JPH0361883A - Dose-equivalent measuring apparatus - Google Patents

Dose-equivalent measuring apparatus

Info

Publication number
JPH0361883A
JPH0361883A JP19862089A JP19862089A JPH0361883A JP H0361883 A JPH0361883 A JP H0361883A JP 19862089 A JP19862089 A JP 19862089A JP 19862089 A JP19862089 A JP 19862089A JP H0361883 A JPH0361883 A JP H0361883A
Authority
JP
Japan
Prior art keywords
dose equivalent
dose
radiation
detection
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19862089A
Other languages
Japanese (ja)
Other versions
JPH0553386B2 (en
Inventor
Hiroo Sato
佐藤 博夫
Masayasu Mito
三戸 正康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co Ltd filed Critical Aloka Co Ltd
Priority to JP19862089A priority Critical patent/JPH0361883A/en
Publication of JPH0361883A publication Critical patent/JPH0361883A/en
Publication of JPH0553386B2 publication Critical patent/JPH0553386B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to measure both 1-cm dose equivalent and 3-mm dose equivalent efficiently with a single apparatus by providing a first incident window for transmitting a low energy region excellently and an adjusting window which can be freely attached to and removed from the first incident window. CONSTITUTION:A first incident window 29 and an adjusting window 30 are provided at a first detecting part 10. For example, a voltage of -500V is applied to an applying electrode 18 of the first detecting part 10. At this time, when, e.g. +20V is applied to a first capacitance correcting electrode 32, the effective volume of the ionization chamber of the first detecting part 10 can be reduced by about 4 - 5%. Thus, the total detecting sensitivity can be lowered by a specified level. Meanwhile, a voltage of +500V is applied to an applying electrode 20 of a second detecting part 12. At this time, when, e.g. -20V is applied to a second capacitance correcting electrode 34, the effective volume of the ionization chamber of the second detecting part 12 can be reduced by 4% or more. Thus the radiation of a characteristic curve 202 can be measured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は線量当量測定装置、特に原子力関係分野、核融
合分野、放射線利用分野でのγ線、X線の被曝管理に用
いられ、1cI線量当量や3mm線量当量を直読する線
量当量測定装置の構成に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a dose equivalent measuring device, which is used for controlling exposure to γ-rays and The present invention relates to the configuration of a dose equivalent measurement device that directly reads equivalents and 3mm dose equivalents.

[従来の技術] 近年では、原子力関係分野や放射線利用分野などにて放
射線の測定が重要となっているが、従来ではγ線、X線
などの外部被曝線員は照射線量や吸収線量の測定により
行われていた。
[Conventional technology] In recent years, measurement of radiation has become important in fields related to nuclear power and fields that utilize radiation, but in the past, radiation doses such as γ-rays, X-rays, etc. were measured by personnel exposed to external radiation It was carried out by

ところが、国際防護委員会(ICRP)の勧告に基づく
放射線障害防止法の改正により、照射線量や吸収線量の
測定ではなく、生体内部におけるエネルギ特性を考慮し
た放射線量である線量当量、すなわち1cm線量当量、
3開線量当量あるいは70μm線量当量により外部被曝
線量を特定するようになった。しかし、従来の測定装置
では線量当量を直読することはできず、照射線量などか
ら線量当量を換算して求めており、測定操作が煩雑であ
るという問題があった。
However, due to the revision of the Act on Prevention of Radiation Hazards based on the recommendations of the International Commission on Physical Protection (ICRP), instead of measuring irradiated dose or absorbed dose, the dose equivalent, which is the radiation dose that takes into account the energy characteristics inside the living body, has been changed to the 1 cm dose equivalent. ,
External exposure doses are now specified by 3-open dose equivalent or 70 μm dose equivalent. However, with conventional measuring devices, it is not possible to directly read the dose equivalent, and the dose equivalent is calculated from the irradiation dose, etc., which poses a problem in that the measurement operation is complicated.

そこで、本願出願人は、特願昭62−292295号に
て!IJ1当量を測定できる装置を提案しており、この
発明の一例の概略が第3図に示されている。
Therefore, the applicant of this application filed Japanese Patent Application No. 62-292295! We have proposed an apparatus capable of measuring IJ1 equivalent, and an example of this invention is schematically shown in FIG.

