JPH0361716B2 - - Google Patents

Info

Publication number
JPH0361716B2
JPH0361716B2 JP61217211A JP21721186A JPH0361716B2 JP H0361716 B2 JPH0361716 B2 JP H0361716B2 JP 61217211 A JP61217211 A JP 61217211A JP 21721186 A JP21721186 A JP 21721186A JP H0361716 B2 JPH0361716 B2 JP H0361716B2
Authority
JP
Japan
Prior art keywords
oil
sludge
ash
carbon
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61217211A
Other languages
Japanese (ja)
Other versions
JPS6372790A (en
Inventor
Akira Akahori
Hiroshi Takeshita
Takeshi Matsumura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shell Sekiyu KK
Original Assignee
Showa Shell Sekiyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu KK filed Critical Showa Shell Sekiyu KK
Priority to JP21721186A priority Critical patent/JPS6372790A/en
Publication of JPS6372790A publication Critical patent/JPS6372790A/en
Publication of JPH0361716B2 publication Critical patent/JPH0361716B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Treatment Of Sludge (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、石油の精製過程から排出される油分
と灰分とを含むスラツジから油分と灰分とを分
離、回収する方法に関するもである。 従来の技術 石油の精製過程から排出されるスラツジには、
例えばスロツプタンク(Slop tank)およびエア
ーフローテエイシヨン装置(Air−floatation)
から得られるオイルスラツジがある。 その中には、前者では約20〜30%の油分、約4
〜6%の固形分が含まれている。後者では約5〜
10%の油分、約2〜4%の固形分が含まれてい
る。 また、固形分にはNi、V、Fe、SiO2などの有
用物質が含まれている。 これらのオイルスラツジに含まれる油分および
固形分中に含まれる有用物質の有効利用が検討さ
れるようになつて来た。 従来、スラツジの処理方法として特開昭59−
109294号公報(以下従来法という)には製鉄所の
熱間圧延排水の処理工程から排出されるスラツジ
(熱延スラツジ)から有用成分である酸化鉄を分
離、回収する技術が開示されている。しかしなが
ら、この従来法は酸化鉄の有効利用のみに着目し
た方法であつて、油分と酸化鉄とを同時に利用す
るには有効な方法とはいい難い。 また、石油系炭化水素の部分酸化により発生す
る未燃カーボンは固形炭素、灰分および揮発分を
含み、この固形炭素を連続的に造粒する技術およ
び固形炭素の分離装置に関する技術は既に確立し
ている。 これらの技術については、特公昭39−21502号
公報、実公昭44−19507号公報、実公昭48−41248
号公報および実公昭53−39737号公報に詳細に記
載されている。 すなわちシエルグループが開発したシエルガス
化法による炭化水素の部分酸化による合成ガス製
造過程では発生する未燃カーボンを固液分離装置
によるスプレータワーによつて合成ガスから除去
する。タワーから排出される洗滌水は微細な固形
炭素粒子を含んだ黒色懸濁液である。この洗滌水
と未燃カーボンとの懸濁液にバインダーとして例
えば市販“C”重油を添加し撹拌する。固形炭素
は本来の性質として親油性であるため固形炭素粒
子の表面にバインダーが吸着し、表面がバインダ
ーで被覆される。この被覆された粒子は撹拌によ
り衝突し、粒子同志が接着により凝集し、更に成
長し、圧密化、造粒されて水から分離する。 本発明は、EPスーツ(石油コークス燃焼灰)
中の灰分が石油系バインダーとは親和性がなく親
水性であり、一方固形炭素は石油系バインダーと
