JPH0362005B2 - - Google Patents

Info

Publication number
JPH0362005B2
JPH0362005B2 JP58064357A JP6435783A JPH0362005B2 JP H0362005 B2 JPH0362005 B2 JP H0362005B2 JP 58064357 A JP58064357 A JP 58064357A JP 6435783 A JP6435783 A JP 6435783A JP H0362005 B2 JPH0362005 B2 JP H0362005B2
Authority
JP
Japan
Prior art keywords
semiconductor
voltage
mol
atmosphere
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58064357A
Other languages
Japanese (ja)
Other versions
JPS59188906A (en
Inventor
Harufumi Bandai
Kyoshi Iwai
Yasuyuki Naito
Kazuyoshi Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP58064357A priority Critical patent/JPS59188906A/en
Publication of JPS59188906A publication Critical patent/JPS59188906A/en
Publication of JPH0362005B2 publication Critical patent/JPH0362005B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電圧非直線抵抗体用半導体磁器の製造
方法に関するものである。 近年、電圧電流特性が非直線的な抵抗体、いわ
ゆるバリスタとして、チタン酸ストロンチウム系
半導体磁器を素体とするものが開発されている。
この種の電圧非直線抵抗体としては、(イ)チタン酸
ストロンチウムを半導体化してなる半導体磁器の
表面に、Mn、Zn、Coなどの金属酸化物を含有す
るペーストを塗布し、空気中または窒素雰囲気中
で1200〜1300℃の温度で熱処理して前記半導体磁
器の結晶粒界に絶縁層を形成させたものを素体と
し、これに電極を取付けたもの、あるいは(ロ)チタ
ン酸ストロンチウムの主成分に、半導体化促進用
金属酸化物、例えば、Nb2O5、Ta2O5、La2O3
CeO2、Nd2O3、WO3などと、電圧電流非直線特
性改善用金属酸化物であるV2O5、Cr2O3、CuO、
CuO2、MoO3、MnO2などを含有させたものを素
体とし、これに電極を取り付けたものが知られて
いる。この電圧非直線抵抗体は、その素体がペロ
ブスカイト結晶構造を有し、強誘電性を示すため
単にバリスタとしての機能のみでなくコンデンサ
としての機能をも有し、従つて、それ自体で異常
高電圧(サージ)の吸収や電圧の安定化などを行
なえるという利点を有している。しかしながら、
従来のチタン酸ストロンチウム系半導体磁器を用
いたものでは、例えば、前記(イ)のものでは、結晶
粒界を絶縁化するためにMn、Zn、Co、などの金
属酸化物を小さな半導体磁器の表面に塗布しなけ
ればならず、さらに酸化物を半導体磁器の結晶粒
界に均一に拡散させる熱処理が必要であるなど製
造工程が煩雑で、制御が困難な工程を含む他、製
造条件によつて特性が左右され易いことに起因し
て電圧非直線抵抗体の非直線指数(α)やしきい
値電圧(Vth)などの特性のバラツキが大きいと
いう欠点があつた。また、後者の(ロ)のものでは、
中性または還元性雰囲気中で焼成する際、電圧電
流非直線特性改善用金属酸化物が金属化して蒸発
し、焼成炉の炉材などを損傷したり、所望の組成
のものが得難く、しかも非直線指数(α)やしき
い値電圧(Vth)などの特性にバラツキを生じる
という欠点があつた。 本発明は、製造条件によつて組成や特性が変動
せず、しきい値電圧や非直線指数などの特性のバ
ラツキの少ない電圧非直線抵抗体用半導体磁器を
容易に製造することができるようにすることを目
的とし、その要旨は、一般式: (Sr1-x-yCax)(Ti1-yZry)O3 (式中、x、yは各成分のモル分率で、0.03≦x
≦0.30、0.02≦y≦0.20である)で表わされる主
成分99.0〜99.9モル%と、希土類元素、Nb、Wお
よびTaの酸化物からなる群から選ばれた少なく
とも一種の半導体化剤0.1〜1.0モル%とからなる
組成となるように半導体磁器の主成分原料と半導
体化剤とを調合し、得られた混合物を所定形状に
成形した後、中性又は還元性雰囲気中で焼成して
半導体磁器を得、該半導体磁器を自然雰囲気中又
は酸化性雰囲気中で熱処理することにより半導体
磁器の結晶粒界を絶縁化することを特徴とする電
圧非直線抵抗体用半導体磁器の製造方法にある。 本発明の一実施態様においては、前記組成物に
鉱化剤として5モル%以下のSiO2および/また
はAl2O3を含有させることが行なわれる。また、
他の実施態様においては、1モル%以下のMnO2
その他の成分を含有させることが行なわれる。こ
れらの成分の含有量を前記の如く限定したのは、
前記含有量を超えると特性に悪影響を与えるから
である。 本発明に係る半導体磁器の組成を前記の如く限
定したのは次の理由による。すなわち、主成分に
おけるCaのモル分率xが0.03未満では非直線指数
が小さく、また、0.30を超えるとしきい値電圧が
高くなり、実用的でないので前記範囲とした。主
成分におけるZrのモル分率yを0.02〜0.20とした
のは、yが0.02未満では非直線指数が小さくな
り、0.20を超えるとしきい値電圧が高くなり、い
ずれも実用的でないからである。半導体化剤の含
有量を0.1〜1.0モル%としたのは、その含有量が
0.1モル%未満ではしきい値電圧が高く、1.0モル
%を超えるとバリスタ特性が得られなくなるから
である。 本発明に係る電圧非直線抵抗体用半導体磁器
は、前記組成のチタン酸ストロンチウム系磁器組
成物からなる主成分と半導体化剤とを所定の割合
で混合し、それに適当な有機バインダを加えて造
粒し、750〜2500Kg/cm2の加圧下で成形した後、自
然雰囲気中1000〜1200℃で予備焼成し、さらに中
性または還元性雰囲気中1350〜1400℃で焼成して
半導体化し、次いで自然雰囲気中または酸化性雰
囲気中1000〜1200℃で熱処理することにより結晶
粒界が絶縁化した半導体磁器となり、この半導体
磁器の表面に電極を形成することにより電圧非直
線抵抗体とすることができる。 本発明に係る半導体磁器組成物は、しきい値電
圧の低い領域で大きな非直線指数を有し、かつ特
性のバラツキの少ない電圧非直線抵抗体を製造す
ることを可能にし、また、結晶粒界に絶縁層を形
成するための金層酸化物を塗布、拡散させる工程
が不要であり、しかも半導体化するため還元処理
する際、成分が金属化して蒸発することがほとん
どなく、従つて、製造が容易で歩留りもよく、焼
成炉を損傷したりすることがないなど優れた利点
を有している。 実施例 原料としてSrCO3、CaCO3、TiO2およびZrO2
を用い、これらを第1表の組成の主成分が得られ
るように秤量し、ボールミルにて10時間湿式混合
し、脱水、乾燥した後、空気中にて1100〜1250℃
で2時間仮焼し、第1表に示す組成のチタン酸ス
トロンチウム系磁器組成物を得、これを第1表に
示す各半導体化剤と同表に示す組成比で混合し、
ボールミルにて充分に湿式混合し、脱水後、有機
バインダ6重量%を加えて造粒し、2000Kg/cm2
圧力を加えて円板に成形した。この成形物を自然
雰囲気中1150℃で1時間予備焼成し、さらに還元
性雰囲気中(95%N2+5%H2)にて1350〜1400
℃で2時間焼成して直径8mm、肉厚1mmの半導体
磁器を得、これを自然雰囲気中1000〜1200℃で熱
処理して、結晶粒界が絶縁化された半導体磁器を
得た。この半導体磁器の相対する表面に銀ペース
トを印刷塗布し、自然雰囲気中800℃で焼付けて
電極を形成して電圧非直線抵抗体を得た。 このようにして得た各電圧非直線抵抗体のしき
い値電圧(Vth)および非直線指数(α)を求め
た。それらの結果を第1表に合わせて示す。第1
表中、〓印を付した番号の試料は本発明の範囲外
のものを示し、Vthは電圧非直線抵抗体に10mA
流したときの電圧(V10)であり、αは前記V10
と1mA流したときの電圧(V1)とから次式によ
り求めた値である。 α=1/log(V10/V1
The present invention relates to a method for manufacturing semiconductor ceramics for voltage nonlinear resistors. In recent years, resistors with non-linear voltage-current characteristics, so-called varistors, whose element bodies are made of strontium titanate-based semiconductor ceramics have been developed.