第3図において、第1の検出部10と第2の検出部12
は円筒形状の二重構造となっており、第1の検出部10
には例えば低エネルギ領域に着目して(もちろん中・高
エネルギのものも検出される)1cm線量当量を測定す
るための厚さの第1入射窓14が設けられ、第2の検出
部12には低エネルギ以外の中・高エネルギ領域の放射
線のみを所定量だけ検出する厚さの第2入射窓16が設
けられる。前記第1入射窓14は原子番号30以下の銅
(29)、ニッケル(28) 、コバルト(27)、鉄
(26) 、チタン(22)、アルミニウム(13) 
、ベリリウム(4)などの単一金属や合金あるいは炭素
(5)等で導電性とするプラスチック等を用いて形成さ
れ、第2入射窓15には鉄(26)等を用い電極も兼ね
る構成とする。
In FIG. 3, a first detection section 10 and a second detection section 12
has a cylindrical double structure, and the first detection part 10
For example, a first entrance window 14 with a thickness for measuring a 1 cm dose equivalent is provided, focusing on a low energy region (of course, medium and high energy regions are also detected), and a first entrance window 14 is provided in the second detection section 12. A second entrance window 16 is provided with a thickness to detect only a predetermined amount of radiation in medium and high energy regions other than low energy. The first entrance window 14 is made of copper (29), nickel (28), cobalt (27), iron (26), titanium (22), and aluminum (13) with an atomic number of 30 or less.
, is formed using a single metal such as beryllium (4), an alloy, or a plastic made conductive with carbon (5), etc., and the second entrance window 15 is made of iron (26), etc., and also serves as an electrode. do.

従って、第4図に示されるように、第1の検出部10か
らは曲線101に示される特性の放射線量が測定され、
12の検出部12では曲線102に示される特性の放射
線量が測定される。
Therefore, as shown in FIG. 4, the radiation dose having the characteristic shown by the curve 101 is measured from the first detection unit 10,
In the 12 detection units 12, the radiation dose having the characteristics shown by the curve 102 is measured.

そして、jfilの検出部10の印加電極18には負極
の所定電圧が加えられ、一方第2の検出部12の印加電
極(中心電極)20には正極の所定電圧が加えられてお
り、第2の検出部12の第2入射窓ともなっている集電
極(16)により、検出部内で発生した電離電荷を集電
することになる。
A predetermined negative voltage is applied to the application electrode 18 of the detection unit 10 of jfil, while a predetermined positive voltage is applied to the application electrode (center electrode) 20 of the second detection unit 12. The collector electrode (16), which also serves as the second entrance window of the detection section 12, collects the ionized charges generated within the detection section.

なお、第1の検出部10と第2の検出部12は絶縁体2
2により、第2入射窓16と印加電極20は絶縁体24
により電気的に分離されている。
Note that the first detection section 10 and the second detection section 12 are connected to the insulator 2.
2, the second entrance window 16 and the application electrode 20 are insulators 24
electrically isolated by

このようにして前記第2入射窓15で捉えられた集電流
はエレクトロメータ26(振動容量電位計等でもよい)
に供給され、ここで放射線量として測定される。
The collected current captured by the second entrance window 15 in this way is collected by an electrometer 26 (an oscillating capacitance electrometer or the like may be used).
The radiation dose is measured here as a radiation dose.

この場合、第1の検出部10と第2の検出部12で得ら
れる集電流は極性が逆に設定されているので、両検出部
10.12の検出電流が相殺され差分の電流が検出され
ることになる。従って、第4図に示されるように、第1
の検出部10で検出された曲線101の放射線量から第
2の検出部12で検出された曲線102の放射線量を差
し引くことになり、結果的には曲線100の特性の放射
線量が測定されることになる。この特性曲線100は、
第5図に示されるように、照射線量(C/kg)から線
量当jl(シーベルトSv)への換算曲線に相当するも
のであり、これにより線量当量の単位(S v)での測
定が可能となる。
In this case, since the polarities of the collected currents obtained by the first detecting section 10 and the second detecting section 12 are set to be opposite, the detected currents of both detecting sections 10.12 are canceled out, and the difference current is detected. That will happen. Therefore, as shown in FIG.
The radiation dose of the curve 102 detected by the second detection unit 12 is subtracted from the radiation dose of the curve 101 detected by the second detection unit 10, and as a result, the radiation dose characteristic of the curve 100 is measured. It turns out. This characteristic curve 100 is
As shown in Figure 5, it corresponds to the conversion curve from irradiation dose (C/kg) to dose equivalent jl (sievert Sv), and this allows measurement in the unit of dose equivalent (Sv). It becomes possible.

