JPH0363027B2 - - Google Patents

Info

Publication number
JPH0363027B2
JPH0363027B2 JP57143417A JP14341782A JPH0363027B2 JP H0363027 B2 JPH0363027 B2 JP H0363027B2 JP 57143417 A JP57143417 A JP 57143417A JP 14341782 A JP14341782 A JP 14341782A JP H0363027 B2 JPH0363027 B2 JP H0363027B2
Authority
JP
Japan
Prior art keywords
voltage
disconnector
electrode
charging current
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57143417A
Other languages
Japanese (ja)
Other versions
JPS5934170A (en
Inventor
Tokio Yamagiwa
Toshio Ishikawa
Atsushi Ozawa
Kaoru Endo
Masao Hosokawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57143417A priority Critical patent/JPS5934170A/en
Priority to US06/523,086 priority patent/US4549132A/en
Priority to CA000434727A priority patent/CA1205860A/en
Priority to AU18076/83A priority patent/AU544370B2/en
Priority to KR1019830003846A priority patent/KR890000692B1/en
Priority to IN1011/CAL/83A priority patent/IN160109B/en
Priority to EP83108179A priority patent/EP0103758B1/en
Priority to DE8383108179T priority patent/DE3379980D1/en
Priority to ZA836141A priority patent/ZA836141B/en
Publication of JPS5934170A publication Critical patent/JPS5934170A/en
Publication of JPH0363027B2 publication Critical patent/JPH0363027B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/26Means for detecting the presence of an arc or other discharge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/333Testing of the switching capacity of high-voltage circuit-breakers ; Testing of breaking capacity or related variables, e.g. post arc current or transient recovery voltage
    • G01R31/3333Apparatus, systems or circuits therefor

Description

【発明の詳細な説明】 本発明は接地タンク形ガス絶縁断路器の充電電
流しや断時の対地絶縁性能の検証法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for verifying the ground insulation performance of a grounded tank type gas insulated disconnect switch when the charging current is interrupted.

ガス絶縁断路器の充電電流しや断試験は現地と
近似等価な回路を構成して行うのが普通である。
Charging current disconnection tests for gas insulated disconnectors are usually performed by configuring a circuit that is approximately equivalent to the on-site circuit.

第1図はこの一例を示したものである。断路器
1の片端にはガス絶縁母線5を介し交流電源2が
接続され、逆側にはガス絶縁母線3を介ししや断
器4が取り付けられている。しや断器4の先には
更にガス絶縁母線6が接続された回路構成であ
る。ここでしや断器4が開極状態になると電源側
電圧Vsに対して断路器1の負荷側電圧Vlははガ
ス絶縁母線3の静電容量Clのみが付加された回路
になる。ここで断路器1を開極する場合、静電容
量Clの充電電流しや断になる。第2図は充電電流
しや断時の電源側電圧Vsと負荷側電圧Vlの推移
を示したものである。
FIG. 1 shows an example of this. An AC power source 2 is connected to one end of the disconnector 1 via a gas insulated bus 5, and a disconnector 4 is attached to the opposite end via a gas insulated bus 3. The circuit configuration is such that a gas insulated bus bar 6 is further connected to the tip of the breaker 4. Here, when the disconnector 4 becomes open, the load side voltage Vl of the disconnector 1 becomes a circuit in which only the capacitance Cl of the gas insulated bus 3 is added to the power supply side voltage Vs. . When the disconnector 1 is opened here, the charging current of the capacitance C l is suddenly cut off. FIG. 2 shows the transition of the power supply side voltage V s and the load side voltage V l when the charging current is interrupted.

時間tsで断路器が開極し、再発弧、再点弧を繰
り返しt0でしや断が完了する。再点弧の際には同
図に示すようにサージ電圧が発生し、特に図示の
ごとく交流電圧の波高値間での再点弧では2.5pu
相当(n=2.5)までのサージ電圧が発生する場
合がある。断路器としてはこのような状況下にお
いても対地絶縁を満足しなければならない。しか
しながら、このような試験では試験毎に最終再点
弧時の状況が異なり、発生サージ電圧が複雑に変
動するため、現地で起こり得る条件を満足するた
めには極めて多数回の試験と多大な費用を要する
欠点がある。
The disconnector opens at time t s , repeats re-ignition and re-ignition, and completes the disconnection at t 0 . At the time of restriking, a surge voltage is generated as shown in the figure, and in particular, as shown in the figure, when restriking between the peak values of the AC voltage, a surge voltage of 2.5 pu occurs.
Surge voltages up to a considerable amount (n = 2.5) may occur. As a disconnector, it must satisfy ground insulation even under such conditions. However, in such tests, the situation at the time of final restriking differs for each test, and the generated surge voltage fluctuates in a complicated manner, so it takes an extremely large number of tests and a great deal of expense to satisfy the conditions that can occur on site. There are drawbacks that require

