JPH0362765B2 - - Google Patents

Info

Publication number
JPH0362765B2
JPH0362765B2 JP56120505A JP12050581A JPH0362765B2 JP H0362765 B2 JPH0362765 B2 JP H0362765B2 JP 56120505 A JP56120505 A JP 56120505A JP 12050581 A JP12050581 A JP 12050581A JP H0362765 B2 JPH0362765 B2 JP H0362765B2
Authority
JP
Japan
Prior art keywords
powder
alloy
reduction
particle size
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56120505A
Other languages
Japanese (ja)
Other versions
JPS5822303A (en
Inventor
Minoru Yoshihara
Hiroshi Iinuma
Ryoji Nakano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Kanto Denka Kogyo Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Kanto Denka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Kanto Denka Kogyo Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP12050581A priority Critical patent/JPS5822303A/en
Publication of JPS5822303A publication Critical patent/JPS5822303A/en
Publication of JPH0362765B2 publication Critical patent/JPH0362765B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0235Starting from compounds, e.g. oxides

Description

【発明の詳細な説明】 本発明は5.5%(重量基準、以下同じ)以上の
Vを含有する高バナジウム合金鋼を粉末冶金法に
よつて製造する際の原料粉末として使用される高
バナジウム合金鋼粉末及びその製造法に関するも
のである。
Detailed Description of the Invention The present invention relates to a high vanadium alloy steel that is used as a raw material powder when manufacturing a high vanadium alloy steel containing 5.5% (by weight, the same applies hereinafter) or more by a powder metallurgy method. This article relates to powders and their manufacturing methods.

従来、合金粉末の製造に適した方法としては、
噴霧法、搗砕法、還元法等が知られてい
る。の噴霧法は合金成分元素を含有する溶湯を
水又は不活性ガスを噴霧媒体として用い噴霧急冷
する方法であるが、粒状の流動性を有する粉末が
得られる反面、紛体粒子が数10μ〜数100μの範囲
に分布しており、粗く、しかも急冷のため粒子は
焼入れ状態にあり硬いため、そのままでは通常の
粉末冶金的手法によつて圧紛成形及び焼結するこ
とは困難である。さらにV含有量が高くなるにし
たがい、急冷中にVCの粗大化がおこるため、微
細なVCが均一に分散した高バナジウム合金粉を
得ることができない欠点を有している。
Conventionally, methods suitable for producing alloy powder include:
Spraying methods, grinding methods, reduction methods, etc. are known. The spraying method is a method in which a molten metal containing alloying elements is rapidly cooled by spraying using water or an inert gas as a spraying medium, but while a powder with granular fluidity is obtained, the powder particles are in the range of several tens of microns to several hundred microns in size. The particles are distributed in a range of 100 to 100 mm, and are coarse, and because of the rapid cooling, the particles are in a quenched state and hard, so it is difficult to compact and sinter them as they are by ordinary powder metallurgy techniques. Furthermore, as the V content increases, the VC becomes coarser during quenching, resulting in the disadvantage that it is not possible to obtain a high vanadium alloy powder in which fine VC is uniformly dispersed.

の搗砕法は合金成分元素を含有する溶湯から
合金塊をつくりこれを機械的に粉砕するもので、
多大のエネルギーを必要とする上に、粉砕時に異
種介在物の混入が不可避であるという欠点を有し
ている。さらに高バナジウム合金鋼においては合
金鋳造の過程で粗大な炭化物の偏析が必然的に発
生し、これを粉砕しても良質の合金粉が得られな
い上に、得られた粉末の形状は鱗片状で粗く、通
常の成形及び焼結方法では理論密度に近い見掛密
度を有する焼結体に成形することはできないとい
う致命的な欠点がある。
The grinding method creates alloy lumps from molten metal containing alloying elements and mechanically grinds them.
In addition to requiring a large amount of energy, it has the disadvantage that foreign inclusions are inevitably mixed in during pulverization. Furthermore, in high vanadium alloy steel, segregation of coarse carbides inevitably occurs during the alloy casting process, and even if this is crushed, high-quality alloy powder cannot be obtained, and the shape of the obtained powder is scaly. It has a fatal drawback in that it is rough and cannot be formed into a sintered body with an apparent density close to the theoretical density using normal forming and sintering methods.