[発明が解決しようとする課題] しかしながら、前記のように、線量当量の測定は可能と
なったが、前記放射線障害防止法によれば、3mtl線
量当量がIcs線量当量の3倍以上になる場合には、3
0線量当量にて測定・管理するように定められている。
[Problems to be Solved by the Invention] However, as mentioned above, it has become possible to measure the dose equivalent, but according to the Radiation Hazard Prevention Act, if the 3mtl dose equivalent is three times or more the Ics dose equivalent, There are 3
It is stipulated that the measurement and management should be performed using 0 dose equivalent.

従って、この場合にはIC1I線量当量から3+aml
!ffi当量への換算が必要となり、煩雑であるという
問題があった。
Therefore, in this case, 3+aml from IC1I dose equivalent
! There was a problem in that conversion to ffi equivalent was necessary and complicated.

すなわち、第5図にはi cII重量当量(100)、
3wg線量当量(200)又は70μm線量当量(30
0)の関係(換算曲線)が示されており、図においてl
ea線量当量の換算曲線100と3開線量当量の換算曲
線200を比較すると、曲線が30keV近傍と500
 keV近傍で交差し、約30keVから約500 k
eVの間のピーク部分ではICl1l線量当量が高く、
それ以外では5IIfil線量当量が高くなっている。
That is, in FIG. 5, i cII weight equivalent (100),
3 wg dose equivalent (200) or 70 μm dose equivalent (30
0) (conversion curve) is shown, and in the figure l
Comparing the ea dose equivalent conversion curve 100 and the 3-open dose equivalent conversion curve 200, the curves are near 30 keV and 500 keV.
Intersects near keV, from about 30 keV to about 500 k
In the peak region between eV, the ICl1l dose equivalent is high;
In other cases, the 5IIfil dose equivalent is high.

従って、3III線量当量への換算が煩雑であることが
理解される。
Therefore, it is understood that conversion to 3III dose equivalent is complicated.

本発明は前記従来の問題点を解決することを課題として
なされたものであり、その目的は、3a+m線量当量を
直読できるようにするとともに、1CII線量当量と3
mm線量当量の両者を単一の装置にて効率よく測定可能
となる線量当量測定装置を提供することにある。
The present invention has been made to solve the above-mentioned conventional problems, and its purpose is to make it possible to directly read the 3a+m dose equivalent, and to make it possible to read the 1CII dose equivalent and 3a+m dose equivalent directly.
An object of the present invention is to provide a dose equivalent measuring device that can efficiently measure both mm dose equivalent and mm dose equivalent with a single device.

[課題を解決するための手段] 前記目的を達成するために、本発明に係る線量当量測定
装置は、所定エネルギ領域の放射線を通過させるための
入射窓を有し放射線により生じた電離電荷を検出電極に
より検出する検出部を複数個重ねて配置し、この複数の
検出部出力を加減算することにより線量当量を測定する
線量当量測定装置において、放射線を最初に入射する第
1の検出部に設けられ3mm線量当量測定の特性に合致
した低エネルギ領域の放射線を透過する第1入射窓と、
この第1入射窓に着脱自在に設けられ前記第1入射窓に
重ねられてlci線量当量測定の特性に合致した低エネ
ルギ領域の放射線を透過する調整窓と、少なくとも第1
の検出部内に検出電極とは別個に設けられ311III
線量当量を測定するためのレベル調整を行う容量補正電
極と、を含み、1cm線量当量と3IIIl線量当量の
両者を測定可能としたことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, a dose equivalent measuring device according to the present invention has an entrance window for passing radiation in a predetermined energy range and detects ionized charges generated by the radiation. In a dose equivalent measuring device that measures a dose equivalent by arranging a plurality of detecting sections that detect with electrodes in a stacked manner and adding and subtracting the outputs of the plurality of detecting sections, a method is provided in the first detecting section where radiation first enters. a first entrance window that transmits radiation in a low energy region that meets the characteristics of 3 mm dose equivalent measurement;
an adjustment window that is removably provided on the first entrance window and overlaps the first entrance window and transmits radiation in a low energy region that matches the characteristics of LCI dose equivalent measurement;
It is provided separately from the detection electrode in the detection part of 311III.
It is characterized in that it includes a capacitance correction electrode that performs level adjustment for measuring dose equivalent, and is capable of measuring both 1cm dose equivalent and 3III1 dose equivalent.

