JPH0361904B2 - - Google Patents

Info

Publication number
JPH0361904B2
JPH0361904B2 JP58159376A JP15937683A JPH0361904B2 JP H0361904 B2 JPH0361904 B2 JP H0361904B2 JP 58159376 A JP58159376 A JP 58159376A JP 15937683 A JP15937683 A JP 15937683A JP H0361904 B2 JPH0361904 B2 JP H0361904B2
Authority
JP
Japan
Prior art keywords
flaw detection
circular cross
section
eccentric
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58159376A
Other languages
Japanese (ja)
Other versions
JPS6050450A (en
Inventor
Tadanori Kawada
Koichi Ogino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP58159376A priority Critical patent/JPS6050450A/en
Publication of JPS6050450A publication Critical patent/JPS6050450A/en
Publication of JPH0361904B2 publication Critical patent/JPH0361904B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、断面円形(円管状のものを含む。以
下同じ)材料の内部に存在する傷を探知するため
の超音波探傷方法及びその方法の実施に直接使用
する探傷装置に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to an ultrasonic flaw detection method for detecting flaws existing inside a material having a circular cross section (including those having a cylindrical shape; the same applies hereinafter), and an implementation of the method. This relates to flaw detection equipment that is used directly.

〔従来技術〕[Prior art]

従来、断面円形材料の探傷方法として、超音波
を利用した超音波探傷方法が採用されている。こ
のような超音波探傷方法における具体的なものと
しては、(1)探触子を固定して、材料を回転させな
がらその軸方向に搬送する方法と、(2)材料を回転
させ、探触子を材料の軸線方向に移動させる方法
と、(3)探触子を材料の回りに回転させ、材料を回
転させずに軸方向に搬送する方法等が提唱されて
いる。
Conventionally, an ultrasonic flaw detection method using ultrasonic waves has been adopted as a flaw detection method for materials with a circular cross section. Specific examples of such ultrasonic flaw detection methods include (1) a method in which the probe is fixed and the material is conveyed in the axial direction while rotating, and (2) a method in which the material is rotated and the probe is transported in the axial direction. Two methods have been proposed: (3) a method in which the probe is moved in the axial direction of the material; and (3) a method in which the probe is rotated around the material and the material is conveyed in the axial direction without rotating.

しかしながら、前記(1)の方法では、材料を回転
させながらその軸方向に送らねばならないことか
ら搬送機構が複雑となり、また材料の送り速度に
も限度が生じるという欠点があつた。また、材料
に曲がりがあると該材料が円滑な回転をせず、い
わゆる“ぶれ”を生じてしまい、この意味からも
回転速度を上げることができず、生産性が悪くな
るという欠点があつた。
However, the method (1) has the disadvantage that the conveying mechanism is complicated because the material must be fed in the axial direction while being rotated, and there is also a limit to the feeding speed of the material. In addition, if the material is bent, the material will not rotate smoothly, causing so-called "shaking," which also has the disadvantage of making it impossible to increase the rotation speed and reducing productivity. .

また、前記(2)の方法では、材料が曲がつている
と高速回転が難しく生産性が悪くなるという欠点
があり、(3)の方法では、探触子を回転させる機構
が複雑となり、また探触子及び探触子固定部を材
料の直径に応じて個々に調整又は全部交換する必
要があるために材料の段取替えに長時間を要し、
また探触子と材料との間の間隙が少ないために材
料に曲がりがあると回転体に接触するような事態
が生じ前記曲がりの度合を非常に小さくしなけれ
ばならないという欠点があつた。また前記(1)〜(3)
の方法は、いずれも探傷軌跡が螺線状となつて軸
方向に不連続な探傷となり、傷の検出長さ上不利
があつた。
In addition, method (2) has the disadvantage that if the material is curved, high-speed rotation becomes difficult and productivity decreases, and method (3) requires a complicated mechanism for rotating the probe. It takes a long time to change the material setup because the probe and the probe fixing part need to be adjusted individually or completely replaced depending on the diameter of the material.
Furthermore, since the gap between the probe and the material is small, if the material is bent, it may come into contact with the rotating body, and the degree of bending must be kept very small. Also, (1) to (3) above
In both of these methods, the flaw detection locus was spiral, resulting in discontinuous flaw detection in the axial direction, which was disadvantageous in terms of the flaw detection length.