の還元法は比較的還元が容易な合金粉末の製
造には工業的に適用可能であるが、V、Mn及び
Crなどの難還元性の成分元素を含有する合金粉
末、特にVを5.5%以上含有する金属粉末の製造
は極めて困難である。
Although the reduction method is industrially applicable to the production of alloy powders that are relatively easy to reduce, V, Mn and
It is extremely difficult to produce alloy powders containing difficult-to-reducible constituent elements such as Cr, especially metal powders containing 5.5% or more of V.

本発明は従来の合金粉末製造法では困難とされ
ている圧粉成形が容易で焼結体に優れた鉄を基と
し、Cr、Mo、W、Co、Mnの内の1種以上を6
〜30.5%含み、かつVを5.5〜50%及びCを1.5〜
12%含有する(残りは鉄)高速度工具鋼及び合金
工具鋼用高バナジウム合金鋼微粉末及びその製造
法に係わるもので、出発原料に合金成分元素に対
応する酸化物粉末を用い、酸化バナジウムを予め
10μ以下に粉砕し、これに炭素粉末を、原料粉末
中の酸素量と炭素量の比がO/C=1.4〜10とな
るように添加し、混合してこの混合物を5μ以下
に粉砕し、次いで水素気流中合金の1150℃以下の
温度で加熱還元することにより高バナジウム合金
鋼粉末を製造することに特徴を有するものであ
る。
The present invention is based on iron, which is easy to compact and has excellent sintering properties, which is difficult to produce with conventional alloy powder manufacturing methods, and one or more of Cr, Mo, W, Co, and Mn.
Contains ~30.5%, and contains 5.5 to 50% V and 1.5 to C
This is related to high vanadium alloy steel powder containing 12% (the rest is iron) for high speed tool steel and alloy tool steel, and its manufacturing method. in advance
Grind to 10μ or less, add carbon powder to this so that the ratio of oxygen amount to carbon amount in the raw material powder is O / C = 1.4 ~ 10, mix and grind this mixture to 5μ or less, This method is characterized in that a high vanadium alloy steel powder is produced by then heating and reducing the alloy in a hydrogen stream at a temperature of 1150° C. or less.

従来、噴霧法又は搗砕法により製造されている
V含有合金鋼においては高速度鋼JIS SKH−10
種の5.2%が最も高いV含有率を示しており、正
常な組織で鍛造可能なV含有合金鋼としてはこれ
が上限であると考えられていた。これに対し、本
発明はVを5.5%以上含有する粉末冶金に適した
合金鋼粉の製造を可能ならしめたものである。以
下本発明を詳細に説明する。
Conventionally, high-speed steel JIS SKH-10 is used for V-containing alloy steel manufactured by spraying or grinding methods.
The highest V content was found at 5.2%, and this was thought to be the upper limit for V-containing alloy steel that could be forged with a normal structure. In contrast, the present invention makes it possible to produce alloy steel powder containing 5.5% or more of V and suitable for powder metallurgy. The present invention will be explained in detail below.

一般にFe基でVを含有する合金鋼としては合
金工具鋼(SKS−11、SKD−61、SKT−5)及
び高速度鋼が主であり、これらの合金鋼には含有
量に違いがあるが、Cr、Mo、W、Co、Mn等の
成分元素を少なくとも1種以上含有している。こ
れら各構成元素の作用は大略次の通りである。
In general, alloy steels that are Fe-based and contain V are mainly alloy tool steels (SKS-11, SKD-61, SKT-5) and high-speed steels, and although there are differences in the content of these alloy steels, , Cr, Mo, W, Co, Mn, and the like. The effects of each of these constituent elements are roughly as follows.

