP 13826689 A JP13826689 A JP 13826689A JP H036338 A JPH036338 A JP H036338A
Authority
JP
Japan
Prior art keywords
particles
molded body
formed body
metal
recessed part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13826689A
Other languages
Japanese (ja)
Inventor
Satoru Ishizuka
哲 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP13826689A priority Critical patent/JPH036338A/en
Publication of JPH036338A publication Critical patent/JPH036338A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To reduce the quantity of reinforcing fiber or the like and to increase the strength in a desired place by forming a recessed part or a blank space on a formed body of an inorganic material and infiltrating the grains dispersed in matrix metal into the recessed part or the blank space. CONSTITUTION:A recessed part 10a or a blank space is formed on the surface of a formed body 1 formed by short fiber, long fiber or the like of an inorganic material. The formed body 1 is heated and is set into a die 2. The dispersion molten metal 9 of nonmetallic or high m.p. metallic grains (such as SiC grains 8) in which Al alloy or the like is regulated as matrix metal is poured into the die 2. Pressure is applied by a pressuring punch 4 to infiltrate the molten metal 9 into the formed body 1. In the stage of pressurizing, the matrix metal is infiltrated into the fiber in the formed body 1 and the grains 8 are infiltrated into the recessed part 10a or the blank space, by which a composite place can be formed.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、繊維強化複合材料の製造方法に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a method for manufacturing a fiber reinforced composite material.

(従来の技術) 最近、自動車や航空機等の各種構成要素や部材等におい
て部分的に特別な機械的特性が要求されることから、こ
のような部材等の比強度、耐摩耗性、耐熱性等を向上さ
せる一つの手段として、そのような部材kf+を各種の
無機質繊維′:IJを強化+」としてアルミニウム合金
の如き軽合金をマトリックスとする繊維強化複合材料で
構成することが試みられている。
(Prior Art) Recently, special mechanical properties are required in parts of various components and members of automobiles, aircraft, etc., so the specific strength, abrasion resistance, heat resistance, etc. of such members, etc. As a means to improve the performance, an attempt has been made to construct such a member kf+ from a fiber-reinforced composite material with a light alloy such as an aluminum alloy as a matrix using various inorganic fibers.

すなわち、第4図は上記複合祠料の製造法を小ず断面図
であって、SiCや813N4″j+、のつイスカーに
よって所定形状に形成された成形体]を予熱炉内で約8
00℃で予熱した後、金型2内に配没し、その金型2内
にアルミニウム合金等のマトリックスとなる金属溶湯3
を注ぎ、その溶湯3を加圧パンチ4等によって加圧し、
その加圧状態を上記7トリツクス金属の溶湯か完全に凝
固するまで保持し、上記成形体内にアルミニウム合金を
浸透させることが行なわれている。
That is, FIG. 4 is a cross-sectional view showing the manufacturing method of the above-mentioned composite abrasive material.
After preheating at 00°C, the molten metal 3 is placed in the mold 2 and becomes a matrix of aluminum alloy, etc.
and pressurize the molten metal 3 with a pressure punch 4 etc.
The pressurized state is maintained until the molten 7-trix metal is completely solidified, and the aluminum alloy is infiltrated into the molded body.

また、非金属又は高融点金属の粒子をマトリックス金属
の溶湯に添加し、これを溶融又は半溶融状態で撹拌した
後加圧して複合材料を得ることも行なわれている。
It has also been done to obtain a composite material by adding particles of a non-metal or high melting point metal to a molten matrix metal, stirring the mixture in a molten or semi-molten state, and then applying pressure.