〔発明の目的〕 本発明は、上記従来の欠点を克服せんとするも
ので、探触子と材料の両方共に回転させることな
く、材料を軸方向に搬送し、垂直探触子を偏心探
触子(垂直探触子が材料の軸心に対して左右どち
らかに偏心して取付けられたものをいう。以下同
じ)とをそれぞれ複数個づつ設置することによつ
て、断面円形材料の連続的全断面高速自動探傷を
可能ならしめんとするものである。
[Object of the Invention] The present invention aims to overcome the above-mentioned drawbacks of the prior art, and aims to transport the material in the axial direction without rotating both the probe and the material, and convert the vertical probe into an eccentric probe. By installing a plurality of vertical probes (in which a vertical probe is mounted eccentrically to the left or right with respect to the axis of the material; the same applies hereinafter), it is possible to continuously measure the entire surface of a material with a circular cross section. The aim is to enable high-speed automatic cross-sectional flaw detection.

〔発明の構成〕[Structure of the invention]

第1発明は、断面円形材料を回転させずに軸線
方向に流体中を搬送させ、前記材料の外周部にそ
つて周方向に複数個配設された垂直探触子からな
る中心部探傷手段と、前記中心部探傷手段と並設
され、かつ前記材料の中心に対して偏心させて前
記材料の外周部にそつて周方向に複数個配設され
た偏心探触子からなる周辺部探傷手段と、前記中
心部探傷手段および前記周辺部探傷手段で探傷で
きる空間内を、前記軸線方向に前記材料を搬送せ
しめることにより該材料内部の全断面を連続的に
探傷する構成となつている。
A first aspect of the present invention includes a central flaw detection means that transports a material having a circular cross section in the axial direction through a fluid without rotating it, and includes a plurality of vertical probes arranged in the circumferential direction along the outer periphery of the material. , peripheral flaw detection means consisting of a plurality of eccentric probes disposed in parallel with the center flaw detection means and circumferentially along the outer periphery of the material eccentrically with respect to the center of the material; The material is conveyed in the axial direction through a space that can be inspected by the center flaw detection means and the peripheral flaw detection means, thereby continuously detecting the entire cross section inside the material.

また第2発明は、流体を収容する枠体と、該流
体に没した状態で断面円形材料を搬送する材料搬
送機構と、該材料の近傍に配設された探触子とを
有する超音波探傷装置において、 断面円形材料の外周部にそつて周方向に複数設
けた垂直探触子からなる中心部探傷手段と、前記
中心部探傷手段と並設され、かつ前記材料の中心
に対して偏心させて前記材料の外周部にそつて周
方向に複数個配設された偏心探触子からなる周辺
部探傷手段と、前記材料をその軸線方向に押圧す
るための押圧手段とを設けた構成となつている。
Further, the second invention provides an ultrasonic flaw detection system that includes a frame body that accommodates a fluid, a material transport mechanism that transports a material with a circular cross section while being immersed in the fluid, and a probe that is disposed near the material. The apparatus includes: a center flaw detection means consisting of a plurality of vertical probes provided circumferentially along the outer periphery of a material with a circular cross section; and a peripheral flaw detection means consisting of a plurality of eccentric probes arranged in the circumferential direction along the outer periphery of the material, and a pressing means for pressing the material in the axial direction thereof. ing.

〔発明の効果〕〔Effect of the invention〕

本発明は、材料、探触子ともに回転しない構成
であり複数の探触子を用いる構成であるから従来
の如き回転機構を設ける必要がなく機構が簡単と
なり、安価であつて、さらには断面全体を確実に
連続探傷できる。また、従来のもの、特に材料を
回転させながら搬送する方式のものに比べ、材料
を高速で搬送することができ生産性を高めること
ができる。また材料の直径が変つた場合には材料
に応じて取付具や探触子を別途用意して用いるか
ら、段取時間が短かくて済み、この面からも生産
性が高い。
The present invention has a structure in which neither the material nor the probe rotates, and it uses a plurality of probes, so there is no need to provide a rotation mechanism like in the past, making the mechanism simple, inexpensive, and furthermore, the entire cross-section can be reliably and continuously detected. Furthermore, compared to conventional systems, especially systems in which the material is transported while rotating, the material can be transported at high speed and productivity can be increased. Furthermore, when the diameter of the material changes, fittings and probes are separately prepared and used depending on the material, so setup time is short and productivity is high from this point of view as well.