また、第2請求項に係る発明は、第1の検出部以外の検
出部に容量補正電極を設け、3mm線量当量が500 
keV近傍以上のエネルギ領域で1ca+線量当量より
高くなるようにレベル調整を行うことを特徴とする。
Further, the invention according to claim 2 provides a capacitance correction electrode in a detection unit other than the first detection unit, and the 3mm dose equivalent is 500.
It is characterized in that the level is adjusted so that it becomes higher than 1ca+dose equivalent in the energy region near keV or higher.

[作用] 以上の構成によれば、31111線量当量の測定は、調
整窓を外した状態でかつ容量補正電極に電圧を印加して
行われ、この場合には第1入射窓にて特に低エネルギ領
域の放射線を消滅させることなく第1の検出部に透過さ
れ、第1の検出部では低エネルギ領域を含んだ全エネル
ギ領域の放射線が検出される。一方、第2の検出部では
第1の検出部を透過しかつ第2入射窓を透過して、低エ
ネルギ領域が除去された中・高エネルギの放射線を所定
量だけ検出する。
[Function] According to the above configuration, the measurement of the 31111 dose equivalent is performed with the adjustment window removed and a voltage applied to the capacitance correction electrode. The radiation in the region is transmitted to the first detection section without being annihilated, and the first detection section detects the radiation in the entire energy region including the low energy region. On the other hand, the second detection section detects a predetermined amount of medium/high energy radiation that has passed through the first detection section and through the second entrance window, with the low energy region removed.

また、第1の検出部には容量補正電極が設けられている
ので、検出部の出力は約4〜5%程度下がることになり
、この降下分は前記第5図のICl1i量当量と3+n
線量当量との差分にほぼ相当する。
In addition, since the first detection section is provided with a capacitance correction electrode, the output of the detection section will drop by about 4 to 5%, and this drop will be equal to the ICl1i amount equivalent in FIG. 5 and 3+n.
This roughly corresponds to the difference from the dose equivalent.

そして、集電極では第1の検出部の出力から第2の検出
部の出力を差し引く形で相殺され、容量補正電極をオン
作動させると、最終的に3IIIII線量当量が測定さ
れる。
Then, at the collector electrode, the output of the second detector is canceled out by subtracting the output of the first detector, and when the capacitance correction electrode is turned on, the 3III dose equivalent is finally measured.

また、1clI線量当量の測定は、調整窓を取り付け、
かつ容量補正電極の印加電圧をオフした状態で行われ、
この場合には調整窓により低エネルギ領域の放射線が1
cII線量当量測定の特性に合った特性になるように透
過される。そして、容量補正電極も作動しないので、第
1の検出部及び第2の検出部のそれぞれで生じた電離電
荷がそのまま集電極により測定され、最終的には雨検出
部の出力が相殺されて1cm線量当量が測定される。
In addition, when measuring the 1clI dose equivalent, an adjustment window is installed.
And the voltage applied to the capacitance correction electrode is turned off.
In this case, the adjustment window reduces the radiation in the low energy region by 1
It is transmitted in such a way that the characteristics match those of cII dose equivalent measurements. Since the capacitance correction electrode also does not operate, the ionized charges generated in each of the first detection section and the second detection section are directly measured by the collector electrode, and the output of the rain detection section is eventually canceled out, resulting in a difference of 1 cm. Dose equivalents are measured.

このようにして、本発明では調整窓を着脱し、かつ容量
補正電極をオン、オフするという単純な操作により、1
cIII線量当量と3IImvA量当量の直読を単一の
装置で行うことができる。
In this way, in the present invention, the adjustment window can be attached and detached, and the capacitance correction electrode can be turned on and off by simple operations.
Direct reading of cIII dose equivalents and 3IImvA dose equivalents can be performed in a single device.