これを解消する方法として、第3図のような回
路を構成し、第2図の時間t1からt2の間を模擬し
ようとする試験法も考案されている。この方法は
断路器1の両端にブツシング10,11を配置
し、ブツシング10側には電源20、コンデンサ
22を接続し、もう一方のブツシング11側には
別の電源21とコンデンサ23を接続した回路構
成で行うものである。電源21は第3図における
負荷側電圧Vlを模擬するための直流電圧発生器で
あり、電源20は電源21と逆極性の電源電圧
Vsを模擬するためのインパルス電圧発生器ある
いは半波交流電圧発生器等である。この試験では
充電電流しや断時の最大アーク長相当に断路器の
極間長を設定し、交流のピーク値に相当する直流
電圧を電源21より印加する。その後電源20よ
り電源21とは逆極性の交流電圧の1/4波形に相
当する立上りの電圧を印加し、最も厳しい再点弧
状況を模擬し、この時発生するサージ電圧におけ
る対地絶縁を検証する方法である。本方法に因れ
ば最も厳しい条件のみを選定して十分な検証試験
が可能であるが、高電圧の電源が2台必要になる
点及び高電圧用のブツシングが2本必要になる点
等試験設備が大規模になる欠点がある。特に近年
開発が進められている超々高電圧(UHV)用の
場合には一段と大規模になり、試験費用は多大な
ものになつている。
As a way to solve this problem, a test method has been devised in which a circuit as shown in FIG. 3 is constructed and the period from time t 1 to t 2 shown in FIG. 2 is simulated. This method is a circuit in which bushings 10 and 11 are arranged at both ends of a disconnector 1, a power supply 20 and a capacitor 22 are connected to the bushing 10 side, and another power supply 21 and a capacitor 23 are connected to the other bushing 11 side. This is done through configuration. The power supply 21 is a DC voltage generator for simulating the load side voltage V l in FIG.
These are impulse voltage generators or half-wave AC voltage generators for simulating Vs. In this test, the distance between the poles of the disconnector is set to correspond to the maximum arc length when the charging current is interrupted, and a DC voltage corresponding to the peak value of AC is applied from the power source 21. After that, a rising voltage corresponding to 1/4 waveform of the AC voltage with the opposite polarity to that of the power source 21 is applied from the power source 20 to simulate the most severe restriking situation and verify the ground insulation under the surge voltage generated at this time. It's a method. According to this method, it is possible to perform sufficient verification tests by selecting only the most severe conditions, but the test requires two high-voltage power supplies and two high-voltage bushings. The disadvantage is that the equipment is large-scale. In particular, in the case of ultra-high voltage (UHV), which has been developed in recent years, the scale has become even larger and the testing costs have become enormous.

本発明の目的はより簡便な方法により、小規模
の設備により断路器充電電流しや断時の対地絶縁
検証を可能にする方法を提供するにある。
An object of the present invention is to provide a method that is simpler and allows verification of insulation to ground when a disconnector charging current is disconnected using small-scale equipment.

本発明はガス絶縁母線の放電時定数が十分大き
いことを実験的に確認し、極間放電によりガス絶
縁母線を充電することによりガス母線に直流電圧
を残留させ、従来方法における直流電圧発生器を
省略するようにした。すなわち、断路器の片側か
らのみ電圧を印加する試験となるため、断路器の
片側にのみブツシングがあれば良いことになる。
The present invention has experimentally confirmed that the discharge time constant of the gas insulated bus bar is sufficiently large, and by charging the gas insulated bus bar by electrode-to-electrode discharge, DC voltage remains on the gas bus bar, thereby replacing the DC voltage generator in the conventional method. I decided to omit it. That is, since the test involves applying voltage only from one side of the disconnector, bushing only needs to be present on one side of the disconnector.