また倣い機構を設けた場合、曲がり部のある材
料が搬送されてきても該機構全体が第1ピン回り
に揺動するから前記曲がり部に迅速に対応し得、
また探触子自体も倣い機構とともに材料の軸線と
直角な方向に動くため該探触子と材料表面との間
隔を一定に保つことができ、これがため材料の曲
がりの度合が多少大きくても対応することができ
る。また前記倣い機構を設けた場合、材料に対す
る押圧力ないしは把持力として最適な値を得るこ
とができる。
In addition, when a copying mechanism is provided, even if a material with a curved portion is conveyed, the entire mechanism swings around the first pin, so the curved portion can be quickly dealt with.
In addition, since the probe itself moves in a direction perpendicular to the axis of the material along with the tracing mechanism, the distance between the probe and the material surface can be kept constant, so even if the material is slightly curved, it can be handled. can do. Further, when the copying mechanism is provided, an optimal value can be obtained as the pressing force or gripping force against the material.

また、垂直探触子と偏心探触子のうち垂直探触
子を取外して偏心探触子のみを用いれば円管状材
料を探傷することができる。
Moreover, by removing the vertical probe of the vertical probe and the eccentric probe and using only the eccentric probe, it is possible to detect flaws in a cylindrical material.

〔実施例〕〔Example〕

以下本発明の実施例を添付図面に基づいて説明
する。
Embodiments of the present invention will be described below based on the accompanying drawings.

第1図は本発明を具体化した超音波探傷装置の
全体正面図、第2図は第1図の右側面図であつ
て、これらの図において符号1は枠体であり、該
枠体1には水2が略8分目の深さまで収容され常
に一定量が維持されるように給水される。
FIG. 1 is an overall front view of an ultrasonic flaw detection device embodying the present invention, and FIG. 2 is a right side view of FIG. Water 2 is stored in the tank to a depth of approximately 8 minutes, and water is supplied so that a constant amount is always maintained.

前記枠体1の両側壁に設けられた穴にはシール
部材3を介して断面円形材料Wが貫通設置され、
該材料Wの下側にはV溝を有するローラ4,5が
設けられ、このローラ4,5が図示してない駆動
源によつて回転せしめられるため材料Wは矢印方
向に搬送される。
A material W having a circular cross section is inserted through the holes provided in both side walls of the frame body 1 via a sealing member 3,
Rollers 4 and 5 having V-grooves are provided below the material W, and since the rollers 4 and 5 are rotated by a drive source (not shown), the material W is conveyed in the direction of the arrow.

固定部材である前記枠体1の上部側壁には架台
6が橋架固定され、この架台6上の第1図におけ
る紙面垂直方向の両端近傍には2個の軸受7がそ
れぞれ固定(第2図)されている。該両軸受7間
には枢軸8を介して軸受ハウジング9が揺動自在
に枢着され、該ハウジングは、前記軸8の外周部
に設けられた2個の圧縮コイルスプリング10に
より中央部方向に付勢されている。前記軸受ハウ
ジング9上にはベース部材11が固定されてい
る。このベース部材11は、丸棒部分11aと板
状部分11bとから成り、丸棒部分11aにはバ
ランス調整用のウエート12が該丸棒部分11a
の軸線方向に摺動可能な如く取付けられている。
該軸線方向の適宜位置においてボルト13により
ウエート12は丸棒部分11aに固定されてい
る。
A pedestal 6 is fixed to the upper side wall of the frame 1, which is a fixed member, and two bearings 7 are fixed to each of the pedestals 6 near both ends in the direction perpendicular to the plane of the paper in FIG. 1 (FIG. 2). has been done. A bearing housing 9 is pivotally mounted between the two bearings 7 via a pivot 8, and the housing is rotated toward the center by two compression coil springs 10 provided on the outer periphery of the shaft 8. energized. A base member 11 is fixed on the bearing housing 9. This base member 11 consists of a round bar part 11a and a plate-like part 11b, and a weight 12 for balance adjustment is attached to the round bar part 11a.
It is attached so that it can slide in the axial direction.
The weight 12 is fixed to the round bar portion 11a by bolts 13 at appropriate positions in the axial direction.