Cr:Cと反応し、マトリツクス中に炭化物とな
つて析出し、合金の耐磨耗性の向上に役立つ。
Cr: Reacts with C and precipitates as carbide in the matrix, helping to improve the wear resistance of the alloy.

Mo及びW:Cと反応して炭化物を形成し、合金
の耐磨耗性を向上させると共に一部はマトリツ
クス中に固溶し合金の強度を向上させる。
Mo and W: React with C to form carbides, improving the wear resistance of the alloy, and some of them are dissolved in the matrix to improve the strength of the alloy.

Co:マトリツクス中のFe中に固溶し、合金の強
度を高めると共に耐熱性を向上させる。
Co: Solid-solves in Fe in the matrix, increasing the strength and heat resistance of the alloy.

Mn:鋼の焼入性を向上させる。Mn: Improves the hardenability of steel.

従つて、これら構成元素は鋼とした場合に必要
とされる特性を付与するため少なくとも1種を鋼
組成中に含ませるべきものであり、本発明におい
てもCr、Mo、W、Co、Mnの内少なくとも1種
を含ませることとした。
Therefore, at least one of these constituent elements should be included in the steel composition in order to impart the required properties when made into steel, and in the present invention, Cr, Mo, W, Co, and Mn are also included. It was decided to include at least one of these.

またCは合金鋼中の各成分が炭化物を形成する
ために必要である。Vを5.5%以上とすることに
より、このVと炭化物を形成するためには約1.1
%のCが必要であり、更にFe、その他の成分元
素が炭化物形成に必要な量を加えるとCは1.5%
以上必要になる。一方、上限については、実用性
から言つてVの最大量は50%と考えられることか
ら(Fe基合金粉としていることもその理由の一
つであるが)、このVの最大値50%の場合に必要
なC量である12%を上限とした。
Further, C is necessary for each component in the alloy steel to form carbides. By setting V to 5.5% or more, approximately 1.1% is required to form carbide with V.
% C is required, and if Fe and other component elements are added in the amounts necessary for carbide formation, C becomes 1.5%.
More than that will be needed. On the other hand, regarding the upper limit, from a practical standpoint, the maximum amount of V is considered to be 50% (one of the reasons is that it is made of Fe-based alloy powder). The upper limit was set at 12%, which is the amount of C required in this case.

すなわち、本発明に係るFe基の合金粉は、(1)
Cr、Mo、W、Co、Mnの内の1種以上を6〜
30.5%含み、かつ(2)Vを5.5〜50%及び(3)Cを1.5
〜12%含むものであり、しかも金属酸化物の還元
によつて得られることを特徴とするものである。
That is, the Fe-based alloy powder according to the present invention has (1)
6 or more of Cr, Mo, W, Co, Mn
Contains 30.5%, and (2) 5.5 to 50% V and (3) 1.5 C.
~12%, and is characterized by being obtained by reduction of metal oxides.

次に本発明に係る合金粉の製造法の具体例を記
す。
Next, a specific example of the method for producing alloy powder according to the present invention will be described.

本発明における合金成分元素に対応する酸化物
は現在工業的に製造され市販されているものであ
ればいずれでも良く、粉末の大きさ、形状等は問
わない。これは酸化物は金属、合金に比して靭性
に乏しくボールミル等の粉砕により容易に粉砕さ
れ、粒径5μ以下の微粉砕となること、また酸化
物間での形状並びに比重の差異が少ないため、こ
れを均質に混合することが容易であることによ
る。
The oxide corresponding to the alloy component element in the present invention may be any one that is currently industrially produced and commercially available, and the size, shape, etc. of the powder are not limited. This is because oxides have poor toughness compared to metals and alloys and are easily pulverized by ball mills, etc., resulting in finely pulverized particles with a particle size of 5μ or less, and there is little difference in shape and specific gravity between oxides. This is because it is easy to mix homogeneously.