(発明が解決しようとする課題) ところが、上述のように成形体を使用するものにおいて
は、通常強化用の短繊維や長繊維がコスト高であるため
コストが高くなるとともに、非複合個所では強化や硬度
を高くできない等の問題かある。また、非金属等の粒子
を使用するものにおいては、特定個所に粒子を高密度に
集めることができず、特定個所の強化が不可能である等
の問題がある。
(Problems to be Solved by the Invention) However, in products that use molded bodies as described above, the cost increases because short fibers and long fibers for reinforcing are usually expensive, and reinforcing is not required in non-composite areas. There are also problems such as not being able to increase the hardness. In addition, in those using particles of non-metallic materials, there are problems such as the inability to collect particles at a high density in a specific location, making it impossible to strengthen a specific location.

本発明はこのような点に鑑み、高価な短繊維やウィスカ
ー等の量を少なくできるとともに、所望個所の強度等を
高くすることかてぎるようにした複合材料の製造方法を
得ることを目的とする。
In view of these points, an object of the present invention is to provide a method for manufacturing a composite material that can reduce the amount of expensive short fibers, whiskers, etc., and increase the strength etc. of desired parts. do.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、無機質材料からなる短繊維や長繊維等によっ
て形成された成形体に凹部または空所を形成し、その凹
部または空所内にマトリックス金属内に分散されている
非金属又は高融点金属の粒子を浸入させることを特徴と
する。
(Means for Solving the Problems) The present invention involves forming recesses or voids in a molded body made of short fibers, long fibers, etc. made of an inorganic material, and dispersing particles in a matrix metal in the recesses or voids. It is characterized by infiltrating particles of a non-metal or a high-melting point metal.

(作 用) 成形体中にマトリックス金属溶湯を加圧浸透させる場合
、マトリックス金属は繊維からなる成形体中に浸透する
が、そのマトリックス金属内に分散されている粒子はそ
の浸透が困難で、成形体の手前で残留する傾向となる。
(Function) When a molten matrix metal is infiltrated into a molded body under pressure, the matrix metal penetrates into the molded body made of fibers, but the particles dispersed within the matrix metal have difficulty in penetrating, and the molding It tends to remain in front of the body.

しかし、成形体には凹部または空所が形成されているの
で、その凹部または空所内に粒子が侵入し、成形体の表
面部は繊維と粒子の両者によって補強されることとなる
However, since recesses or voids are formed in the molded product, particles enter the recesses or voids, and the surface portion of the molded product is reinforced by both the fibers and the particles.

しかも、上記粒子の分散は、成形体との境界に近づく程
徐々に密となるため、成形体部分から徐々に硬さやヤン
グ率が小さくなる傾斜材料となり、熱処理時等において
境界部に大きな熱応力が発生するようなこともなくなる
Moreover, the dispersion of the particles becomes gradually denser as it approaches the boundary with the molded body, resulting in a graded material whose hardness and Young's modulus gradually decrease from the molded body part, resulting in large thermal stress at the boundary during heat treatment, etc. will no longer occur.

(実施例) 以下、第1図乃至第3図を参照して本発明の実施例につ
いて説明する。
(Example) Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 3.

第1図は本発明の模式図であり、加圧中の状態を示す。FIG. 1 is a schematic diagram of the present invention, showing a state during pressurization.

すなわち、径が0,1〜1.0μm、長さか10〜10
0μmのSiCやS l 3N 4等の無機質材料から
なるウィスカーによって水ガラス等をバインダーとして
成形体1を形成し、この成形体1を例えば600〜80
0℃に加熱して金型2内にセットした後、Aρ合金をマ
ド1ルツクス金属としたSiC粒子8、分散合金の溶湯
9を、従来と同様に金型2内に注湯上その溶湯に加圧/
々レンチで500〜1.0. 000kgf /c櫂の
圧力を加え、上記溶湯を成形体中に含浸させる。
That is, the diameter is 0.1 to 1.0 μm and the length is 10 to 10 μm.
A molded body 1 is formed with whiskers made of an inorganic material such as 0 μm SiC or S 1 3 N 4 using water glass or the like as a binder.
After heating to 0° C. and setting in the mold 2, SiC particles 8 made of Aρ alloy as a mixed metal and molten metal 9 of the dispersion alloy are poured into the mold 2 and poured into the molten metal in the same manner as before. Pressurization/
500 to 1.0 with a wrench. A pressure of 000 kgf/c paddle is applied to impregnate the molten metal into the molded body.