前記架台6上にはブリツジアーム111が固定
され、該アーム111には調整ボルト112が取
付けられ、また該アーム111の内側には2個の
圧縮コイルスプリング113が装着されている。
これにより前記ベース部材11は、軸8回りであ
つて、第1図の時計方向に付勢力を受けている。
A bridge arm 111 is fixed on the pedestal 6, an adjustment bolt 112 is attached to the arm 111, and two compression coil springs 113 are attached to the inside of the arm 111.
As a result, the base member 11 is subjected to an urging force around the shaft 8 in the clockwise direction in FIG.

前記板状部分11bの先端にはメネジ部材14
が固定され該メネジ部材14のメネジ部にはネジ
軸15が螺合配設され、バンドル16を回転させ
るとネジ軸15が上下動するようになつている。
前記ネジ軸15の下端には矩形状の上方プレート
17が固定され更にその下面には2個のメタルハ
ウジング18が固定され(第2図参照)、該メタ
ルハウジング18と他の2個の軸受19により枢
軸20が回動可能な如くに装着されている。前記
軸受19は下方の略矩形状の下方プレート21に
固定されているために、これら軸受19とプレー
ト21は一体的に前記軸20回りに揺動できる。
ただし、前記プレート17,21間には4個の圧
縮コイルスプリング22が調整用取付ボルト22
1を介して設けられているため、後述の4個のロ
ーラ32が材料Wに押圧されていることとなる。
A female screw member 14 is provided at the tip of the plate-like portion 11b.
is fixed, and a threaded shaft 15 is screwed into the female threaded portion of the female threaded member 14, and when the bundle 16 is rotated, the threaded shaft 15 moves up and down.
A rectangular upper plate 17 is fixed to the lower end of the screw shaft 15, and two metal housings 18 are fixed to the lower surface thereof (see FIG. 2). The pivot 20 is rotatably mounted. Since the bearing 19 is fixed to the substantially rectangular lower plate 21 located below, the bearing 19 and the plate 21 can swing together around the shaft 20.
However, between the plates 17 and 21, four compression coil springs 22 are attached to the adjustment mounting bolts 22.
1, four rollers 32, which will be described later, are pressed against the material W.

尚、前記上方プレート17の上面には、該プレ
ート17のベース部材11に対する上下動量を判
断するためのブロツク23が固定されてその端部
に指針24が設けられ、上記ベース部材11に上
端が固定された目盛板25に沿つて前記指針24
が上下動するようになつている。
A block 23 is fixed to the upper surface of the upper plate 17 for determining the amount of vertical movement of the plate 17 with respect to the base member 11, and a pointer 24 is provided at the end of the block 23, and the upper end is fixed to the base member 11. The pointer 24 along the scale plate 25
is moving up and down.

前記下方プレート21の下面には、1枚のホル
ダプレート26と、該プレート26を一定間隔お
いて挟む如くに2個の門形状ブラケツト27が固
定されている。ホルダプレート26の両面には垂
直探触子28と偏心探触子29がそれぞれ取付部
材30a,30bを介して取付けられている。本
実施例では垂直探触子28は4個取区られ、偏心
探触子29は8個取付けられているが、材料の直
径dが大きいもののときは個数を増やすようにす
ればよい。なお、本実施例のホルダプレート26
の4個の垂直探触子28とで本発明の中心部探傷
手段が構成され、本実施丁のホルダプレート26
と8個の偏心探触子29とで本発明の周面部探傷
手餡段が構成されている。
A holder plate 26 and two gate-shaped brackets 27 are fixed to the lower surface of the lower plate 21 so as to sandwich the plate 26 at a constant distance. A vertical probe 28 and an eccentric probe 29 are attached to both sides of the holder plate 26 via attachment members 30a and 30b, respectively. In this embodiment, four vertical probes 28 and eight eccentric probes 29 are installed, but the number may be increased if the diameter d of the material is large. Note that the holder plate 26 of this embodiment
The four vertical probes 28 constitute the central flaw detection means of the present invention, and the holder plate 26 of this embodiment
and eight eccentric probes 29 constitute the peripheral surface flaw detection means of the present invention.