親和性が強いことから前段に記載のシエルグルー
プの技術および装置を利用して固形炭素を造粒
し、灰分を分離除去する技術思想に基くものであ
る。 本願と同一出願人はこの技術を利用して製造さ
れた固形炭素の造粒物(ペレツト)を固体燃料と
して再生利用する方法について既に特許出願した
(特願昭61−6508号)。 発明が解決しようとする課題 本発明は石油の精製過程から排出されるスラツ
ジからこれに含まれる油分と灰分とをそれぞれ分
離、回収してそれぞれ有効利用する方法、特にス
ラツジに含まれる油分を有効利用する方法を提供
するものである。 課題を解決するための手段 すなわち本発明は、石油の精製過程から排出さ
れるスラツジを含有する水性スラリーに石油系炭
化水素の燃焼過程で発生する未燃カーボンをスラ
ツジ中の油分の2倍量未満添加し、上記油分をバ
インダーとして、界面活性剤を使用することな
く、85℃以上で撹拌処理して油分を含有する固形
炭素を造粒した後、PHを7以下に調節して、スラ
ツジおよび未燃カーボン中に含まれる灰分を含有
する水性相と含有する固形炭素とを分離採取する
ことを特徴とするスラツジ中の油分と灰分とを分
離回収する方法に関するものである。 本発明で使用するスラツジは、油分と灰分とを
含むスラツジであれば特に出所を限定されるもの
ではないが、特に石油の精製過程においてスロツ
プタンクおよびエアーフローテエイシヨン装置か
ら排出されるオイルスラツジである。しかし、本
発明の方法はその他の油分を含む工業スラツジに
も適用可能である。 スロツプタンクスラツジは油分約20〜30wt%、
固形分約4〜6wt%および残りは水分である。 またエアーフローテエイシヨンは油分約5〜
10wt%、灰分約2〜4wt%および残りは水分であ
る。 本発明方法において、オイルスラツジに添加す
る未燃カーボンは石油コークスの燃焼過程あるい
は石油系炭化水素の燃焼過程で発生する未燃カー
ボンおよびその他の炭素源の燃焼過程から得られ
る未燃カーボンであつて、固形炭素、灰分および
油分を含んでいる。 上記の石油コークス燃焼灰(EPスーツ)の分
析値の一例を示せば次のようである。 灰分12.46重量%、揮発分(油分)7.20重量%、
固定炭分80.34重量%、密度(g/cm3)1.880であ
る。 造粒条件 未燃カーボンの添加量は、使用するスラツジに
含まれる油含量によつて異なり、スラツジ中の油
分の重量に対して、未燃カーボン1.4〜5倍量、
好ましくは1.4倍量である。 スラツジに含まれる油分に対して上記の必要量
の未燃カーボンを添加して、固形炭素の造粒をお
こなう。 造粒は例えばシエルペレタイジングセパレータ
ー(SPS装置)にて行なう。造粒時の温度は85℃
以上、好ましくは85〜100℃が適当である。造粒
開始時は、常温(約20℃)であつても約1700r.p.
mの回転速度でスラリーを撹拌するのでまさつ熱
によつて約30分後に85℃以上の温度に達する。 SPSの内部温度を100℃まで上昇させる場合、
内部温度80℃で30分経過後から固形炭素のペレツ
ト化が始まり、100℃で40分経過後にペレツトの
粒径は0.2〜0.3m/mになる。 内部温度が10℃以上になると機械的障害が起こ
るので、適温(85℃)に冷却する必要がある。 内部温度85℃で40分間経過後にはペレツトの粒
径は1.0〜1.5m/mの大きさに達する。 造粒後灰分を分離する際PH7以下、好ましくは
PH3−5に調整する。PHはアルカリ性(PH9.0〜
10以上)より酸性(3.0〜5)の方が灰分の分離
が良好である。 実施例 以下に実施例および比較例を掲げて本発明を説
明するが、これに限定されるものではない。%は
すべて重量%である。 実施例 1 原料として用いたスロツプタンクスラツジ分析
値は、 油 分 25.9% 灰 分 4.9% 水 分 69.2% 硫 黄 0.94% PH 9.0 である。 このオイルスラツジを80〜90℃に予備加熱した
後、その500g(油分130g)と、油分の約1.4倍
量に相当する未燃カーボン185gを水2300mlと共
にSPS装置に入れ、PH未調整のまま回転数1700r.
p.mにて80分間撹拌処理した。温度は23℃より60
分後には85℃に達した。造粒後の処理液のPHは約
4.0であつた。PH約4.0のまゝで灰分を分離沈澱し
た。濾過液は2700mlであつた。得られたペレツト
は粒径1.0m/mであつた。 この実施例で使用した未燃カーボンは揮発分
7.20%、および固定炭素分80.34%と灰分との混
合物であつた。 実施例 2 原料として実施例1と同じスロツプタンクスラ
ツジおよび未燃カーボンを使用した。予備加熱し
ないオイルスラツジ500gと、油分の約1.4倍量に
相当する未燃カーボン185gを水2300mlと共に
SPS装置に入れ、PH未調整のまま回転数1700r.p.