また、第2の請求項によれば、第2の検出部に容量補正
電極を設けて3mm線量当量測定時に動作させるので、
第2の検出部での放射線検出レベルを4%以上低下させ
ることができ、最終的に得られる測定値を500 ke
V近傍以上のエネルギ領域で1cm線量当量よりも4%
程度上昇させることができる。
Further, according to the second claim, since the second detection section is provided with a capacitance correction electrode and is operated during 3 mm dose equivalent measurement,
It is possible to reduce the radiation detection level in the second detection section by more than 4%, and the final measured value can be reduced by 500 ke.
4% more than 1cm dose equivalent in the energy region near V or higher
It can be increased to a certain degree.

[実施例] 以下、図面に基づいて本発明の好適な実施例を説明する
[Embodiments] Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

第1図には、本発明を電離箱に適用した実施例の構成が
示され、第2図には各検出部での検出特性が示されてお
り、第1の検出部10と第2の検出部12の2個の検出
部を有し印加電極18(負極)、20(正極)及び集電
極としても機能する第2入射窓16が設けられている点
では従来と同様となっている。
FIG. 1 shows the configuration of an embodiment in which the present invention is applied to an ionization chamber, and FIG. 2 shows the detection characteristics of each detection section, with the first detection section 10 and the second detection section 10 It is the same as the conventional one in that it has two detection parts, the detection part 12, and is provided with application electrodes 18 (negative electrode) and 20 (positive electrode) and a second entrance window 16 which also functions as a collector electrode.

従って、第2の検出部12の第2入射窓16は前記第4
図の曲線202の特性を得るために5IImの厚さから
なる鉄から構成され、第1の検出部10と第2の検出部
12で得られた電離電荷を集める集電極ともなっており
、第2の検出部12の容量は第1の検出部10の容量の
1/3程度に形成される。
Therefore, the second entrance window 16 of the second detection section 12
In order to obtain the characteristics of the curve 202 in the figure, it is made of iron with a thickness of 5 IIm, and also serves as a collecting electrode for collecting the ionized charges obtained in the first detecting section 10 and the second detecting section 12. The capacitance of the detecting section 12 is formed to be about 1/3 of the capacitance of the first detecting section 10.

本発明において特徴的なことは、検出部の構造によりl
cs線量当量と3mm線量当量の両者を測定可能とした
ことであり、このために、まず第1の検出部10に第1
入射窓28と調整窓30を設ける。すなわち、第1入射
窓28は、実施例では厚さ22 H/ Cm”の鉄板あ
るいはアルミニウム板で形成し、第2図の3−層線量当
量に関する特性曲線201の放射線測定が可能となるよ
うにする。
A characteristic feature of the present invention is that the structure of the detection section
This makes it possible to measure both the cs dose equivalent and the 3mm dose equivalent.
An entrance window 28 and an adjustment window 30 are provided. That is, in the embodiment, the first entrance window 28 is formed of an iron plate or an aluminum plate with a thickness of 22 H/cm'', so as to enable the radiation measurement of the characteristic curve 201 regarding the 3-layer dose equivalent shown in FIG. do.

また、調整窓30は約g H/ Cs”の厚さに形成し
て第1入射窓28と合せて30 H/ cm”の厚さと
なるようにし、前記第1入射窓28にキャップ方式で着
脱自在に取り付けられるようにしており(図では前側へ
少しずらしている)、これにより第2図のlci線量当
量に関する特性曲線101の放射線測定が可能となるよ
うにする(放射線入射段階では前記曲線201と同一レ
ベルである)。
Further, the adjustment window 30 is formed to have a thickness of approximately g H/Cs", and together with the first entrance window 28 has a thickness of 30 H/cm", and is attached to and detached from the first entrance window 28 by a cap method. It is designed so that it can be attached freely (in the figure, it is slightly shifted to the front side), thereby making it possible to measure the radiation of the characteristic curve 101 regarding the lci dose equivalent shown in FIG. 2 (the curve 201 ).

