JPH0362969A - High withstand-voltage lateral field effect transistor - Google Patents

High withstand-voltage lateral field effect transistor

Info

Publication number
JPH0362969A
JPH0362969A JP19822089A JP19822089A JPH0362969A JP H0362969 A JPH0362969 A JP H0362969A JP 19822089 A JP19822089 A JP 19822089A JP 19822089 A JP19822089 A JP 19822089A JP H0362969 A JPH0362969 A JP H0362969A
Authority
JP
Japan
Prior art keywords
layer
source
type
drain
depletion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19822089A
Other languages
Japanese (ja)
Inventor
Takatoshi Fujimoto
藤本 高敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP19822089A priority Critical patent/JPH0362969A/en
Publication of JPH0362969A publication Critical patent/JPH0362969A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To increase the radius of curvature of a depletion layer at a source side and improve withstand-voltage characteristics by setting the thickness of a semiconductor layer and concentration of impurities so that the depletion layer at the source side comes into contact with that at the substrate side when voltage is applied between the source and drain. CONSTITUTION:An N<-> type diffusion layer 2 is formed on a P-type silicon substrate 1 with such impurities concentration and depth as the depletion layers 13 at the source and substrate sides come into contact each other. After that, a gate polysilicon layer 7 is formed through a gate insulation film, a P-type base layer 3 is formed, and then N<+> type diffusion layers 4 and 6 and a P<+> type diffusion layer 5 are formed. After that, a silicon oxide film 8 is allowed to grow, a contact hole is formed, and an external gate electrode 9, a source electrode 10, and a drain electrode 11 consisting of aluminum are formed. Then, by grounding the external gate electrode 9, the source electrode 10, and the P-type semiconductor substrate 1 and by applying plus voltage to the drain, the depletion layers 13 at the source and substrate sides come into contact, thus increasing the radius of curvature of depletion layer being extended from the source to the drain and withstand voltage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高耐圧横型電界効果トランジスタに利用され、
特に、D S A (Diffusion 5elfe
−Al ignment)構造を有す高耐圧横型電界効
果トランジスタに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applied to a high voltage lateral field effect transistor,
In particular, DSA (Diffusion 5elfe)
The present invention relates to a high voltage lateral field effect transistor having an aluminum ignment structure.

〔概要〕〔overview〕

本発明は、一導電型の半導体基板上に反対導電型の半導
体層を形成し、この半導体層上面にDSA構造を有する
電界効果トランジスタを形成した高耐圧横型電界効果ト
ランジスタにおいて、ソース−ドレイン間に電圧を印加
したときに、ソース側の空乏層と基板側の空乏層とが接
触するように、前記半導体層の厚さおよび不純物濃度を
設定することにより、 ソース側空乏層の曲率半径を大とし、耐圧特性を向上さ
せたものである。
The present invention provides a high breakdown voltage lateral field effect transistor in which a semiconductor layer of an opposite conductivity type is formed on a semiconductor substrate of one conductivity type, and a field effect transistor having a DSA structure is formed on the upper surface of this semiconductor layer. By setting the thickness and impurity concentration of the semiconductor layer so that the depletion layer on the source side and the depletion layer on the substrate side come into contact when a voltage is applied, the radius of curvature of the depletion layer on the source side is increased. , which has improved voltage resistance characteristics.

〔従来の技術〕[Conventional technology]

従来、DSA構造を有する横型電界効果トランジスタの
構造は、第3図に示すように、半導体基板上に基板と異
なる導電型の層をソース側と基板側の空乏層が接触しな
いように、厚くかつ濃度を高くして形成した後、DSA
構造を有する横型電界効果トランジスタを形成していた
Conventionally, the structure of a lateral field effect transistor having a DSA structure, as shown in FIG. After forming at a high concentration, DSA
A lateral field effect transistor having a structure was formed.