ここで、垂直探触子28が取付けられている部
材30aを取外せば、円管状の材料を偏心探触子
29のみによつて探傷することができるようにな
つている。
If the member 30a to which the vertical probe 28 is attached is removed, the circular tube-shaped material can be inspected for flaws using only the eccentric probe 29.

中心部探傷手段を構成する前記垂直探触子28
は第3図の如く材料Wの外周部(等分筒所でなく
てもよい)に4個取付けられて該材料Wの中心部
の探傷を行うものであり、一方、周辺部探傷手段
を構成する偏心探触子29は第4図の如くに8個
取付けられ該探触子29の軸線は材料の中心Oに
対して一定量づつ右側に偏心して取付けられてい
る。この偏心方向は、すべて左側に偏心せしめて
もよい。また、第1図の2個の門形状ブラケツト
27間の間隔をもう少し広くして、取手部材30
bと同じものをもう1つ装着し、本実施例の如き
右側に偏心した8個の偏心探触子29とは別に、
左側に偏心した8個の偏心探触子(第4図の二点
鎖線の如し)を追加装着してもよい。このように
したときは、材料内部の傷をより一層正確に探傷
することができる。
The vertical probe 28 constituting the center flaw detection means
As shown in Fig. 3, four of them are attached to the outer periphery of the material W (not necessarily equally spaced) to detect flaws in the center of the material W, and on the other hand, constitute the peripheral flaw detection means. Eight eccentric probes 29 are attached as shown in FIG. 4, and the axes of the probes 29 are eccentric to the right by a certain amount with respect to the center O of the material. This eccentric direction may be entirely eccentric to the left. Also, the distance between the two gate-shaped brackets 27 in FIG.
One more probe similar to b is attached, and apart from the eight eccentric probes 29 eccentric to the right as in this embodiment,
Eight eccentric probes eccentric to the left (as indicated by two-dot chain lines in FIG. 4) may be additionally installed. When this is done, flaws inside the material can be detected even more accurately.

さらには、第3図の垂直探触子を有する取付部
材30aに偏心探触子29を併設する構成とし
て、取付部材30bを省略してもよい。
Furthermore, the mounting member 30b may be omitted so that the eccentric probe 29 is attached to the mounting member 30a having the vertical probe shown in FIG.

尚、前記ホルダプレート26は3個のボルト3
1によつて前記下方プレート21に固定されてい
る。
Note that the holder plate 26 has three bolts 3.
1 to the lower plate 21.

一方、前記2個の門形状ブラケツト27のそれ
ぞれの端部には材料Wの表面に常時当接してころ
がり接触し互いにαの角をなしてそれぞれの軸線
回りに回転しうるような2個づつ合計4個のロー
ラ32が設けられている。ここで、上記のよう
な、ウエート12,ベース部材11,ネジ軸1
5,上方・下方プレート17,21,スプリング
22,門形状ブラケツト27,ローラ32で構成
される機構を“倣い機構”Nと以下称する。
On the other hand, at each end of the two gate-shaped brackets 27, there are two brackets in total, which are in constant rolling contact with the surface of the material W and can rotate about their respective axes at an angle α to each other. Four rollers 32 are provided. Here, as described above, the weight 12, the base member 11, the screw shaft 1
5. A mechanism composed of the upper and lower plates 17, 21, spring 22, gate-shaped bracket 27, and roller 32 is hereinafter referred to as a "copying mechanism" N.

上記のようにローラ32を常時材料Wの表面に
当接させて、ウエート12を適度に調節して前記
材料Wの表面に対して適量の押圧力を生ぜしめて
いるのは、材料Wが浮き上らないようにローラ
4,5に押し付けんがためである。また、材料W
に曲がりがあると材料Wの搬送時にその部分がロ
ーラ32を例えば押し上げることになつた場合に
は倣い機構N自体が軸8廻りにわずかに揺動し、
同時にすべての探触子28,29が上方に動くた
め、該探触子28,29と材料Wの表面との間隙
は常に一定に保たれる。また逆に前記材料Wの曲
がりにより該材料Wが下方に凸の状態になつた場
合には、倣い機構Nの自重によつて該機構Nが軸
8回りに時計方向に揺動するためローラ32が材
料Wの表面に押圧される。
The reason why the roller 32 is constantly brought into contact with the surface of the material W and the weight 12 is appropriately adjusted to generate an appropriate amount of pressing force against the surface of the material W as described above is because the material W is lifted up. This is to press it against the rollers 4 and 5 to prevent it from happening. Also, material W
If there is a bend in the material W, if that part pushes up the roller 32, for example, the copying mechanism N itself will swing slightly around the axis 8.
Since all the probes 28, 29 move upward at the same time, the gap between the probes 28, 29 and the surface of the material W is always kept constant. Conversely, when the material W becomes convex downward due to bending, the copying mechanism N swings clockwise around the shaft 8 due to its own weight, so the roller 32 is pressed onto the surface of the material W.