バナジウムの酸化物のV2O5粉末が一般的であ
り微粉末となりやすいものであるが、合金化した
際バナジウム炭化物VCが凝集しやすい傾向にあ
るため、特に高バナジウム合金鋼粉末の製造に際
しては他の酸化物との混合粉砕に先立ち予め
V2O5のみを予粉砕し、好ましくは10μ以下の微粉
末としておくことが本発明を実施するのに必要で
ある。この工程を省略すると原料酸化物をボー
ルミルにて36時間程度粉砕(工程)しても粒径
5μ以下の微粉末とならず、その後、還元、焼結
して得られる焼結体の金属組織にVの偏析及び
VCの粗大粒の存在が生じ、結果的に焼結体の強
度抗析力が劣るものとなる。
V 2 O 5 powder, which is an oxide of vanadium, is common and easily becomes a fine powder, but since vanadium carbide VC tends to aggregate when alloyed, it is particularly difficult to use when manufacturing high vanadium alloy steel powder. Prior to mixing and grinding with other oxides
In order to carry out the present invention, it is necessary to pre-pulverize only V 2 O 5 , preferably into a fine powder of 10 μm or less. If this step is omitted, even if the raw material oxide is pulverized in a ball mill for about 36 hours (process), the particle size will be
It does not become a fine powder of 5μ or less, and V segregation and
The presence of coarse VC grains results in the sintered body having poor strength and anti-destructive strength.

また酸化物に添加する炭素としてはカーボンブ
ラツク又は黒鉛粉末が挙げられるが、1μ以下の
微粉末であることが望ましい。添加する炭素量は
還元装置の形状、水素流量、還元温度、還元時間
等の反応条件及び酸化物の混合組成、さらに還元
に必要なCのみならず、炭化物形成に必要なC量
等の制約を受け一概に規定し得ないが、本発明の
鉄を基としVを5.5%以上、Cを1.5〜12%含有
し、Cr、Mo、W、Co、Mnの内1種以上を含む
高バナジウム合金鋼粉末を得るためには、原料粉
末中の酸素量との比がO/C=1.4〜10の範囲内
になるように炭素を添加することが好ましい。
O/Cが1.4未満、即ち炭素量が多くなると必要
以上に炭素粉末が鋼粉末中に残るか或いはVCの
凝集を助長する危険性があり、O/Cが10より
大、即ち炭素量が少なくなると還元に関与する水
素の割合が大きくなり、必然的に還元温度が高く
なるため、焼結等により粉末自体の特性が低下す
る恐れがある。しかし反応条件により制約を受け
ると記した通り、逆に言えば炭素量に応じて反応
条件を選定することも可能である。
Carbon black or graphite powder may be used as the carbon added to the oxide, but a fine powder of 1 μm or less is preferable. The amount of carbon to be added depends on constraints such as the shape of the reduction device, reaction conditions such as hydrogen flow rate, reduction temperature, and reduction time, and the mixture composition of oxides, as well as the amount of C required for carbide formation as well as the amount of C required for reduction. Although it cannot be absolutely specified, the high vanadium alloy of the present invention is based on iron, contains 5.5% or more of V, 1.5 to 12% of C, and contains one or more of Cr, Mo, W, Co, and Mn. In order to obtain steel powder, it is preferable to add carbon so that the ratio to the amount of oxygen in the raw material powder falls within the range of O/C=1.4 to 10.
If O/C is less than 1.4, that is, the carbon content is large, there is a risk that more carbon powder will remain in the steel powder than necessary or it will promote VC agglomeration, and if O/C is greater than 10, that is, the carbon content is small In this case, the proportion of hydrogen involved in the reduction increases, and the reduction temperature inevitably increases, which may cause the properties of the powder itself to deteriorate due to sintering or the like. However, as mentioned above, there are restrictions depending on the reaction conditions, and conversely, it is also possible to select reaction conditions depending on the carbon content.