第3図はNチャネル型の場合を示し、1はP型半導体基
板、2はN−型拡散層、3はP型ベース層、4および6
はN゛型型数散層5はP°型型数散層7はゲートポリシ
リコン層、8はシリコン酸化膜、9は外部ゲート電極、
10はソース電極ならびに11はドレイン電極である。
FIG. 3 shows the case of an N-channel type, where 1 is a P-type semiconductor substrate, 2 is an N-type diffusion layer, 3 is a P-type base layer, 4 and 6
is an N-type scattered layer 5, a P°-type scattered layer 7 is a gate polysilicon layer, 8 is a silicon oxide film, 9 is an external gate electrode,
10 is a source electrode and 11 is a drain electrode.

そして、同図に示すように、外部ゲート電極9、ソース
電極10およびP型半導体基板1を接地電位としドレイ
ン電極11に十電圧を印加すると、P型半導体基板1と
N−型拡散層2との間に空乏層13aが形成され、N−
型拡散層2とP型ベース層3との間に空乏層13bが形
成される。このとき空乏層13aと13bとは接触しな
いようになっている。
As shown in the figure, when the external gate electrode 9, the source electrode 10, and the P-type semiconductor substrate 1 are set to the ground potential and ten voltages are applied to the drain electrode 11, the P-type semiconductor substrate 1 and the N-type diffusion layer 2 are connected to each other. A depletion layer 13a is formed between N-
A depletion layer 13b is formed between the type diffusion layer 2 and the P type base layer 3. At this time, depletion layers 13a and 13b are not in contact with each other.

〔発明が解決しようとする問題点〕 前述した従来のDSA構造を有する高耐圧横型電界効果
トランジスタでは、ソース側からドレイン側に伸びる空
乏層の曲率半径が小さく、耐圧が低くなるという欠点が
ある。
[Problems to be Solved by the Invention] The above-described conventional high-voltage lateral field effect transistor having the DSA structure has a drawback that the radius of curvature of the depletion layer extending from the source side to the drain side is small, resulting in a low breakdown voltage.

この対策として、ベース層を深くすることにより、ソー
ス側からドレイン側に伸びる空乏層の曲率半径を大きく
し、耐圧を高くすることが考えられるが、ベース層を深
くすることによりチャネル長が長くなり、オン抵抗が高
くなる欠点がある。
As a countermeasure to this problem, it is possible to increase the radius of curvature of the depletion layer extending from the source side to the drain side by deepening the base layer, increasing the breakdown voltage. However, deepening the base layer increases the channel length. , has the disadvantage of high on-resistance.

本発明の目的は、前記の欠点を除去することにより、チ
ャネル長を長くすることなくソース側空乏層の曲率半径
を大にし、耐圧を高くできる高耐圧横型電界効果トラン
ジスタを提供することにある。
An object of the present invention is to provide a high breakdown voltage lateral field effect transistor that can increase the breakdown voltage by increasing the radius of curvature of the source side depletion layer without increasing the channel length by eliminating the above-mentioned drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、一導電型の半導体基板と、この半導体基板上
に形成された反対導電型の第一の半導体層と、この第一
の半導体層上面の所定の位置に形成されその中に反対導
電型のソース領域を含む一導電型のベース層と、前記ソ
ース領域とゲート電極を挟んで前記第一の半導体層上面
に形成された反対導電型のドレイン領域とを備えた高耐
圧横型電界効果トランジスタにおいて、前記第一の半導
体層の不純物濃度およびその厚さは、ソース−ドレイン
間に電圧を印加したときに、前記半導体基板と前記第一
の半導体層との間に形成される空乏層と前記ベース層と
前記第一の半導体層との間に形成される空乏層とが接触
するように設定されたことを特徴とする。
The present invention includes a semiconductor substrate of one conductivity type, a first semiconductor layer of an opposite conductivity type formed on the semiconductor substrate, and an opposite conductivity type formed at a predetermined position on the upper surface of the first semiconductor layer. a high breakdown voltage lateral field effect transistor comprising a base layer of one conductivity type including a source region of the same type, and a drain region of the opposite conductivity type formed on the upper surface of the first semiconductor layer with the source region and the gate electrode sandwiched therebetween; In this case, the impurity concentration and the thickness of the first semiconductor layer are such that when a voltage is applied between the source and drain, the depletion layer formed between the semiconductor substrate and the first semiconductor layer and the The base layer and the depletion layer formed between the first semiconductor layer are set to be in contact with each other.