第1図において材料Wが矢印方向に一定の搬送
速度V(例えば、60m/sec)で搬送すると、最初
に垂直探触子28によつて材料Wの中心部が探傷
され、次に隣りの偏心探触子29によつて中心部
を除いた外周部が探傷され、結局材料Wの全断面
が連続的に探傷されることとなる。
In FIG. 1, when the material W is transported in the direction of the arrow at a constant transport speed V (for example, 60 m/sec), the center of the material W is first detected by the vertical probe 28, and then the adjacent eccentric The probe 29 tests the outer periphery except for the center, and eventually the entire cross section of the material W is tested continuously.

探傷すべき材料Wの直径dが変つた場合は、ハ
ンドル16を回してネジ軸15を上下動させ、ロ
ーラ32を上下動させて調節する。また、ボルト
31を取外すことによつて、取付けてあるホルダ
プレート26を別途用意してある別のものに取替
え、再びボルト31で下方プレート21に固定す
る。このように本実施例では、材料Wの直径値に
応じて下方プレート21及び探触子28,29が
種々用意してあり迅速に取替えることができるよ
うになつている。ただし、探触子は高価である関
係上、数セツト用意し取付部材30a,30bに
対して脱着しうるようになつている。
When the diameter d of the material W to be detected changes, the handle 16 is turned to move the screw shaft 15 up and down, and the roller 32 is moved up and down to adjust it. Further, by removing the bolts 31, the attached holder plate 26 is replaced with another separately prepared one, and the bolt 31 is again fixed to the lower plate 21. In this manner, in this embodiment, various types of lower plate 21 and probes 28, 29 are prepared depending on the diameter value of the material W, so that they can be quickly replaced. However, since probes are expensive, several sets are prepared so that they can be attached to and detached from the mounting members 30a and 30b.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を具体化した超音波探傷装置の
全体正面図、第2図は第1図の右側面図、第3図
は垂直探触子28による探傷状況を示す説明図、
第4図は偏心探触子29による探傷状況を示す説
明図である。 1……枠体、2……水、8……枢軸(第1ピ
ン)、11……ベース部材、12……ウエート、
N……倣い機構、W……断面円形材料、17,2
1……プレート、28……垂直探触子、29……
偏心探触子、32……ローラ。
FIG. 1 is an overall front view of an ultrasonic flaw detection device embodying the present invention, FIG. 2 is a right side view of FIG. 1, and FIG. 3 is an explanatory diagram showing a flaw detection situation using a vertical probe 28.
FIG. 4 is an explanatory diagram showing a flaw detection situation using the eccentric probe 29. 1...Frame body, 2...Water, 8...Pivot (first pin), 11...Base member, 12...Weight,
N... Copying mechanism, W... Circular cross section material, 17,2
1...Plate, 28...Vertical probe, 29...
Eccentric probe, 32...roller.

Claims (1)