mにて80分間撹拌処理した。温度は23℃より60分
後には85℃に達した。造粒後の処理液のPHは約
4.0であつた。PH約4.0のまゝで灰分を分離沈澱し
た。濾過液は2700ml、得られたペレツトは粒径
0.5m/mであつた。 実施例1と実施例2との比較からオイルスラツ
ジを予じめ加熱した場合にはペレツトの形状も均
一でしかも粒径が大きかつた。 実施例 3 原料として実施例1と同じスロツプタンクスラ
ツジおよび未燃カーボンを使用した。 予備加熱したオイルスラツジ500gおよび未燃
カーボン185gを水2200gと共にSPS装置に入れ、
5%NaOH水溶液でPH9.5に調整してから、回転
数1700r.p.mにて80分間撹拌処理した。 PH9.5で造粒した場合、造粒物(ペレツト)が
少なく、灰分量が多かつた。すなわち、スラツジ
の中の油分と灰分との分離が充分でないことがわ
かつた。 また造粒後の処理液のPH9.5では静置しても沈
澱の沈降速度がおそい。造粒後の処理液のPHを4
に調整したとき、速やかに沈澱した。 比較例 1 実施例1と同じオイルスラツジ500g(油分130
g)に対し、約2.3倍量に相当する未燃カーボン
300gを水2400mlと共にSPS装置に入れ、PH未調
整のまま回転数1700r.p.mにて60分間撹拌処理し
た。温度は23℃より60分後には100℃に達した。
造粒後の処理液のPHは約4.0であつた。さらに5
%(重量)の苛性ソーダ水溶液で処理液のPHを
11.0に調整し、灰分を分離沈澱した。濾過液は
2700mlであつた。その結果、ペレツト374g、お
よび灰分27gを得た。得られたペレツトは粒径
0.5m/m〜1.0m/mであつた。 比較例 2 原料として用いたエアーフローテエイシヨンス
ラツジの分析値は、 油 分 8.9% 灰 分 2.5% 水 分 88.6% 硫 黄 0.51% PH 8.0 であつた。 このオイルスラツジ500g(油分44.5g)に対
し、約4.2倍量に相当する未燃カーボン(実施例
1で使用したもの)185gとバインダー50gとを
水2500mlと共にSPS装置に入れ、PHを未調整のま
ま回転数1700r.p.mにて60分間撹拌処理した。温
度は32℃から60分後には100℃に達した。 造粒後の処理液PHは4.0であつた。さらに5%
(重量)の苛性ソーダ水溶液で処理液のPHを11.0
に調整し、灰分を分離沈澱した。液量は2600mlで
あつた。 ペレツト244g、灰分21gを得た。得られたペ
レツトの粒径は0.5m/m〜1.0m/mであつた。 比較例 3 原料としてスロツプタンクスラツジとエアーフ
ローテエイシヨンスラツジとを2:1(重量比)
で混合したスラツジを使用した。 スロツプタンクスラツジ500g(油分130g)と
エアーフローテエイシヨンスラツジ250gおよび
炭化水素油23gとの混合物に約2.0倍量の未燃カ
ーボン(実施例1で使用したものと同一のもの)
300gを水2000mlと共にSPS装置に入れ、PHを未
調整のまま回転数1700r.p.mにて60分間処理した。
温度は25℃から60分後には100℃に達した。造粒
後の処理液のPHは4.0であつた。5%(重量)の
苛性ソーダ水溶液で処理液のPHを11.0に調整し、
灰分を分離沈澱した。液量は2600mlであつた。ペ
レツト390gおよび灰分35gを得た。得られたペ
レツトの粒径は0.5m/m〜1.0m/mであつた。 比較例 4 原料としてのオイルスラツジは実施例1のもの
と同一のものを使用し、比較例4で未燃カーボン
を添加しない他は実施例1とほゞ同様に処理し
た。この結果は第1表に示した。 比較例4に示したように未燃カーボンを添加し
ない場合には造粒はできなかつた。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for separating and recovering oil and ash from sludge containing oil and ash discharged from a petroleum refining process. Conventional technology The sludge discharged from the petroleum refining process contains
For example, slop tanks and air-floatation devices.
There is an oil sludge obtained from The former contains about 20 to 30% oil, about 4
Contains ~6% solids. The latter is about 5~
Contains 10% oil and approximately 2-4% solids. In addition, the solid content contains useful substances such as Ni, V, Fe, and SiO 2 . The effective use of useful substances contained in the oil and solid contents of these oil sludges has been studied. Conventionally, as a treatment method for sludge, JP-A-59-
Publication No. 109294 (hereinafter referred to as the conventional method) discloses a technology for separating and recovering iron oxide, a useful component, from sludge (hot rolling sludge) discharged from the treatment process of hot rolling wastewater in a steel mill. However, this conventional method focuses only on the effective use of iron oxide, and cannot be said to be an effective method for simultaneously using oil and iron oxide. In addition, unburned carbon generated by partial oxidation of petroleum hydrocarbons contains solid carbon, ash, and volatile matter, and technology for continuously granulating this solid carbon and technology for separating solid carbon have already been established. There is. Regarding these technologies, please refer to Japanese Patent Publication No. 39-21502, Publication of Utility Model Publication No. 19507-1971, Publication No. 41248 of Utility Model Publication No. 48-48.