〔作用〕[Effect]

一導電型の半導体基板上に形成された反対導電型の第一
の半導体層は層を浅くかつ不純物濃度を薄くすることに
より、ソース側と基板側の空乏層が接触するようになっ
ている。このため、ソースからドレイン側に伸びる空乏
層は基板側に広げられた形となり、その曲率半径が大き
くなる。
The first semiconductor layer of the opposite conductivity type formed on the semiconductor substrate of one conductivity type is made shallow and has a low impurity concentration so that the depletion layers on the source side and the substrate side are in contact with each other. Therefore, the depletion layer extending from the source to the drain side is expanded toward the substrate, and its radius of curvature becomes large.

従って、チャネル長を長くしオン抵抗を大とすることな
く、耐圧を高くすることが可能となる。
Therefore, it is possible to increase the breakdown voltage without increasing the on-resistance by increasing the channel length.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の第一実施例の構造を示す模式的縦断面
図で、バイアス結線も示しである。
FIG. 1 is a schematic vertical sectional view showing the structure of a first embodiment of the present invention, and also shows bias connections.

本第−実施例は、P型の半導体基板lと、この半導体基
板1上に形成された反対導電型の第一の半導体層として
のN−型拡散層2と、このN″′型拡型層散層2上 対導電型のソース領域となるN+型型数散層4よび長阻
止領域となるP+型拡散層5を含むP型のベース層3と
、N+型型数散層4内部ゲート電極となるゲートポリシ
リコン層7とを挟んでN−型拡散層2上面に形成された
反対導電型のドレイン領域となるN゛型抵拡散層6を備
えた高耐圧横型電界効果トランジスタにおいて、 本発明の特徴とするところの、N−型拡散層2の不純物
濃度およびその厚さは、ソース−ドレイン間に電圧を印
加したときに、半導体基板1とN−型拡散層との間に形
成される空乏層と、P型べ−ス層3とN−型拡散層2と
の間に形成される空乏層とが接触して共通の空乏層13
が形成されるように設定される。
The present embodiment includes a P-type semiconductor substrate 1, an N-type diffusion layer 2 as a first semiconductor layer of an opposite conductivity type formed on this semiconductor substrate 1, and this N''' type expanded layer. A P-type base layer 3 including an N+-type scattering layer 4 which becomes a source region of the conductivity type and a P+-type diffused layer 5 which becomes a long blocking region on the scattering layer 2, and an internal gate of the N+-type scattering layer 4. In a high-voltage lateral field effect transistor comprising an N-type resistive diffusion layer 6 which serves as a drain region of the opposite conductivity type and is formed on the upper surface of an N-type diffusion layer 2 with a gate polysilicon layer 7 serving as an electrode in between, the present invention The impurity concentration and thickness of the N-type diffusion layer 2, which is a feature of the invention, are such that when a voltage is applied between the source and drain, the impurity concentration and the thickness of the N-type diffusion layer 2 are such that the impurity concentration and the thickness of the N-type diffusion layer 2 are such that when a voltage is applied between the source and drain, The depletion layer formed between the P-type base layer 3 and the N-type diffusion layer 2 contacts and forms a common depletion layer 13.
is set so that it is formed.

本第−実施例は次のようにして製造することができる。This embodiment can be manufactured as follows.

まず、P型シリコン基板1上にN−型拡散層2をソース
側と基板側の空乏層13が接触するよう不純物濃度と深
さをもって形成する。その後、ゲート絶縁膜を介してゲ
ートポリシリコン層7を形成し、P型ベース層3を形成
し、さらにN゛型型数散層4よび6とP゛型型数散層5
を形成する。
First, an N- type diffusion layer 2 is formed on a P-type silicon substrate 1 with an impurity concentration and depth such that the depletion layer 13 on the source side and the substrate side are in contact with each other. Thereafter, a gate polysilicon layer 7 is formed via a gate insulating film, a P-type base layer 3 is formed, and further N-type scattering layers 4 and 6 and a P-type scattering layer 5 are formed.
form.