本発明の実施例を第4図に示す。接地タンク内
に収納された断路器1の片側にガス絶縁母線3を
接続し負荷を形成している。断路器1のもう一方
にはブツシング10が取付けられ、リード線26
により電源20に接続されている。なお、断路器
1の電源側及び負荷側の電圧Vs,Vlを測定する
ため分圧器24,25が設けられている。また、
負荷側ガス絶縁母線の静電容量Clと電源側の等価
静電容量Csの間には実系統を模擬するためCsはCl
に比べ少なくとも1桁大きな値となるようにして
いる。このような回路構成において、断路器1の
極間長をある値に設定し、電源20より電圧を印
加すると、ある値以上の電圧において第5図に示
すような電圧波形が得られる。第5図上段は電源
側電圧Vsであり、時間t0で印加されt1で前述の極
間が放電し、負荷側ガス絶縁母線3に下段に示す
ような直流の負荷側電圧Vlが残留する形となる。
この残留電圧の放電時定数は負荷側ガス絶縁母線
3の静電容量Clと高電圧導体9を絶縁支持してい
るスペーサ7等の絶縁抵抗により決定される。一
般にガス絶縁機器中で使用されるスペーサ類の絶
縁抵抗は大気中に比べ極めて高いので、前述の放
電時定数は数時間から数日のオーダである。すな
わち、数10分以内で試験をする限りにおいては充
電電圧がそのまま保持されていると考えてもさし
つかえない。なお、通常のコンデンサでは大気中
に置かれるため時定数はかなり短くなる。このよ
うな方法により、断路器の極間長及び印加電圧を
適宜変化させることにより任意の直流電圧を負荷
側に与えることが可能となるため、従来方法のよ
うな直流電源を別途設ける必要がなくなる。
An embodiment of the invention is shown in FIG. A gas insulated bus bar 3 is connected to one side of a disconnector 1 housed in a grounded tank to form a load. A bushing 10 is attached to the other side of the disconnector 1, and a lead wire 26
It is connected to the power supply 20 by. Note that voltage dividers 24 and 25 are provided to measure the voltages V s and V l on the power supply side and load side of the disconnector 1. Also,
Between the capacitance C l of the gas-insulated bus on the load side and the equivalent capacitance C s on the power supply side, C s is C l to simulate the actual system.
The value is set to be at least one order of magnitude larger than . In such a circuit configuration, when the distance between the poles of the disconnector 1 is set to a certain value and a voltage is applied from the power source 20, a voltage waveform as shown in FIG. 5 is obtained at a voltage above a certain value. The upper part of Fig. 5 shows the power supply side voltage V s , which is applied at time t 0 and discharges between the electrodes mentioned above at t 1 , and the DC load side voltage V l as shown in the lower part is applied to the load side gas insulated bus 3. It becomes a residual form.
The discharge time constant of this residual voltage is determined by the capacitance C l of the load side gas insulated bus bar 3 and the insulation resistance of the spacer 7 etc. that insulates and supports the high voltage conductor 9. Generally, the insulation resistance of spacers used in gas-insulated equipment is extremely high compared to that in the atmosphere, so the above-mentioned discharge time constant is on the order of several hours to several days. In other words, as long as the test is carried out within several tens of minutes, it is safe to assume that the charging voltage is maintained as it is. Note that since a normal capacitor is placed in the atmosphere, the time constant is quite short. With this method, it is possible to apply any DC voltage to the load side by appropriately changing the distance between the poles of the disconnector and the applied voltage, so there is no need to provide a separate DC power source as in conventional methods. .

第6図は接地タンク形断路器の断路部の詳細を
示したものである。接地タンク30内に可動電極
32、固定電極33を配置し、それらの周囲には
電界緩和用のシールド31,34が取付けられて
いる。
FIG. 6 shows details of the disconnecting section of the grounded tank type disconnector. A movable electrode 32 and a fixed electrode 33 are arranged in a grounded tank 30, and shields 31 and 34 for mitigating the electric field are attached around them.