次いでこれら混合粉砕物を水素気流中で合金の
固相線以下の温度、具体的には1150℃以下に加熱
保持することにより、酸化物粉末を水素と炭素に
より共還元すると同時に固相拡散により合金化反
応を行わせる。本発明においては原料酸化物が微
細に粉砕混合されているため、酸化物の還元は合
金の固相線以下の温度で十分進行する。但し、還
元温度があまりに低いと還元速度が遅く実用的で
ないので、還元温度の下限は800℃である。また
還元により生成した微細な金属は活性を有してい
るため、合金化及び炭化反応も容易に進行する。
しかし還元温度を比較的低温に維持することがで
きるので、合金粉末粒子は焼結或いは粒成長をす
ることがなく相互に弱く結合した状態にあり、容
易に粉砕され粒径50μ以下の微粉となる。
Next, by heating and maintaining these mixed pulverized products in a hydrogen stream at a temperature below the solidus line of the alloy, specifically below 1150°C, the oxide powder is co-reduced with hydrogen and carbon, and at the same time, the alloy is formed by solid-phase diffusion. Let the chemical reaction take place. In the present invention, since the raw material oxide is finely ground and mixed, the reduction of the oxide proceeds sufficiently at a temperature below the solidus line of the alloy. However, if the reduction temperature is too low, the reduction rate will be slow and impractical, so the lower limit of the reduction temperature is 800°C. Furthermore, since the fine metals produced by reduction have activity, alloying and carbonization reactions easily proceed.
However, since the reduction temperature can be maintained at a relatively low temperature, the alloy powder particles do not undergo sintering or grain growth, but are weakly bonded to each other, and are easily crushed into fine powder with a particle size of 50μ or less. .

本発明により製造された高バナジウム合金鋼微
粉末は圧縮成形性は良好で、通常の粉末冶金的手
法に従い金型プレスすることにより容易に成形さ
れ、さらに粉末粒子が微細なため焼結性にも優れ
ており、合金の固相線よりも低い温度で焼結し、
密度比95%以上の微細なVCが均一に分布した焼
結体が得られる。
The high vanadium alloy steel fine powder produced by the present invention has good compression moldability and can be easily molded by mold pressing according to the usual powder metallurgy method, and also has good sinterability because the powder particles are fine. Excellent, sintering at a temperature lower than the solidus of the alloy,
A sintered body with a uniform distribution of fine VC with a density ratio of 95% or more can be obtained.

以下に本発明を実施冷により説明する。 The present invention will be explained below with reference to practical cooling.

実施例 1 合金組成のベースとしてJIS SKH−57種を選
び、この成分元素中V含有量のみを15%にした合
金粉末を製造した。成分組成を以下に示す。
Example 1 JIS SKH-57 was selected as the base of the alloy composition, and an alloy powder was produced in which only the V content among the constituent elements was 15%. The component composition is shown below.

W 10wt% Mo 3.5 Cr 4 V 15 Co 10 C 3.8 Fe 残 得られた合金粉末の組成が上記組成となるよう
にWO3127g(平均粒径3μ)、MoO353g(平均粒
径3μ)、Cr2O359g(平均粒径3μ)、V2O5270g
(平均粒径15μのものをジエツトミル粉砕により
5μ以下にしたもの)、CoO128g(平均粒径6μ)、
Fe2O3773g(平均粒径5μ)を配合し、これにカ
ーボンブラツク160gを添加してボールミルにて
36時間混合し、平均粒度5μ以下(実質的に1μ以
下)の微粉砕混合粉末を製造した。次いでこの混
合粉末を水素気流中1100℃で2時間加熱保持し
た。還元生成物は海面状で衝撃式粉砕機により容
易に粉砕され、325メツシユ以下の微粉が70%以
上で、見掛密度1.5g/cm3の粉末が得られた。
W 10wt% Mo 3.5 Cr 4 V 15 Co 10 C 3.8 Fe remainder 127 g of WO 3 (average particle size 3μ), 53g of MoO 3 (average particle size 3μ), Cr so that the composition of the obtained alloy powder would be the above composition. 2 O 3 59g (average particle size 3μ), V 2 O 5 270g
(Average particle size of 15μ is crushed by a jet mill.)
5μ or less), CoO 128g (average particle size 6μ),
Blend 773g of Fe 2 O 3 (average particle size 5μ), add 160g of carbon black, and mill in a ball mill.
The mixture was mixed for 36 hours to produce a finely ground mixed powder with an average particle size of 5 microns or less (substantially 1 micron or less). Next, this mixed powder was heated and held at 1100° C. for 2 hours in a hydrogen stream. The reduced product was easily pulverized by an impact pulverizer at sea level to obtain a powder containing 70% or more of fine powder of 325 mesh or less and an apparent density of 1.5 g/cm 3 .