その後、シリコン酸化膜8を戊長し、コンタクトホール
を形成し、アルミニュームからなる外部ゲート電極9、
ソース電極IOおよびドレイン電極11を形成する。
Thereafter, the silicon oxide film 8 is lengthened to form a contact hole, and an external gate electrode 9 made of aluminum is formed.
A source electrode IO and a drain electrode 11 are formed.

以上のようにして製造された、本第−実施例に対して、
図のように、外部ゲート電極9、ソース電極10および
P型半導体基板1を接地し、ドレインに十電圧を印加す
ることにより、ソース側と基板側の空乏層13が接触し
、ソースからドレイン側に伸びる空乏層の曲率半径が大
きくなり、耐圧は高くなる。
For this embodiment manufactured as described above,
As shown in the figure, by grounding the external gate electrode 9, the source electrode 10, and the P-type semiconductor substrate 1, and applying ten voltages to the drain, the depletion layers 13 on the source side and the substrate side come into contact, and the depletion layer 13 on the source side and the substrate side The radius of curvature of the depletion layer that extends over the area increases, and the withstand voltage increases.

第2図は本発明の第二実施例を示す模式的縦断面図で、
バイアス結線も示しである。本第二実施例は第1図の第
一実施例のN−型拡散層2のかわりにN−型エピタキシ
ャル層12を成長したものであり、N型不純物の深さ方
向の濃度は、拡散層より均一であるため、さらに耐圧を
高くできるという利点がある。
FIG. 2 is a schematic vertical sectional view showing a second embodiment of the present invention,
Bias connections are also shown. In the second embodiment, an N-type epitaxial layer 12 is grown in place of the N-type diffusion layer 2 of the first embodiment shown in FIG. Since it is more uniform, it has the advantage that the withstand voltage can be further increased.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、DSA構造を有する高
耐圧横型電界効果トランジスタにおいて、一導電型の半
導体基板上に形成する反対導電型の半導体層を浅くかつ
濃度を低くすることにより、ソース側と基板側の空乏層
を接触させ、ソースからドレイン側に伸びる空乏層の曲
率半径を大きくでき、耐圧を高くすることができる効果
がある。
As explained above, the present invention provides a high breakdown voltage lateral field effect transistor having a DSA structure by forming a semiconductor layer of an opposite conductivity type on a semiconductor substrate of one conductivity type to be shallow and having a low concentration on the source side. By bringing the depletion layer on the substrate side into contact with the depletion layer, the radius of curvature of the depletion layer extending from the source to the drain side can be increased, which has the effect of increasing the breakdown voltage.

4、4,

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第一実施例を示す模式的縦断面図。 第2図は本発明の第二実施例を示す模式的縦断面図。 第3図は従来例を示す模式的縦断面図。 1・・・P型半導体基板、2・・・N−型拡散層、3・
・・P型ベース層、4.6・・・N゛型型数散層5・・
・P゛型型数散層7・・・ゲートポリシリコン層、8・
・・シリコン酸化膜、9・・・外部ゲート電極、IO・
・・ソース電極、11・・・ドレイン電極、12・・・
N−型エピタキシャル層、13.13a 、 13b 
・・・空乏層。
FIG. 1 is a schematic vertical sectional view showing a first embodiment of the present invention. FIG. 2 is a schematic vertical sectional view showing a second embodiment of the present invention. FIG. 3 is a schematic longitudinal sectional view showing a conventional example. DESCRIPTION OF SYMBOLS 1... P type semiconductor substrate, 2... N- type diffusion layer, 3...
...P-type base layer, 4.6...N'-type scattering layer 5...
・P′ type scattering layer 7...gate polysilicon layer, 8・
・Silicon oxide film, 9 ・External gate electrode, IO・
...Source electrode, 11...Drain electrode, 12...
N-type epitaxial layer, 13.13a, 13b
...Depletion layer.