このような極間長Lとした断路器の充電電流し
や断時の対地絶縁性能は最大アーク長となる可動
電極位置における再点弧サージに対する性能で決
定される。再点弧サージが最も高くなるのは前述
のように交流の正負極性の波高値間での再点弧と
なる。すなわち、性能検証としては断路器極間を
所定の距離に離し、負荷側に直流電圧を印加し、
電源側から逆極性同レベルの電圧を印加すること
により極間を放電させ、その時の対地絶縁を検証
することになる。
The ground insulation performance of a disconnector with such an inter-electrode length L when the charging current is interrupted is determined by the performance against restriking surges at the position of the movable electrode where the arc length is the maximum. As mentioned above, the restriking surge is the highest at the restriking between the peak values of the positive and negative polarities of the alternating current. In other words, for performance verification, separate the poles of the disconnector by a predetermined distance, apply DC voltage to the load side,
By applying a voltage of the same level and opposite polarity from the power supply side, a discharge is caused between the electrodes, and the insulation to ground is verified at that time.

本方法においては、まず所定の直流電圧を負荷
に残留させるため、第7図に示すようにある極間
長L1やL2の状態において電源側よりV1,V2をそ
れぞれ印加する。この場合第7図のようにあらか
じめ極間長Lとフラツシオーバ電圧Vの関係を求
めておくと、残留直流電圧の目安となる。このよ
うな方法により負荷側に所定の直流電圧を残留さ
せ、その後最大アーク長等に見合う極間長まで極
間距離を増大させる。引き続き電源の極性を切換
え、すでに残留した直流電圧の極性と逆になるよ
うにし、所定の電圧を印加する。第8図はこのと
きの電圧波形を示したものである。残留する負荷
側電圧Vlと時間t3で印加された電源側電圧Vsによ
り断路器極間は時間t4でフラツシオーバする。こ
の状況は第2図における最終再点弧(時間t1
t2)を完全に模擬した形であり、このとき発生す
るサージ電圧Vnによる対地絶縁の検証が可能と
なる。なお、電源電圧波形としては交流電圧の1/
4サイクルに相当する立上りの波形を用いれば最
も好ましいが、開閉インパルス領域の波形でも対
地絶縁検証は十分可能である。
In this method, first, in order to cause a predetermined DC voltage to remain in the load, V 1 and V 2 are respectively applied from the power supply side in a state where the distance between poles is L 1 or L 2 as shown in FIG. 7. In this case, if the relationship between the inter-electrode length L and the flashover voltage V is determined in advance as shown in FIG. 7, this will serve as a guideline for the residual DC voltage. By such a method, a predetermined DC voltage remains on the load side, and then the distance between the poles is increased to a length corresponding to the maximum arc length, etc. Subsequently, the polarity of the power supply is switched so that it is opposite to the polarity of the DC voltage that already remains, and a predetermined voltage is applied. FIG. 8 shows the voltage waveform at this time. Due to the remaining load side voltage V l and the power supply side voltage V s applied at time t 3 , the gap between the disconnector poles flashes over at time t 4 . This situation corresponds to the final restrike (time t 1 ~
t 2 ), and it is possible to verify the ground insulation based on the surge voltage V n that occurs at this time. Note that the power supply voltage waveform is 1/1 of the AC voltage.
It is most preferable to use a rising waveform corresponding to four cycles, but it is also possible to verify ground insulation using a waveform in the switching impulse region.

本方法では、1台の電源及び1本のブツシング
で試験が可能となるため、小規模な試験装置で従
来と同様の検証試験を行うことができる。
With this method, the test can be performed using one power supply and one bushing, so the same verification test as in the past can be performed using a small-scale test device.

上述の方法においては、負荷側の直流残留電圧
の制御は可動電極と固定電極との極間長に頼らな
ければならないため変動が大きい。この理由とし
ては、一般に断路器の構造は非対称であるため放
電に極性効果を生じ、一旦電極間を放電させても
極性に因つては逆閃絡(残留直流電圧により電源
側に放電する)や暗電流による放電が発生するた
めである。これを改善する方法としては、逆閃絡
や暗電流による放電が起こりにくい極性で初回の
放電を行い負荷側にその極性の直流電圧を残留さ
せ、その後極間長を増大させ逆極性の電圧を印加
すれば、逆閃絡等を生じ易い極性も充分残留させ
ることが可能となる。すなわち、逆閃絡を生じ易
い極性を負荷側に残留させる場合には、逆閃絡を
生じにくい極性での放電を前もつて行う必要があ
るため、1回残留させるための放電回数が増え
る。
In the above-mentioned method, control of the DC residual voltage on the load side has to depend on the distance between the movable electrode and the fixed electrode, which causes large fluctuations. The reason for this is that the structure of a disconnector is generally asymmetrical, which causes a polarity effect on the discharge, and even if a discharge is caused between the electrodes, depending on the polarity, a reverse flash (discharge to the power supply side due to residual DC voltage) or This is because discharge occurs due to dark current. To improve this, the first discharge is carried out with a polarity that is unlikely to cause discharge due to reverse flash or dark current, so that the DC voltage of that polarity remains on the load side, and then the length between the poles is increased to generate the voltage of the opposite polarity. If applied, it becomes possible to sufficiently retain polarity that is likely to cause reverse flash faults and the like. That is, if a polarity that is likely to cause reverse flash is to remain on the load side, it is necessary to perform a discharge in advance with a polarity that is unlikely to cause reverse flash, so the number of discharges required to remain once increases.