従って、第1入射窓28と調整窓30により、従来の1
cm線量当量用の装置(第3図)の第1の検出部の第1
入射窓を構成することになる。
Therefore, the first entrance window 28 and the adjustment window 30 make it possible to
1 of the first detection part of the device for cm dose equivalent (Fig. 3)
This will constitute an entrance window.

そして、これらの第1の検出部10及び第2の検出部1
2には、30線量当量を測定・表示するのに必要となる
前記第5図に示されたレベル差を調整するために、第1
の検出部10に第1容量補正電極32a、32bを、第
2の検出部12には第2容量補正電極34 a、  3
4 bを設けている。
Then, these first detection section 10 and second detection section 1
2, in order to adjust the level difference shown in FIG. 5, which is necessary to measure and display 30 dose equivalents,
The first capacitance correction electrodes 32a, 32b are installed in the detection section 10 of
4b is provided.

すなわち、第1の検出部10の印加電極18には例えば
−500vの電圧を印加し、この場合には第1容量補正
電極32に例えば+20Vを印加すれば、第1の検出部
10の電離箱有効容積を約4〜5%程度縮小することが
でき、全体の検出感度を所定レベルだけ低下させること
が可能となる。
That is, by applying a voltage of, for example, -500V to the application electrode 18 of the first detection section 10, and in this case, applying, for example, +20V to the first capacitance correction electrode 32, the ionization chamber of the first detection section 10 The effective volume can be reduced by about 4 to 5%, and the overall detection sensitivity can be reduced by a predetermined level.

一方、第2の検出部12の印加電極20には+500V
の電圧を印加し、この場合には第2容量補正電極34に
は例えば−20Vを印加すれば、第2の検出部12の電
離箱有効容量を4%以上縮小することができ、第2図に
示される特性曲線202の放射線測定が可能となる。こ
の場合、有効容量を4%以上として500 keV近辺
以上のエネルギ領域での測定値が高くなるようにしてお
り、従って第2図の特性曲線200に示されるように、
3mm線量当量においてはIC1線量当量曲線100を
約4%程度超える特性となる。
On the other hand, the application electrode 20 of the second detection unit 12 has +500V.
In this case, by applying, for example, -20V to the second capacitance correction electrode 34, the effective capacity of the ionization chamber of the second detection section 12 can be reduced by 4% or more, as shown in FIG. It becomes possible to measure the radiation according to the characteristic curve 202 shown in FIG. In this case, the effective capacity is set to 4% or more so that the measured value in the energy region around 500 keV or higher becomes high, and therefore, as shown in the characteristic curve 200 in FIG.
At 3 mm dose equivalent, the characteristics exceed the IC1 dose equivalent curve 100 by about 4%.

Claims (2)

【特許請求の範囲】[Claims] (1)所定エネルギ領域の放射線を通過させるための入
射窓を有し放射線により生じた電離電荷を検出電極によ
り検出する検出部を複数個重ねて配置し、この複数の検
出部出力を加減算することにより線量当量を測定する線
量当量測定装置において、放射線を最初に入射する第1
の検出部に設けられ3mm線量当量測定の特性に合致し
た低エネルギ領域の放射線を透過する第1入射窓と、こ
の第1入射窓に着脱自在に設けられ前記第1入射窓に重
ねられて1cm線量当量測定の特性に合致した低エネル
ギ領域の放射線を透過する調整窓と、少なくとも第1の
検出部内に検出電極とは別個に設けられ3mm線量当量
を測定するためのレベル調整を行う容量補正電極と、を
含み、1cm線量当量と3mm線量当量の両者を測定可
能としたことを特徴とする線量当量測定装置。
(1) A plurality of detection units having an entrance window for passing radiation in a predetermined energy range and detecting ionized charges generated by the radiation using detection electrodes are arranged one on top of the other, and the outputs of the plurality of detection units are added and subtracted. In a dose equivalent measuring device that measures the dose equivalent by
a first entrance window that is provided in the detection section and transmits radiation in a low energy region that matches the characteristics of 3 mm dose equivalent measurement; An adjustment window that transmits radiation in a low energy region that matches the characteristics of dose equivalent measurement, and a capacitance correction electrode that is provided in at least the first detection section separately from the detection electrode and that performs level adjustment to measure the 3 mm dose equivalent. 1. A dose equivalent measuring device comprising: and capable of measuring both 1 cm dose equivalent and 3 mm dose equivalent.
(2)前記請求項(1)記載の装置において、第1の検
出部以外の検出部にも容量補正電極を設け、3mm線量
当量が500keV近傍以上のエネルギ領域で1cm線
量当量より高くなるようにレベル調整を行うことを特徴
とする線量当量測定装置。
(2) In the apparatus according to claim (1), capacitance correction electrodes are provided in detection sections other than the first detection section, so that the 3 mm dose equivalent is higher than the 1 cm dose equivalent in an energy region of around 500 keV or higher. A dose equivalent measuring device characterized by performing level adjustment.
JP19862089A 1989-07-31 1989-07-31 Dose-equivalent measuring apparatus Granted JPH0361883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19862089A JPH0361883A (en) 1989-07-31 1989-07-31 Dose-equivalent measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19862089A JPH0361883A (en) 1989-07-31 1989-07-31 Dose-equivalent measuring apparatus