Claims (1)

【特許請求の範囲】 1、一導電型の半導体基板と、この半導体基板上に形成
された反対導電型の第一の半導体層と、この第一の半導
体層上面の所定の位置に形成されその中に反対導電型の
ソース領域を含む一導電型のベース層と、前記ソース領
域とゲート電極を挟んで前記第一の半導体層上面に形成
された反対導電型のドレイン領域とを備えた高耐圧横型
電界効果トランジスタにおいて、 前記第一の半導体層の不純物濃度およびその厚さは、ソ
ース−ドレイン間に電圧を印加したときに、前記半導体
基板と前記第一の半導体層との間に形成される空乏層と
前記ベース層と前記第一の半導体層との間に形成される
空乏層とが接触するように設定された ことを特徴とする高耐圧横型電界効果トランジスタ。
[Claims] 1. A semiconductor substrate of one conductivity type, a first semiconductor layer of an opposite conductivity type formed on this semiconductor substrate, and a semiconductor layer formed at a predetermined position on the upper surface of this first semiconductor layer. A high breakdown voltage comprising a base layer of one conductivity type including a source region of an opposite conductivity type therein, and a drain region of an opposite conductivity type formed on the upper surface of the first semiconductor layer with the source region and the gate electrode sandwiched therebetween. In the lateral field effect transistor, the impurity concentration and the thickness of the first semiconductor layer are such that when a voltage is applied between the source and drain, the impurity concentration is set between the semiconductor substrate and the first semiconductor layer. A high breakdown voltage lateral field effect transistor, wherein a depletion layer is set to be in contact with a depletion layer formed between the base layer and the first semiconductor layer.
JP19822089A 1989-07-31 1989-07-31 High withstand-voltage lateral field effect transistor Pending JPH0362969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19822089A JPH0362969A (en) 1989-07-31 1989-07-31 High withstand-voltage lateral field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19822089A JPH0362969A (en) 1989-07-31 1989-07-31 High withstand-voltage lateral field effect transistor

Publications (1)

Publication Number Publication Date
JPH0362969A true JPH0362969A (en) 1991-03-19

Family

ID=16387501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19822089A Pending JPH0362969A (en) 1989-07-31 1989-07-31 High withstand-voltage lateral field effect transistor

Country Status (1)

Country Link
JP (1) JPH0362969A (en)

Similar Documents

Publication Publication Date Title
US5589405A (en) Method for fabricating VDMOS transistor with improved breakdown characteristics
US5016066A (en) Vertical power MOSFET having high withstand voltage and high switching speed
US5801431A (en) MOS gated semiconductor device with source metal covering the active gate
US6534823B2 (en) Semiconductor device
KR930024156A (en) Semiconductor device and manufacturing method thereof
US20030057478A1 (en) Mos-gated power semiconductor device
JPH03270273A (en) Semiconductor device and its manufacture
JPH0330310B2 (en)
US4952991A (en) Vertical field-effect transistor having a high breakdown voltage and a small on-resistance
JPH11274493A (en) Semiconductor device containing lateral type mos element
US4929991A (en) Rugged lateral DMOS transistor structure
EP0071335B1 (en) Field effect transistor
JPH0334466A (en) Vertical-type double diffused mosfet
US5381031A (en) Semiconductor device with reduced high voltage termination area and high breakdown voltage
JP2000077663A (en) Field-effect semiconductor device
US4713681A (en) Structure for high breakdown PN diode with relatively high surface doping
JPS63266882A (en) Vertical-type insulated-gate field-effect transistor
JP2882291B2 (en) High breakdown voltage diode and method of manufacturing the same
JP2808871B2 (en) Method for manufacturing MOS type semiconductor device
US5523601A (en) High-breakdown-voltage MOS transistor
EP0776048A2 (en) MOS gated device base region with high breakdown resistance
JPS626352B2 (en)
JPH09199721A (en) Field effect transistor
US20050116298A1 (en) MOS field effect transistor with small miller capacitance
JPH0362969A (en) High withstand-voltage lateral field effect transistor