更にこれを改善する方法を以下に述べる。 A method to further improve this will be described below.

第9図は接地タンク30の側面に窓40を設
け、照射装置(水銀ランプ、レーザ発振器等)4
1により電極32,33間に放射線を照射を可能
にしたものである。第10図は照射の有無による
電極間の放電特性を示したものである。同一の極
間長Lにおいて、照射を行うことにより放電電圧
(FOV)をV0からV1に下げることができる。す
なわち、印加電圧の波頭において照射を行い、十
分低い電圧で放電させ、波尾で照射を止めること
により放電電圧を向上させ逆閃絡等を防止するこ
とが可能となる。なお、照射の影響を波尾に残さ
ないため、波尾長を十分長く取ることが好まし
い。
FIG. 9 shows a window 40 provided on the side of a grounded tank 30, and an irradiation device (mercury lamp, laser oscillator, etc.) 4.
1 makes it possible to irradiate radiation between the electrodes 32 and 33. FIG. 10 shows the discharge characteristics between the electrodes with and without irradiation. At the same pole length L, the discharge voltage (FOV) can be lowered from V 0 to V 1 by irradiation. That is, by performing irradiation at the wave front of the applied voltage, discharging at a sufficiently low voltage, and stopping the irradiation at the wave tail, it is possible to improve the discharge voltage and prevent reverse flash and the like. Note that it is preferable to make the wave tail length sufficiently long so as not to leave any influence of irradiation on the wave tail.

第11図は可動電極32の先端内部をくりぬ
き、絶縁支持物50によりトリガ電極51を取り
付けたものである。本構造においては、印加電圧
の波頭においてトリガ電極51と可動電極32間
に静電容量分圧による電位差が発生し、この間が
放電することによりこれをきつかけとして極間放
電を低い電圧で行わせることが可能となる。一旦
放電した残留電荷は直流電界となるため上述のよ
うなトリガ電極51と可動電極32間には電位差
は発生しなくなり、前述の場合と同様逆閃絡等の
防止が可能となる。
In FIG. 11, the inside of the tip of the movable electrode 32 is hollowed out, and a trigger electrode 51 is attached using an insulating support 50. In this structure, a potential difference is generated between the trigger electrode 51 and the movable electrode 32 due to capacitance partial pressure at the wave front of the applied voltage, and as a result of discharge between the two, this is used as a trigger to cause an interelectrode discharge to occur at a low voltage. becomes possible. Once the residual charge is discharged, it becomes a DC electric field, so that no potential difference is generated between the trigger electrode 51 and the movable electrode 32 as described above, and it is possible to prevent reverse flash faults and the like as in the case described above.

以上の方法では直流電圧残留後の逆閃絡あるい
は暗電流による放電を防止することが容易になる
ため、直流残留電圧の制御が容易に行えるように
なり、試験の効率が向上する。
In the above method, it becomes easy to prevent reverse flashover after residual DC voltage or discharge due to dark current, so that the residual DC voltage can be easily controlled, and the efficiency of the test is improved.