This type of voltage nonlinear resistor is manufactured by (a) applying a paste containing metal oxides such as Mn, Zn, and Co to the surface of semiconductor porcelain made by converting strontium titanate into a semiconductor, and The element body is an insulating layer formed on the crystal grain boundaries of the semiconductor porcelain by heat treatment at a temperature of 1200 to 1300°C in an atmosphere, and an electrode is attached to this, or (b) a main body made of strontium titanate. Ingredients include metal oxides for promoting semiconductor formation, such as Nb 2 O 5 , Ta 2 O 5 , La 2 O 3 ,
CeO 2 , Nd 2 O 3 , WO 3 , etc., and V 2 O 5 , Cr 2 O 3 , CuO, which are metal oxides for improving voltage-current nonlinear characteristics.
It is known to have an element body containing CuO 2 , MoO 3 , MnO 2 , etc., and to which electrodes are attached. This voltage nonlinear resistor has a perovskite crystal structure and exhibits ferroelectricity, so it functions not only as a varistor but also as a capacitor. It has the advantage of being able to absorb voltage (surge) and stabilize voltage. however,
In the case of conventional strontium titanate-based semiconductor ceramics, for example, in the case of (a) above, metal oxides such as Mn, Zn, Co, etc. are added to the surface of the small semiconductor ceramics in order to insulate the grain boundaries. The manufacturing process is complicated and involves processes that are difficult to control, such as the need to apply the oxide to the grain boundaries of the semiconductor porcelain, and a heat treatment to uniformly diffuse the oxide into the grain boundaries of the semiconductor porcelain. There is a drawback that characteristics such as the nonlinear index (α) and the threshold voltage (Vth) of the voltage nonlinear resistor vary widely due to the fact that the voltage is easily influenced. Also, in the latter (b),
When firing in a neutral or reducing atmosphere, the metal oxide for improving voltage-current non-linear characteristics may metallize and evaporate, damaging the furnace material of the firing furnace or making it difficult to obtain the desired composition. The drawback was that characteristics such as nonlinearity index (α) and threshold voltage (Vth) varied. The present invention makes it possible to easily manufacture semiconductor ceramics for voltage nonlinear resistors whose composition and characteristics do not vary depending on manufacturing conditions and whose characteristics such as threshold voltage and nonlinear index have little variation. The general formula is: (Sr 1-xy Ca x ) (Ti 1-y Zr y ) O 3 (where x and y are the mole fractions of each component, and 0.03≦x
≦0.30, 0.02≦y≦0.20) and 99.0 to 99.9 mol% of the main component, and 0.1 to 1.0 mol% of at least one semiconductor forming agent selected from the group consisting of oxides of rare earth elements, Nb, W, and Ta. The main component raw material of semiconductor porcelain and a semiconductor-forming agent are mixed to have a composition consisting of mol%, the resulting mixture is molded into a predetermined shape, and then fired in a neutral or reducing atmosphere to produce semiconductor porcelain. A method for manufacturing a semiconductor ceramic for a voltage nonlinear resistor, characterized in that the crystal grain boundaries of the semiconductor ceramic are insulated by heat-treating the semiconductor ceramic in a natural atmosphere or an oxidizing atmosphere. In one embodiment of the invention, the composition contains up to 5 mol% of SiO 2 and/or Al 2 O 3 as a mineralizer. Also,
In other embodiments, up to 1 mol% MnO2
Other components may also be included. The content of these components was limited as described above because