ところで、上記成形体1の表面には、第2図(a)、 
 (b)に示すように溝状の凹部10aまたは円状の凹
部10bが形成され、この溝状の凹部10a或は円状の
凹部10bが溶湯注入側(図において上方)に向くよう
に金型2内にセ・ソトする。また、上記成形体1は第2
図(C)に乃くすように、繊維束11を互いに軸線が1
1行となるようにして形成して、各繊維束11間に空所
があるようにし、この繊維束11の軸線が上下を向くよ
うに金型2内にセットする。
By the way, on the surface of the molded body 1, there are marks shown in FIG. 2(a),
As shown in (b), a groove-shaped recess 10a or a circular recess 10b is formed, and the mold is placed so that the groove-shaped recess 10a or circular recess 10b faces the molten metal injection side (upward in the figure). Sesoto within 2. Moreover, the molded body 1 is a second
As shown in Figure (C), the fiber bundles 11 are arranged so that their axes are aligned with each other.
The fiber bundles 11 are formed in one row so that there are spaces between each fiber bundle 11, and set in the mold 2 so that the axis of the fiber bundles 11 faces upward and downward.

しかして、上記加圧パンチ4による加圧中に、マトリッ
クス金属が成形体1の繊維中に含浸して行くとともに、
SiC粒子8は成形体1の凹部10a、10bまたは繊
維束11間の空所内に侵入し、その部分は繊維と粒子両
方による複合個所となり、繊維と粒子の両者によって補
強されることとなる。
During the pressurization by the pressure punch 4, the matrix metal impregnates into the fibers of the molded body 1, and
The SiC particles 8 enter into the recesses 10a and 10b of the molded body 1 or into the spaces between the fiber bundles 11, and this portion becomes a composite area of both fibers and particles, and is reinforced by both the fibers and particles.

第3図は、第1図の成形体部分と粒子分散合金部の境界
部を拡大して模式的に示したものであり、図中符号8が
SiCである。
FIG. 3 is a schematic enlarged view of the boundary between the molded body portion and the particle-dispersed alloy portion in FIG. 1, and reference numeral 8 in the figure represents SiC.

ところで、A、Q合金の溶湯中に分散しているSiC粒
子8は、上記加圧工程、中にウィスカーの成形体が侵入
の抵抗となるので、成形体の境界近傍の粒子分散合金部
側で、成形体の厚さに応して成形体側に向って粒子の分
散が徐々に密になり、それより上方は通常の分散状態と
なる。したかって、成形体部分から徐々に硬さやヤング
率が小さくなる傾斜材料となる。
By the way, the SiC particles 8 dispersed in the molten metal of the A and Q alloys are not penetrated by the whisker compacts during the above-mentioned pressurizing process, so the particles are dispersed on the side of the particle-dispersed alloy near the boundary of the compacts. Depending on the thickness of the molded body, the particles become gradually more densely dispersed toward the molded body, and the particles above that point become normally dispersed. Therefore, it becomes a graded material whose hardness and Young's modulus gradually decrease from the molded body portion.