本発明によれば、断路器充電電流しや断時の対
地絶縁検証が一電源の小規模な設備で可能となる
ため、定格電圧の高い断路器になるほどその適用
効果は大きくなる。特にUHV級においてはブツ
シングの価格が非常に高価になるため、ブツシン
グが1本で済む試験法としてその効果は大きい。
According to the present invention, it is possible to verify the insulation to the ground when the charging current of a disconnector is cut off using a small-scale facility with a single power supply, so the higher the rated voltage of the disconnector, the greater the effect of its application. Especially in the UHV class, bushings are very expensive, so this method is very effective as a test method that only requires one bushing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来試験法の一例を示す回路図、第2
図は第1図における電圧波形例、第3図は従来試
験法の他の例を示す回路図、第4図は本発明にな
る一実施例を示す回路図、第5図は第4図におけ
る電圧波形例、第6図は断路器の断面詳細図、第
7図、第8図は本発明の試験原理を示す特性図、
第9図は本発明の他の実施例を示す断面図、第1
0図は試験原理を示す特性図、第11図は本発明
の他の実施例を示す断面図である。 1…断路器、2…交流電源、3,5,6…ガス
絶縁母線、4…しや断器、7…スペーサ、8…中
心導体、9…接地タンク、10,11…ブツシン
グ、20,21…電源、22,23…コンデン
サ、30…接地タンク、31,34…シールド、
32…可動電極、33…固定電極、40…窓、4
1…照射装置、50…絶縁支持物、51…トリガ
電極。
Figure 1 is a circuit diagram showing an example of the conventional test method.
The figure shows an example of the voltage waveform in Fig. 1, Fig. 3 is a circuit diagram showing another example of the conventional test method, Fig. 4 is a circuit diagram showing an embodiment of the present invention, and Fig. 5 is the same as in Fig. 4. Examples of voltage waveforms, Figure 6 is a detailed cross-sectional view of a disconnector, Figures 7 and 8 are characteristic diagrams showing the test principle of the present invention,
FIG. 9 is a sectional view showing another embodiment of the present invention, the first
FIG. 0 is a characteristic diagram showing the test principle, and FIG. 11 is a sectional view showing another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Disconnector, 2...AC power supply, 3,5,6...Gas-insulated busbar, 4...Shin breaker, 7...Spacer, 8...Center conductor, 9...Grounding tank, 10,11...Butching, 20,21 ...Power supply, 22, 23...Capacitor, 30...Grounding tank, 31,34...Shield,
32...Movable electrode, 33...Fixed electrode, 40...Window, 4
DESCRIPTION OF SYMBOLS 1... Irradiation device, 50... Insulating support, 51... Trigger electrode.

Claims (1)