この粉末を5t/cm2の圧力で圧粉成形し、この圧
粉体を真空中1150℃で1時間焼結した。得られた
高バナジウム合金鋼の焼結体密度は7.74g/cm3
あり、ほぼ真密度であつた。
This powder was compacted at a pressure of 5 t/cm 2 , and the compact was sintered in vacuum at 1150° C. for 1 hour. The sintered body density of the obtained high vanadium alloy steel was 7.74 g/cm 3 , which was almost the true density.

実施例 2 合金組成のベースにJIS SKD−61種を選び、
この成分元素中V含有量のみを20%にした合金粉
末を製造した。成分組成を下記に示す。
Example 2 Select JIS SKD-61 type as the base of alloy composition,
An alloy powder was produced in which only the V content among the component elements was 20%. The component composition is shown below.

Mo 1.3wt% Cr 5.0 V 20 C 4.6 Fe 残 得られた合金粉末の組成が上記組成となるよう
にMoO319.5g(平均粒径3μ)、Cr2O374g(平均
粒径3μ)、V2O5360g(平均粒径15μのものをジエ
ツトミル粉砕により5μ以下にしたもの)、
Fe2O3995g(平均粒径5μ)を配合し、これにカ
ーボンブラツク204gを添加してボールミルにて
36時間混合し、平均粒度5μ以下(実質的に1μ以
下)の微粉砕混合粉末を製造した。次いで前記混
合粉末を水素気流中1100℃で3時間加熱保持し
た。還元生成物は海綿状で衝撃式粉砕機により容
易に粉砕され、325メツシユ以下の微粉が70%以
上で、見掛密度が1.3g/cm2の微細な粉末が得ら
れた。
Mo 1.3wt% Cr 5.0 V 20 C 4.6 Fe remainder MoO 3 19.5g (average particle size 3μ), Cr 2 O 3 74g (average particle size 3μ), V 2 O 5 360g (average particle size 15μ, crushed by jet mill to 5μ or less),
Blend 995g of Fe 2 O 3 (average particle size 5μ), add 204g of carbon black and mill in a ball mill.
The mixture was mixed for 36 hours to produce a finely ground mixed powder with an average particle size of 5 microns or less (substantially 1 micron or less). Next, the mixed powder was heated and held at 1100° C. for 3 hours in a hydrogen stream. The reduced product was spongy and easily pulverized using an impact pulverizer, yielding a fine powder with 70% or more of fine powder of 325 mesh or less and an apparent density of 1.3 g/cm 2 .

得られた粉末を5t/cm2の圧力で圧粉成形し、こ
の圧粉体を真空中1200℃で1時間焼結した。得ら
れた高バナジウム合金鋼の焼結体密度は7.19g/
cm3であり、ほぼ真密度であつた。
The obtained powder was compacted at a pressure of 5 t/cm 2 , and the compact was sintered in vacuum at 1200° C. for 1 hour. The density of the obtained high vanadium alloy steel was 7.19g/
cm3 , which was almost the true density.

比較例 1 平均粒径15μのV2O5を粉砕せずそのまま使用し
た以外は実施例1と同じ方法により合金粉末を製
造した。原料酸化物をボールミルにて36時間混合
したが、この粉末は粒度が5〜10μで、Vの偏析
及びVCの粗大粒が認められた。次いで同様に水
素還元後、実施例1と同様の方法により焼結体を
製造し、抗析力を測定したところ、120Kg/mm2
あつた(これに対して実施例1の焼結体の抗析力
は150Kg/mm2以上であつた)。
Comparative Example 1 An alloy powder was produced in the same manner as in Example 1, except that V 2 O 5 with an average particle size of 15 μm was used as it was without being crushed. The raw material oxides were mixed in a ball mill for 36 hours, but the particle size of this powder was 5 to 10 microns, and segregation of V and coarse particles of VC were observed. Next, after hydrogen reduction, a sintered body was produced in the same manner as in Example 1, and the anti-deposition strength was measured to be 120 Kg/mm 2 (in contrast, the sintered body of Example 1 The anti-destructive strength was over 150Kg/ mm2 ).