【特許請求の範囲】 1 断面円形材料を回転させずに軸線方向に流体
中を搬送させ、前記材料の外周部にそつて周方向
に複数個配設された垂直探触子からなる中心部探
傷手段と、前記中心部探傷手段と並設され、かつ
前記材料の中心に対して偏心させて前記材料の外
周部にそつて周方向に複数個配設された偏心探触
子からなる周辺部探傷手段と、前記中心部探傷手
段および前記周辺部探傷手段で探傷できる空間内
を、前記軸線方向に前記材料を搬送せしめること
により該材料内部の全断面を連続的に探傷する断
面円形材料の超音波探傷方法。 2 流体を収容する枠体と、該流体に没した状態
で断面円形材料を搬送する材料搬送機構と、該材
料の近傍に配設された探触子とを有する超音波探
傷装置において、 断面円形材料の外周部にそつて周方向に複数個
設けた垂直探触子からなる中心部探傷手段と、前
記中心部探傷手段と並設され、かつ前記材料の中
心に対して偏心させて前記材料の外周部にそつて
周方向に複数個配設された偏心探触子からなる周
辺部探傷手段と、前記材料をその軸線方向に押圧
するための押圧手段とを設けたことを特徴とする
断面円形材料の超音波探傷装置。 3 垂直探触子は、円管状の材料を探傷するとき
は取外すことが可能である特許請求の範囲第2項
記載の断面円形材料の超音波探傷装置。 4 周辺部探傷手段は、個々の軸線が断面円形材
料の軸心に対して右側に偏心している偏心探触子
と、左側に偏心している偏心探触子とで構成され
ている特許請求の範囲第2項記載の断面円形材料
の超音波探傷装置。 5 押圧手段は、断面円形材料の下側に設けたV
溝ローラ機構と、該材料の上側に設けた倣い機構
とで構成されている特許請求の範囲第2項記載の
断面円形材料の超音波探傷装置。 6 倣い機構は、第1ピン回りに揺動自在であつ
て該ピンの一方の側に配設されたバランスウエー
トと、他方の側に配設され自重によつて下端部の
ローラが断面円形材料の上側に常時当接している
倣い本体とで構成されている特許請求の範囲第6
項記載の断面円形材料の超音波探傷装置。 7 倣い本体は、第1ピンに揺動自在に設けられ
たベース部材と、該部材の端部に設けられ上下動
自在のネジ軸と、該ネジ軸下端の第2ピン回りに
揺動自在のプレートと、該プレートの下面に固定
され材料の軸線方向に複数個配設された門形状ブ
ラケツトと、該ブラケツトの下端に設けられ材料
の上側表面に当接する複数のローラと、前記ネジ
軸とプレートとの間に介在せしめられたバネ手段
とで構成されている特許請求の範囲第7項記載の
断面円形材料の超音波探傷装置。
[Claims] 1. Center flaw detection consisting of a plurality of vertical probes arranged in the circumferential direction along the outer periphery of the material, in which a material having a circular cross section is conveyed through a fluid in the axial direction without being rotated. and a peripheral flaw detection comprising a plurality of eccentric probes arranged in parallel with the center flaw detection means and eccentrically arranged with respect to the center of the material in the circumferential direction along the outer periphery of the material. ultrasonic waves for a material with a circular cross section, which continuously detects flaws in the entire internal cross section of the material by transporting the material in the axial direction within a space that can be detected by the center flaw detection means and the peripheral flaw detection means; Flaw detection method. 2. In an ultrasonic flaw detection device having a frame body that accommodates a fluid, a material transport mechanism that transports a material with a circular cross section submerged in the fluid, and a probe disposed near the material, A center flaw detection means consisting of a plurality of vertical probes provided in the circumferential direction along the outer periphery of the material, and a center flaw detection means arranged in parallel with the center flaw detection means and eccentric to the center of the material. A circular cross-section characterized by being provided with peripheral flaw detection means consisting of a plurality of eccentric probes arranged in the circumferential direction along the outer periphery, and pressing means for pressing the material in the axial direction. Ultrasonic flaw detection equipment for materials. 3. The ultrasonic flaw detection device for materials with a circular cross section according to claim 2, wherein the vertical probe can be removed when flaw detecting a circular tube-shaped material. 4. Claims in which the peripheral flaw detection means is comprised of an eccentric probe whose individual axes are eccentric to the right with respect to the axis of the material with a circular cross section, and an eccentric probe whose respective axes are eccentric to the left 2. An ultrasonic flaw detection device for a material with a circular cross section according to item 2. 5 The pressing means is a V provided on the lower side of the material with a circular cross section.
3. The ultrasonic flaw detection apparatus for a material having a circular cross section as claimed in claim 2, which comprises a groove roller mechanism and a copying mechanism provided on the upper side of the material. 6. The copying mechanism includes a balance weight that is swingable around the first pin and is disposed on one side of the pin, and a roller on the lower end that is made of a material with a circular cross section by its own weight and is disposed on the other side. Claim 6 consists of a copying body that is always in contact with the upper side.
An ultrasonic flaw detection device for a material with a circular cross section as described in 2. 7 The copying body includes a base member that is swingably provided on a first pin, a screw shaft that is provided at the end of the member and is movable up and down, and a base member that is swingable around a second pin at the lower end of the screw shaft. a plate, a plurality of gate-shaped brackets fixed to the lower surface of the plate and arranged in the axial direction of the material, a plurality of rollers provided at the lower end of the bracket and in contact with the upper surface of the material, the screw shaft and the plate. 8. The ultrasonic flaw detection apparatus for a material with a circular cross section according to claim 7, comprising a spring means interposed between the cylindrical member and the cylindrical member.
JP58159376A 1983-08-31 1983-08-31 Ultrasonic flaw detection and its apparatus for round- sectioned material Granted JPS6050450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58159376A JPS6050450A (en) 1983-08-31 1983-08-31 Ultrasonic flaw detection and its apparatus for round- sectioned material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58159376A JPS6050450A (en) 1983-08-31 1983-08-31 Ultrasonic flaw detection and its apparatus for round- sectioned material