This is because if the content exceeds the above, the properties will be adversely affected. The reason why the composition of the semiconductor ceramic according to the present invention is limited as described above is as follows. That is, when the mole fraction x of Ca in the main component is less than 0.03, the nonlinear index is small, and when it exceeds 0.30, the threshold voltage becomes high, which is not practical, so the above range was set. The mole fraction y of Zr in the main component is set to 0.02 to 0.20 because if y is less than 0.02, the nonlinear index will be small, and if it exceeds 0.20, the threshold voltage will be high, and both are not practical. The content of the semiconducting agent was set at 0.1 to 1.0 mol% because the content was
This is because if it is less than 0.1 mol%, the threshold voltage is high, and if it exceeds 1.0 mol%, varistor characteristics cannot be obtained. The semiconductor ceramic for a voltage nonlinear resistor according to the present invention is produced by mixing the main component of the strontium titanate ceramic composition with the above composition and a semiconducting agent in a predetermined ratio, and adding an appropriate organic binder to the mixture. After granulating and molding under pressure of 750-2500Kg/ cm2 , pre-baking at 1000-1200℃ in a natural atmosphere, further baking at 1350-1400℃ in a neutral or reducing atmosphere to convert into a semiconductor, then natural Heat treatment at 1000 to 1200° C. in an atmosphere or an oxidizing atmosphere results in a semiconductor ceramic with insulated grain boundaries, and by forming electrodes on the surface of this semiconductor ceramic it can be made into a voltage nonlinear resistor. The semiconductor ceramic composition according to the present invention makes it possible to manufacture a voltage nonlinear resistor that has a large nonlinear index in a low threshold voltage region and has little variation in characteristics, and also has crystal grain boundaries. There is no need for the process of applying and diffusing gold layer oxide to form an insulating layer on the surface, and in addition, during the reduction treatment to convert it into a semiconductor, the components rarely become metallized and evaporate, making it easier to manufacture. It has excellent advantages such as ease of use, high yield, and no damage to the firing furnace. Examples SrCO 3 , CaCO 3 , TiO 2 and ZrO 2 as raw materials
Weigh these to obtain the main components of the composition shown in Table 1, wet mix them in a ball mill for 10 hours, dehydrate and dry them, and then heat them in the air at 1100 to 1250℃.
Calcined for 2 hours to obtain a strontium titanate ceramic composition having the composition shown in Table 1, which was mixed with each semiconductor agent shown in Table 1 in the composition ratio shown in the same table.
After thorough wet mixing in a ball mill and dehydration, 6% by weight of an organic binder was added and granulated, and a pressure of 2000 kg/cm 2 was applied to form into a disk. This molded product was pre-fired at 1150°C for 1 hour in a natural atmosphere, and then heated to 1350-1400°C in a reducing atmosphere (95% N 2 + 5% H 2 ).
C. for 2 hours to obtain a semiconductor porcelain having a diameter of 8 mm and a wall thickness of 1 mm, which was then heat treated at 1000 to 1200 DEG C. in a natural atmosphere to obtain a semiconductor porcelain with insulated grain boundaries. Silver paste was printed and coated on opposing surfaces of this semiconductor porcelain and baked at 800°C in a natural atmosphere to form electrodes and obtain a voltage nonlinear resistor. The threshold voltage (Vth) and nonlinear index (α) of each voltage nonlinear resistor obtained in this manner were determined. The results are also shown in Table 1. 1st
In the table, the samples with numbers marked with 〓 are outside the scope of the present invention, and Vth is 10mA to the voltage nonlinear resistor.
It is the voltage (V 10 ) when flowing, and α is the voltage (V 10 )
This is the value obtained from the following formula from and the voltage (V 1 ) when 1mA is applied. α=1/log( V10 / V1 )