比較例 2 平均粒径15μのV2O5を粉砕せずそのまま使用し
た以外は実施例2と同じ方法により合金粉末を製
造した。原料酸化物をボールミルにて36時間混合
したが、この粉末は粒度が5〜10μで、Vの偏析
及びVCの粗大粒が認められた。次いで同様に水
素還元後、実施例2と同様の方法により焼結体を
製造し、抗析力を測定したところ、110Kg/mm2
あつた(これに対して実施例2の焼結体の抗析力
は150Kg/mm2以上であつた)。
Comparative Example 2 An alloy powder was produced in the same manner as in Example 2, except that V 2 O 5 with an average particle size of 15 μm was used as it was without being crushed. The raw material oxides were mixed in a ball mill for 36 hours, but the particle size of this powder was 5 to 10 microns, and segregation of V and coarse particles of VC were observed. After hydrogen reduction in the same manner, a sintered body was produced in the same manner as in Example 2, and the anti-deposition strength was measured to be 110 Kg/mm 2 (in contrast, the sintered body of Example 2 The anti-destructive strength was over 150Kg/ mm2 ).

Claims (1)

【特許請求の範囲】 1 鉄を基とし、Cr、Mo、W、Co、Mnの内の
1種以上を6〜30.5重量%含みかつVを5.5〜50
重量%及びCを1.5〜12重量%含有する(残りは
鉄)ことを特徴とする、金属酸化物粉末の還元に
よつて得られた高速度工具鋼及び合金工具鋼用高
バナジウム合金鋼微粉末。 2 鉄を基とし、Cr、Mo、W、Co、Mnの内の
1種以上を6〜30.5重量%含みかつVを5.5〜50
重量%及びCを1.5〜12重量%含有する(残りは
鉄)ことを特徴とする、金属酸化物粉末の還元に
よつて得られた高速度工具鋼及び合金工具鋼用高
バナジウム合金鋼微粉末の製造において、 これらの成分元素に対応する酸化物粉末を原
料として用い、 酸化バナジウムを予め10μ以下に粉砕し、 これら原料粉末に原料粉末中の酸素量と炭素
量の比がO/C=1.4〜10となるように炭素粉
末を添加し、 この混合物を5μ以下に粉砕し、 水素気流中、1150℃以下800℃以上の温度で
還元する 工程よりなることを特徴とする方法。
[Claims] 1 Based on iron, containing 6 to 30.5% by weight of one or more of Cr, Mo, W, Co, and Mn, and having a V of 5.5 to 50
High vanadium alloy steel fine powder for high speed tool steel and alloy tool steel obtained by reduction of metal oxide powder, characterized by containing 1.5 to 12 wt% of C and 1.5 to 12 wt% of C (the remainder being iron). . 2 Based on iron, containing 6 to 30.5% by weight of one or more of Cr, Mo, W, Co, and Mn, and containing V of 5.5 to 50
High vanadium alloy steel fine powder for high speed tool steel and alloy tool steel obtained by reduction of metal oxide powder, characterized by containing 1.5 to 12 wt% of C and 1.5 to 12 wt% of C (the remainder being iron). In manufacturing, oxide powders corresponding to these component elements are used as raw materials, vanadium oxide is crushed in advance to 10μ or less, and the ratio of oxygen content to carbon content in the raw material powders is O/C = 1.4. A method comprising the steps of: adding carbon powder so that the particle size is 10 to 10, pulverizing this mixture to 5μ or less, and reducing the mixture at a temperature of 1150°C or lower and 800°C or higher in a hydrogen stream.
JP12050581A 1981-07-31 1981-07-31 High vanadium alloy steel fine powder and manufacture thereof Granted JPS5822303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12050581A JPS5822303A (en) 1981-07-31 1981-07-31 High vanadium alloy steel fine powder and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12050581A JPS5822303A (en) 1981-07-31 1981-07-31 High vanadium alloy steel fine powder and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS5822303A JPS5822303A (en) 1983-02-09
JPH0362765B2 true JPH0362765B2 (en) 1991-09-27