【特許請求の範囲】 1 接地タンク内に可動電極と固定電極とからな
る断路器を配置し、前記電極のどちらか一方の側
に静電容量性負荷を接続し、残りの一方の電極に
は電源を接続し、まず、断路器の電極極間をフラ
ツシユオーバ電圧との関係により求められる極間
長に設定し、電源より第1回目の電圧を印加し
て、電極間を放電させることにより前記静電容量
性負荷に電圧を残留させ、その後、断路器の電極
極間を最大アーク長に見合う極間長まで増大さ
せ、同じ電源側より第1回目の電圧とは逆極性に
なる第2回目の電圧を印加することにより前記電
極間を放電させ対地絶縁を検証することを特徴と
する断路器の充電電流しや断時対地絶縁検証試験
法。 2 特許請求の範囲第1項において、第2回目の
電圧印加時の可動電極と固定電極の距離を第1回
目の電圧印加時の前記極間長よりも大きくしたこ
とを特徴とする断路器の充電電流しや断時対地絶
縁検証試験法。 3 特許請求の範囲第1項において、第1回目の
電圧を印加する際、前記可動電極と固定電極の間
に放射線を照射したことを特徴とする断路器の充
電電流しや断時対地絶縁検証試験法。 4 特許請求の範囲第1項において、前記可動電
極あるいは固定電極の先端部に絶縁支持したトリ
ガ電極を取り付けたことを特徴とする断路器の充
電電流しや断時対地絶縁検証試験法。 5 特許請求の範囲第1項において、前記静電容
量性負荷として接地タンク内に中心導体を絶縁ス
ペーサで支持したガス絶縁母線を用いたことを特
徴とする断路器の充電電流しや断時対地絶縁検証
試験法。 6 特許請求の範囲第1項において、前記電源の
等価静電容量が前記静電容量性負荷の静電容量よ
りも一桁以上大きくしたことを特徴とする断路器
の充電電流しや断時対地絶縁検証試験法。
[Claims] 1. A disconnector consisting of a movable electrode and a fixed electrode is arranged in a grounded tank, a capacitive load is connected to one side of the electrode, and a capacitive load is connected to the other electrode. Connect the power supply, first set the distance between the electrodes of the disconnector to the length determined by the relationship with the flashover voltage, and apply the first voltage from the power supply to discharge between the electrodes. A voltage remains in the capacitive load, and then the distance between the electrodes of the disconnector is increased to a distance corresponding to the maximum arc length, and a second voltage is applied from the same power source side with a polarity opposite to that of the first voltage. A charging current and ground insulation verification test method for a disconnector, characterized in that by applying a second voltage, a discharge is caused between the electrodes to verify the ground insulation. 2. The disconnector according to claim 1, characterized in that the distance between the movable electrode and the fixed electrode during the second voltage application is greater than the distance between the electrodes during the first voltage application. Ground insulation verification test method when charging current is interrupted. 3. Verification of charging current and ground insulation during breakage of a disconnector according to claim 1, characterized in that radiation is irradiated between the movable electrode and the fixed electrode when applying the voltage for the first time. Test method. 4. A testing method for verifying insulation to ground when charging current is interrupted in a disconnector according to claim 1, characterized in that an insulated and supported trigger electrode is attached to the tip of the movable electrode or the fixed electrode. 5. According to claim 1, the disconnector is characterized in that the capacitive load is a gas-insulated bus bar with a center conductor supported by an insulating spacer in a grounded tank. Insulation verification test method. 6. According to claim 1, the charging current of the disconnector is characterized in that the equivalent capacitance of the power source is one order of magnitude or more larger than the capacitance of the capacitive load. Insulation verification test method.
JP57143417A 1982-08-20 1982-08-20 Anti-ground insulation inspection testing method in case when charging current of disconnecting switch is cut off Granted JPS5934170A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP57143417A JPS5934170A (en) 1982-08-20 1982-08-20 Anti-ground insulation inspection testing method in case when charging current of disconnecting switch is cut off
US06/523,086 US4549132A (en) 1982-08-20 1983-08-15 Method of testing and verifying a performance for insulation to ground of a disconnecting switch when breaking a charging current
CA000434727A CA1205860A (en) 1982-08-20 1983-08-16 Method of testing and verifying a performance for insulation to ground of a disconnecting switch when breaking a charging current
AU18076/83A AU544370B2 (en) 1982-08-20 1983-08-17 Disconnecting switch ground fault testing
KR1019830003846A KR890000692B1 (en) 1982-08-20 1983-08-17 Method of testing and verifying a performance for insulation to ground of a disconnecting switch when breaking a charging current
IN1011/CAL/83A IN160109B (en) 1982-08-20 1983-08-17
EP83108179A EP0103758B1 (en) 1982-08-20 1983-08-18 Method of testing and verifying a performance for insulation to ground of a disconnecting switch when breaking a charging current
DE8383108179T DE3379980D1 (en) 1982-08-20 1983-08-18 Method of testing and verifying a performance for insulation to ground of a disconnecting switch when breaking a charging current
ZA836141A ZA836141B (en) 1982-08-20 1983-08-19 Method of testing and verifying a performance for insulation to ground of a disconnecting switch when breaking a charging current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57143417A JPS5934170A (en) 1982-08-20 1982-08-20 Anti-ground insulation inspection testing method in case when charging current of disconnecting switch is cut off

Publications (2)

Publication Number Publication Date
JPS5934170A JPS5934170A (en) 1984-02-24
JPH0363027B2 true JPH0363027B2 (en) 1991-09-27

Family

ID=15338268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57143417A Granted JPS5934170A (en) 1982-08-20 1982-08-20 Anti-ground insulation inspection testing method in case when charging current of disconnecting switch is cut off

Country Status (9)