【表】 比較例 SrTiO399.3モル%、Y2O30.2モル%および
CuO0.5モル%を秤量混合し、ボールミルにて充
分に湿式混合し、脱水、乾燥させた後、有機バイ
ンダを6重量%加えて造粒し、2000Kg/cm2の圧力
を加えて円板状に成形した。次いで、この成形物
を自然雰囲気中1150℃で1時間予備焼成し、還元
性雰囲気(95%N2+5%H2)中1380℃で2時間
焼成した後、自然雰囲気中1100℃で熱処理して、
結晶粒界を絶縁化した直径8mm、肉厚1mmの半導
体磁器を得、これに実施例と同様にして電極を形
成して電圧非直線抵抗体を得た。 実施例で得た試料番号3および6の電圧非直線
抵抗体と、比較例で得た電圧非直線抵抗体につい
て、300Vのパルス電圧を印加する前後のしきい
値電圧(Vth)および非直線指数(α)を求め
た。それらの結果を第2表に示す。なお、第2表
には各試料100個についての平均値()と偏差
値(σ)を示してあり、各試料の欄中、上段はパ
ルス印加前の結果で、下段はパルス印加後の結果
である。
[Table] Comparative examples SrTiO 3 99.3 mol%, Y 2 O 3 0.2 mol% and
Weigh and mix 0.5 mol% of CuO, thoroughly wet mix in a ball mill, dehydrate and dry, add 6% by weight of an organic binder, granulate, and apply a pressure of 2000 kg/cm 2 to form a disc. It was molded into. Next, this molded product was pre-fired at 1150°C in a natural atmosphere for 1 hour, then fired at 1380°C in a reducing atmosphere (95% N 2 + 5% H 2 ) for 2 hours, and then heat treated at 1100°C in a natural atmosphere. ,
A semiconductor porcelain with a diameter of 8 mm and a wall thickness of 1 mm with insulated grain boundaries was obtained, and electrodes were formed thereon in the same manner as in the examples to obtain a voltage nonlinear resistor. Threshold voltage (Vth) and nonlinear index before and after applying a pulse voltage of 300 V for the voltage nonlinear resistors of sample numbers 3 and 6 obtained in the example and the voltage nonlinear resistor obtained in the comparative example (α) was calculated. The results are shown in Table 2. In addition, Table 2 shows the average value ( ) and deviation value (σ) for each 100 samples. In the column for each sample, the upper row is the result before pulse application, and the lower row is the result after pulse application. It is.