Family

ID=14787852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12050581A Granted JPS5822303A (en) 1981-07-31 1981-07-31 High vanadium alloy steel fine powder and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5822303A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4884707A (en) * 1972-02-02 1973-11-10
JPS50123010A (en) * 1974-03-18 1975-09-27
JPS52117214A (en) * 1976-03-29 1977-10-01 Mitsubishi Metal Corp Production of high density high alloy sintered product
JPS538150B2 (en) * 1973-09-10 1978-03-25
JPS5428821A (en) * 1977-08-05 1979-03-03 Nippon Nohyaku Co Ltd Repellent of rodents
JPS569202A (en) * 1979-07-02 1981-01-30 Stauffer Chemical Co Recovery of liquid sulfur trioxide
JPS5626273B2 (en) * 1977-12-08 1981-06-17

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554181Y2 (en) * 1976-07-06 1980-12-15
JPS6237749Y2 (en) * 1979-08-03 1987-09-26

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4884707A (en) * 1972-02-02 1973-11-10
JPS538150B2 (en) * 1973-09-10 1978-03-25
JPS50123010A (en) * 1974-03-18 1975-09-27
JPS52117214A (en) * 1976-03-29 1977-10-01 Mitsubishi Metal Corp Production of high density high alloy sintered product
JPS5428821A (en) * 1977-08-05 1979-03-03 Nippon Nohyaku Co Ltd Repellent of rodents
JPS5626273B2 (en) * 1977-12-08 1981-06-17
JPS569202A (en) * 1979-07-02 1981-01-30 Stauffer Chemical Co Recovery of liquid sulfur trioxide

Also Published As

Publication number Publication date
JPS5822303A (en) 1983-02-09

Similar Documents

Publication Publication Date Title
US5108493A (en) Steel powder admixture having distinct prealloyed powder of iron alloys
CA2182389C (en) High density sintered alloy
US4519839A (en) Sintered high vanadium high speed steel and method of making same
CA2104605C (en) Powder metal alloy process
US3846126A (en) Powder metallurgy production of high performance alloys
US4129444A (en) Power metallurgy compacts and products of high performance alloys
US4093454A (en) Nickel-base sintered alloy
CN110480022B (en) FeNiCuSn prealloying powder, preparation method and application
CA1309882C (en) Powder particles for fine-grained hard material alloys and a process for the preparation of such particles
JPH01116002A (en) Production of composite metal powder from base iron powder and alloying component and composite metal powder
US4089682A (en) Cobalt-base sintered alloy
US5217683A (en) Steel powder composition
US4131450A (en) Process for manufacturing cobalt-base reduced powder
CN111014657B (en) FeCuNiSn alloy powder for diamond product and preparation method thereof
JPH0475295B2 (en)
GB2074609A (en) Metal binder in compaction of metal powders
US4263046A (en) Sinterable mass for producing workpieces of alloy steel
CN101259528B (en) Non magnetic cemented carbide powder with nickel-vanadium alloys as binder phase and preparation
JPH0362765B2 (en)
US20050061109A1 (en) Method for production of metallic elements of high purity such as chromes
CN110964983B (en) FeCuSn-based composite alloy powder for diamond product and preparation method thereof
JPS5921945B2 (en) Manufacturing method of sintered high alloy steel
JPH0751721B2 (en) Low alloy iron powder for sintering
US4518427A (en) Iron or steel powder, a process for its manufacture and press-sintered products made therefrom
JPS5827910A (en) Production of fine powder for high manganese alloy steel