なお、上記実施例においては粒子としてSiC粒子を使
用したものを示したが、粒子としてはその他の非金属又
は高融点金属の粒子とすることしできる。
In the above embodiments, SiC particles were used as the particles, but the particles may be of other non-metals or high melting point metals.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明においては成形体に形成さ
れた凹部または空所内に無機質粒子を侵入させるように
したので、その分成形体を形成する長、短の繊維量を少
なくてき、費用を低減することができる。また、例えば
硬いSiCウィスカー成形体に潤滑性の良いhBN粒子
を混入させたり、軟いカーボン繊維束中に硬いSiC粒
子を混入させる等、繊維と異なる性質の粒子を混入し、
その特性が変ったものとすることもてきる。
As explained above, in the present invention, inorganic particles are allowed to enter the recesses or voids formed in the molded body, so the amount of long and short fibers forming the molded body is reduced accordingly, reducing costs. can do. In addition, it is also possible to mix particles with different properties from fibers, such as by mixing hBN particles with good lubricity into a hard SiC whisker molded body, or by mixing hard SiC particles into a soft carbon fiber bundle.
It is also possible to assume that the characteristics have changed.

10b・・・円状の凹部、10b...Circular recess,

Claims (1)

【特許請求の範囲】[Claims] 無機質材料からなる短繊維や長繊維等によって形成され
た成形体に凹部または空所を形成し、その凹部または空
所内にマトリックス金属内に分散されている非金属又は
高融点金属の粒子を浸入させることを特徴とする、複合
材料の製造方法。
A recess or cavity is formed in a molded body made of short fibers, long fibers, etc. made of an inorganic material, and particles of a nonmetal or high-melting point metal dispersed in a matrix metal are infiltrated into the recess or cavity. A method for manufacturing a composite material, characterized by:
JP13826689A 1989-05-31 1989-05-31 Manufacture of composite material Pending JPH036338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13826689A JPH036338A (en) 1989-05-31 1989-05-31 Manufacture of composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13826689A JPH036338A (en) 1989-05-31 1989-05-31 Manufacture of composite material

Publications (1)

Publication Number Publication Date
JPH036338A true JPH036338A (en) 1991-01-11

Family

ID=15217914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13826689A Pending JPH036338A (en) 1989-05-31 1989-05-31 Manufacture of composite material

Country Status (1)

Country Link
JP (1) JPH036338A (en)

Similar Documents

Publication Publication Date Title
DE68920263T2 (en) Method for manufacturing a composite body element reinforced by ceramics for motor vehicles.
DE68920267T2 (en) Process for the production of a composite material reinforced by ceramic.
DE68916515T2 (en) Process for the production of composite material with a metal matrix with controlled reinforcement phase.
JPS6341966B2 (en)
JPS5974247A (en) Fiber reinforced metallic composite member and its production
JPH036338A (en) Manufacture of composite material
JP2504199B2 (en) Method for producing fiber-reinforced metal composite material
US3833697A (en) Process for consolidation and extrusion of fiber-reinforced composites
Kang et al. Fabrication of metal-matrix composites by the die-casting technique and the evaluation of their mechanical properties
DE3782697T2 (en) COMPOSITE MATERIAL OF A ZN-AL ALLOY FIXED WITH SILICON CARBIDE POWDER.
EP1010770B1 (en) Method of making carbon fibre reinforced metal-matrix composites
Gohil et al. Emerging techniques for waste residue composites
Sample et al. High pressure squeeze casting of unidirectional graphite fiber reinforced aluminum matrix composites
Sree Manu et al. Selectively Reinforced Aluminum Metallic Hybrid Composites by Liquid Metal Squeeze Infiltration Process
Zyska et al. Impact strength of squeeze casting AlSi13Cu2–CF composite
JPH035063A (en) Manufacture of mixed material
Akhil et al. Squeeze infiltration processing and structural characteristics of lightweight aluminum-carbon metal matrix composites
JPS60131948A (en) Fiber reinforced composite metallic material
JP4204014B2 (en) Brake rotor manufacturing method
JPH02301533A (en) Manufacture of composite material
JPS62199739A (en) Production of fibrous formed body for fiber reinforced composite material
JP4290324B2 (en) Fiber reinforced composite material
JPS606265A (en) Production of composite fiber member
JPS62238039A (en) Manufacture of fiber reinforced composite member
JPS62297521A (en) Screw section of structure member