【表】 第1表および第2表の結果から明らかなよう
に、本発明に係る半導体磁器組成物を用いた電圧
非直線抵抗体は、しきい値電圧が低く、大きな非
直線指数を有し、しかも比較例に示す従来のもの
に比べ、しきい値電圧および非直線指数の偏差値
が半分以下と特性のバラツキが非常に小さい。 以上の説明から明らかなように、本発明は、従
来のチタン酸ストロンチウム系半導体磁器を素体
とする電圧非直線抵抗体における特性のバラツキ
が大きいという欠点をなくし、しきい値電圧が低
く、かつ大きな非直線指数を有し、特性のバラツ
キの少ない電圧非直線低抗体を製造することを可
能にし、また結晶粒界に絶縁層を形成するために
金属酸化物を塗布、拡散させる工程が不要であ
り、しかも還元処理する際、成分が蒸発すること
がほとんどなく、従つて、製造が容易で歩留りも
よく焼成炉を損傷したりすることがないなど優れ
た効果を奏する。
[Table] As is clear from the results in Tables 1 and 2, the voltage nonlinear resistor using the semiconductor ceramic composition according to the present invention has a low threshold voltage and a large nonlinear index. Moreover, compared to the conventional one shown in the comparative example, the deviation values of the threshold voltage and nonlinear index are less than half, and the variation in characteristics is very small. As is clear from the above description, the present invention eliminates the disadvantage of large variations in characteristics in conventional voltage nonlinear resistors using strontium titanate-based semiconductor ceramic as an element body, and achieves low threshold voltage and This makes it possible to produce low-voltage nonlinear antibodies with large nonlinearity indexes and little variation in properties, and also eliminates the need for the process of coating and diffusing metal oxides to form an insulating layer at grain boundaries. Moreover, during the reduction treatment, the components hardly evaporate, and therefore, it has excellent effects such as easy production, good yield, and no damage to the firing furnace.