Publications (2)

Publication Number Publication Date
JPS6050450A JPS6050450A (en) 1985-03-20
JPH0361904B2 true JPH0361904B2 (en) 1991-09-24

Family

ID=15692460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58159376A Granted JPS6050450A (en) 1983-08-31 1983-08-31 Ultrasonic flaw detection and its apparatus for round- sectioned material

Country Status (1)

Country Link
JP (1) JPS6050450A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4564867B2 (en) * 2005-03-14 2010-10-20 日本クラウトクレーマー株式会社 Ultrasonic flaw detection method and apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116251A (en) * 1979-03-01 1980-09-06 Nippon Steel Corp Method and apparatus for detecting oblique crack in seamless pipe by supersonic wave
JPS5629160A (en) * 1979-08-17 1981-03-23 Nippon Steel Corp Ultrasonic wave crack finding method for rod and its device
JPS58135959A (en) * 1982-02-09 1983-08-12 Sumitomo Metal Ind Ltd Ultrasonic flaw detector for round bar

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116251A (en) * 1979-03-01 1980-09-06 Nippon Steel Corp Method and apparatus for detecting oblique crack in seamless pipe by supersonic wave
JPS5629160A (en) * 1979-08-17 1981-03-23 Nippon Steel Corp Ultrasonic wave crack finding method for rod and its device
JPS58135959A (en) * 1982-02-09 1983-08-12 Sumitomo Metal Ind Ltd Ultrasonic flaw detector for round bar

Also Published As

Publication number Publication date
JPS6050450A (en) 1985-03-20

Similar Documents

Publication Publication Date Title
CN101256173B (en) Manual scanner for spiral weld joint
US20170030867A1 (en) Probe holder providing constant lift-off for in-line bar-pipe testing
GB2096031A (en) Method and apparatus for the controlled grinding of flaws on rollers
US4586380A (en) Ultrasonic transducer assembly
US2170640A (en) Fatigue testing machine
JPH0361904B2 (en)
US4173278A (en) Transport mechanism for parts
US3872378A (en) Apparatus for supporting and propelling material through magnetic flaw detection devices
US3919628A (en) Method and apparatus for rotating a flaw detector about a test piece and guiding it relative to undulations and bends
JP2803126B2 (en) Flaw detector
JPH1137977A (en) Rotary probe type eddy flaw detector
US3787983A (en) Roller support and drive arrangement for roller testing devices
US3135385A (en) Article feeding apparatus for inspection equipment
CN216433990U (en) Manual ultrasonic flaw detection tool for detecting pipe defects
JPS6259777B2 (en)
JPS58135959A (en) Ultrasonic flaw detector for round bar
US3666951A (en) Device for detecting defects in continuous web material
JPS5824740B2 (en) Corner radius inspection device for magnetic flaw detector for square steel materials
JPS6219753A (en) Jig for ultrasonic flaw detection
JPH0968421A (en) Method and apparatus for automatic detection of surface-roughness abnormal product
JPS6314780B2 (en)
JPH05196403A (en) Method for detecting abnormality in dimensions of wire and line materials
JPS5916831Y2 (en) flaw detection equipment
FR2504704A1 (en) METHOD AND DEVICE FOR NON-CONTACT GUIDING OF NON-DESTRUCTIVE TUBE CONTROL APPARATUS
JPS6326864B2 (en)