Country Link
US (1) US4549132A (en)
EP (1) EP0103758B1 (en)
JP (1) JPS5934170A (en)
KR (1) KR890000692B1 (en)
AU (1) AU544370B2 (en)
CA (1) CA1205860A (en)
DE (1) DE3379980D1 (en)
IN (1) IN160109B (en)
ZA (1) ZA836141B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319570A (en) * 1986-07-11 1988-01-27 Hitachi Ltd Testing voltage generator for gas insulating apparatus
JP2618049B2 (en) * 1989-08-25 1997-06-11 三菱電機株式会社 Transformers for optical instruments
EP0491554B1 (en) * 1990-12-17 1996-05-22 Patented Devices (Proprietary) Limited Monitoring partial discharges
DE19648643A1 (en) * 1996-11-25 1998-05-28 Asea Brown Boveri Metal encapsulated gas insulated switchgear enclosure with earthing
US6084756A (en) * 1999-01-22 2000-07-04 Eaton Corporation Apparatus for testing protection of an electric power distribution circuit by an arc fault circuit breaker
CN101881813B (en) * 2010-06-17 2013-12-04 国网电力科学研究院 Method for simulating GIS transformer substation to produce very fast transient overvoltage (VFTO) and test circuit
CN102073003B (en) * 2011-02-16 2012-08-08 上海思源高压开关有限公司 Insulation test tool for gas-insulated metal-enclosed switchgear (GIS)
CN103149545B (en) * 2013-01-29 2016-05-11 华北电力大学 The method of testing of VFTO sensor, device, equipment and system
US9664716B1 (en) 2013-03-15 2017-05-30 Meg-Alert, Inc. Automatic insulation resistance testers
CN104360241B (en) * 2014-09-26 2015-11-18 国家电网公司 Gas-insulated impulse voltage generator unit impacts resistance characteristics pilot system and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2923879A (en) * 1955-01-10 1960-02-02 Doble Eng Insulation testing apparatus
US2916697A (en) * 1955-07-05 1959-12-08 Bourns Inc Insulation resistance measuring circuit
US2977531A (en) * 1958-11-18 1961-03-28 Westinghouse Electric Corp Insulation test circuit
CH592314A5 (en) * 1975-11-28 1977-10-31 Bbc Brown Boveri & Cie
DE2638678B1 (en) * 1976-08-25 1978-01-26 Siemens Ag Synthetic check circuit

Also Published As

Publication number Publication date
DE3379980D1 (en) 1989-07-06
KR840006077A (en) 1984-11-21
US4549132A (en) 1985-10-22
ZA836141B (en) 1984-04-25
JPS5934170A (en) 1984-02-24
AU1807683A (en) 1984-02-23
EP0103758A3 (en) 1985-08-28
IN160109B (en) 1987-06-27
KR890000692B1 (en) 1989-03-24
EP0103758A2 (en) 1984-03-28
EP0103758B1 (en) 1989-05-31
CA1205860A (en) 1986-06-10
AU544370B2 (en) 1985-05-23

Similar Documents

Publication Publication Date Title
JPH0363027B2 (en)
Tokoyoda et al. Interruption characteristics of vacuum circuit breaker and the application to DCCB
US4147975A (en) Synthetic test circuit for a metal encapsulated high voltage circuit breaker
Szewczyk et al. Impact of disconnector design on very fast transient overvoltages in gas-insulated UHV switchgear
Almalki et al. Capacitor bank switching transient analysis using frequency dependent network equivalents
CN116500430A (en) Breaking branch small current breaking test loop and method of high-voltage direct current breaker
Schellekens Capacitor bank switching with vacuum circuit breakers
JPS59169306A (en) Gas insulated switching device
US20210208209A1 (en) Device and method for simulating intermittent arc grounding faults of power distribution network
Pramana et al. Simulation Study of Circuit Breaker Failure on Extra High Voltage Reactor
Brookes et al. Impulse and dynamic flashover studies of 26-kV wood pole transmission construction
Marin et al. Study of Overvoltages at the Extinguishing Coil Disconnection from Medium Voltage Networks in Stabilized Earthing Regime
Ueda et al. Risk Assessment of Surge Arresters for Efficient Maintenance of Medium-voltage Distribution Lines
Oh-Hara et al. Line Entrance Protection of 500 KV Gas Insulated Substations by SF6 Spark Gaps
JPS59220663A (en) Reignition surge testing method of gas insulated disconnecting switch
Bun et al. Improving the operation of earth fault relays by auto earthing-connection at earth fault situations in 6kV mining grid of Quang Ninh
CN112365779A (en) Intermittent earth fault simulation device
JPH0425506B2 (en)
CN110658434A (en) Fault suppression system for common-frequency and same-phase voltage withstand test of three-phase common-cylinder GIS equipment
Rowe GIS disconnectors: A physical model for ground faulting
JPS58122473A (en) Composite testing method for multi-points selection tank type breaker
Oliveira Filho et al. Testing of long-flashover arresters designed for distribution lines
CN101471542A (en) Multi-clearance combined protection device for overvoltage protection system
Mc Eachron Abridgment of thyrite: a new material for lightning arresters
JPS5818175A (en) Equivalent test method for multi-point interrupting tank type breaker