Claims (1)

【特許請求の範囲】 1 一般式: (Sr1-x-yCax)(Ti1-yZry)O3 (式中、x、yは各成分のモル分率で、0.03≦x
≦0.30、0.02≦y≦0.20である)で表わされる主
成分99.0〜99.9モル%と、希土類元素、Nb、Wお
よびTaの酸化物からなる群から選ばれた少なく
とも一種の半導体化剤0.1〜1.0モル%とからなる
組成となるように半導体磁器の主成分原料と半導
体化剤とを調合し、得られた混合物を所定形状に
成形した後、中性又は還元性雰囲気中で焼成して
半導体磁器を得、該半導体磁器を自然雰囲気中又
は酸化性雰囲気中で熱処理することにより半導体
磁器の結晶粒界を絶縁体化することを特徴とする
電圧非直線抵抗体用半導体磁器の製造方法。
[Claims] 1 General formula: (Sr 1-xy Ca x ) (Ti 1-y Zr y ) O 3 (where x and y are the mole fractions of each component, and 0.03≦x
≦0.30, 0.02≦y≦0.20) and 99.0 to 99.9 mol% of the main component, and 0.1 to 1.0 mol% of at least one semiconductor forming agent selected from the group consisting of oxides of rare earth elements, Nb, W, and Ta. The main component raw material of semiconductor porcelain and a semiconductor-forming agent are mixed to have a composition consisting of mol%, the resulting mixture is molded into a predetermined shape, and then fired in a neutral or reducing atmosphere to produce semiconductor porcelain. A method for producing a semiconductor ceramic for a voltage nonlinear resistor, characterized in that the crystal grain boundaries of the semiconductor ceramic are made into an insulator by heat-treating the semiconductor ceramic in a natural atmosphere or an oxidizing atmosphere.
JP58064357A 1983-04-11 1983-04-11 Semiconductor porcelain composition for voltage nonlinear resistor Granted JPS59188906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58064357A JPS59188906A (en) 1983-04-11 1983-04-11 Semiconductor porcelain composition for voltage nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58064357A JPS59188906A (en) 1983-04-11 1983-04-11 Semiconductor porcelain composition for voltage nonlinear resistor

Publications (2)

Publication Number Publication Date
JPS59188906A JPS59188906A (en) 1984-10-26
JPH0362005B2 true JPH0362005B2 (en) 1991-09-24

Family

ID=13255914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58064357A Granted JPS59188906A (en) 1983-04-11 1983-04-11 Semiconductor porcelain composition for voltage nonlinear resistor

Country Status (1)

Country Link
JP (1) JPS59188906A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104496398B (en) * 2014-12-04 2016-08-24 西南科技大学 A kind of preparation method of zirconolite type prosthetic graft

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252927A (en) * 1985-08-30 1987-03-07 Sharp Corp Method for forming electrode of thin film semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252927A (en) * 1985-08-30 1987-03-07 Sharp Corp Method for forming electrode of thin film semiconductor device

Also Published As

Publication number Publication date
JPS59188906A (en) 1984-10-26

Similar Documents

Publication Publication Date Title
JPS6328324B2 (en)
SE432097B (en) SINTERED BODY OF SEMI-CONDUCTIVE CERAMIC MATERIAL, PROCEDURE FOR MANUFACTURING THE BODY AND ANY USE OF THE BODY
JPH0362005B2 (en)
US4055438A (en) Barium titanate ceramic
JPH0362004B2 (en)
JPS6126208B2 (en)
JPH0362003B2 (en)
JPS59186308A (en) Semiconductor porcelain composition for voltage nonlinear resistor
JPH0214762B2 (en)
JP2689439B2 (en) Grain boundary insulation type semiconductor porcelain body
JPS606535B2 (en) porcelain composition
JPS59188904A (en) Semiconductor porcelain composition for voltage nonlinear resistor
JPS59188903A (en) Semiconductor porcelain composition for voltage nonlinear resistor
JPS6217368B2 (en)
JPH05345663A (en) Semiconductor ceramic and its production
JP2000003803A (en) Positive temperature coefficient thermistor and production method thereof
JPS6328323B2 (en)
JPH06310363A (en) Semiconductor ceramic and manufacture thereof
JP2000003802A (en) Manufacture of positive temperature coefficient thermistor
JPS6044816B2 (en) Composition for semiconductor ceramic capacitors
JPH0426545A (en) Semiconductive porcelain and its manufacture
JPH0567590B2 (en)
JPS6020344B2 (en) Grain boundary insulated semiconductor ceramic composition
JPH0891925A (en) Barium titanate-based semiconductor ceramic
JPH03285870A (en) Grain boundary insulation type semiconductor porcelain composition and production thereof