Publications (2)

Publication Number Publication Date
JPH0361883A true JPH0361883A (en) 1991-03-18
JPH0553386B2 JPH0553386B2 (en) 1993-08-09

Family

ID=16394227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19862089A Granted JPH0361883A (en) 1989-07-31 1989-07-31 Dose-equivalent measuring apparatus

Country Status (1)

Country Link
JP (1) JPH0361883A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256631A (en) * 2007-04-09 2008-10-23 Fuji Electric Systems Co Ltd One-centimeter dose equivalent meter-usage scintillation detector
CN108152853A (en) * 2018-03-08 2018-06-12 北京聚合信机电有限公司 Counting tube energy compensation system
CN108572384A (en) * 2017-03-09 2018-09-25 中国辐射防护研究院 A kind of scintillation detector measuring * ' (0.07) and * ' (3) and the detector including it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256631A (en) * 2007-04-09 2008-10-23 Fuji Electric Systems Co Ltd One-centimeter dose equivalent meter-usage scintillation detector
CN108572384A (en) * 2017-03-09 2018-09-25 中国辐射防护研究院 A kind of scintillation detector measuring * ' (0.07) and * ' (3) and the detector including it
CN108152853A (en) * 2018-03-08 2018-06-12 北京聚合信机电有限公司 Counting tube energy compensation system

Also Published As

Publication number Publication date
JPH0553386B2 (en) 1993-08-09

Similar Documents

Publication Publication Date Title
JP5875790B2 (en) Photon counting type image detector, X-ray diagnostic apparatus, and X-ray computed tomography apparatus
Samei et al. An experimental comparison of detector performance for direct and indirect digital radiography systems
JP2015057610A (en) Radiation monitoring device
JPS5811596B2 (en) Neutron detection system
US20060043309A1 (en) Radiological imaging apparatus
Rowlands et al. X‐ray imaging using amorphous selenium: determination of x‐ray sensitivity by pulse height spectroscopy
JPH0361883A (en) Dose-equivalent measuring apparatus
JPH0572555B2 (en)
JPH0353187A (en) Dose equivalent measuring instrument
JP2831316B2 (en) Dual entrance window ion chamber for measuring X-ray exposure
JPH01134291A (en) Scintillation type dose rate meter
JP3984110B2 (en) Radiation detector
CN204204794U (en) A kind of standard type high-pressure ionization chamber
Suzuki et al. Measurement of impurity emission profiles in CHS Plasma using AXUV photodiode arrays and VUV bandpass filters
JP4671153B2 (en) Open window ionization chamber
JPH01134289A (en) Ionization chamber type dose rate meter
JP2000030891A (en) X-ray automatic exposure control device
Chen et al. Prototype development of the beam diagnostic system of a proton therapy facility based on a superconducting cyclotron
KR101408328B1 (en) Digital radiation sensing apparatus for radiation auto sensing
JPH01285889A (en) Radiation dose monitor
JPS6215746A (en) Radiation detector
JPH0619456B2 (en) Ionization box for personal dosimeter
Panzer et al. Diagnostic x ray spectra behind phantom and antiscatter grid
JPH08122443A (en) Radiation detector
JPH10332835A (en) Ionization chamber type radiation detector