This method is described in detail in Japanese Utility Model Publication No. 53-39737. That is, in the process of producing synthesis gas by partial oxidation of hydrocarbons using the Shell gasification method developed by the Shell Group, unburned carbon generated is removed from the synthesis gas by a spray tower using a solid-liquid separator. The wash water discharged from the tower is a black suspension containing fine solid carbon particles. Commercially available "C" heavy oil, for example, is added as a binder to the suspension of the washing water and unburned carbon and stirred. Since solid carbon is inherently lipophilic, the binder is adsorbed onto the surface of the solid carbon particles, and the surface is coated with the binder. The coated particles collide with each other due to stirring, and the particles coagulate due to adhesion, grow further, become compacted, granulate, and are separated from the water. The present invention is an EP suit (petroleum coke combustion ash)
The ash inside has no affinity with petroleum-based binders and is hydrophilic, while solid carbon has a strong affinity with petroleum-based binders, so solid carbon can be produced using the Ciel Group's technology and equipment described in the previous section. It is based on the technical idea of granulating the powder and separating and removing the ash. The same applicant as the present applicant has already filed a patent application for a method for recycling solid carbon granules (pellets) produced using this technology as solid fuel (Japanese Patent Application No. 6508/1982). Problems to be Solved by the Invention The present invention provides a method for separating and recovering the oil and ash contained in sludge discharged from the petroleum refining process and effectively utilizing each of them, particularly for effectively utilizing the oil contained in the sludge. This provides a method to do so. Means for Solving the Problems In other words, the present invention provides an aqueous slurry containing sludge discharged from the petroleum refining process by adding unburned carbon generated during the combustion process of petroleum hydrocarbons to less than twice the amount of oil in the sludge. After adding the above oil as a binder and stirring at 85°C or higher without using a surfactant to granulate oil-containing solid carbon, the pH is adjusted to 7 or less to form sludge and unprocessed carbon. The present invention relates to a method for separating and recovering oil and ash in sludge, which is characterized by separating and collecting an aqueous phase containing ash contained in burnt carbon and solid carbon contained therein. The source of the sludge used in the present invention is not particularly limited as long as it contains oil and ash, but it is particularly oil sludge discharged from slop tanks and air floatation equipment during the petroleum refining process. However, the method of the invention is also applicable to industrial sludge containing other oils. Slop tank sludge has an oil content of approximately 20-30wt%.
About 4-6 wt% solids and the remainder water. Also, air floatation has an oil content of about 5~
10 wt%, ash about 2-4 wt% and the balance water. In the method of the present invention, the unburned carbon added to the oil sludge is unburned carbon generated during the combustion process of petroleum coke or petroleum hydrocarbons and unburned carbon obtained from the combustion process of other carbon sources, Contains solid carbon, ash and oil. An example of the analytical values of the above petroleum coke combustion ash (EP suit) is as follows. Ash content 12.46% by weight, volatile content (oil) 7.20% by weight,
The fixed carbon content is 80.34% by weight, and the density (g/cm 3 ) is 1.880. Granulation conditions The amount of unburned carbon added varies depending on the oil content contained in the sludge used, and is 1.4 to 5 times the amount of unburned carbon based on the weight of oil in the sludge.
Preferably it is 1.4 times the amount. The above-mentioned required amount of unburned carbon is added to the oil contained in the sludge to granulate solid carbon. Granulation is carried out using, for example, a shell pelletizing separator (SPS device). Temperature during granulation is 85℃
Above, preferably 85 to 100°C is appropriate. At the start of granulation, the speed is approximately 1700r.p. even at room temperature (approximately 20℃).
Since the slurry is stirred at a rotational speed of m, it reaches a temperature of 85°C or higher in about 30 minutes due to the heat generated. When increasing the internal temperature of SPS to 100℃,
Pelletization of solid carbon begins after 30 minutes at an internal temperature of 80°C, and the particle size of the pellets reaches 0.2 to 0.3 m/m after 40 minutes at 100°C. Mechanical failure will occur if the internal temperature exceeds 10°C, so it must be cooled to an appropriate temperature (85°C). After 40 minutes at an internal temperature of 85 DEG C., the pellet size reaches 1.0-1.5 m/m. When separating the ash after granulation, the pH is 7 or less, preferably
Adjust to PH3-5. PH is alkaline (PH9.0 ~
The separation of ash content is better when the acidity (3.0 to 5) is higher than that (10 or higher). Examples The present invention will be explained below with reference to Examples and Comparative Examples, but the present invention is not limited thereto. All percentages are by weight. Example 1 The analysis values of the slop tank sludge used as raw materials were: oil content 25.9%, ash content 4.9%, moisture 69.2%, sulfur 0.94%, PH 9.0. After preheating this oil sludge to 80 to 90℃, 500g of it (130g of oil content) and 185g of unburned carbon, which is equivalent to about 1.4 times the oil content, were put into an SPS device along with 2300ml of water, and the rotation speed was adjusted without adjusting the pH. 1700r.
The mixture was stirred at pm for 80 minutes. Temperature is 23℃ to 60℃
After a few minutes, the temperature reached 85°C. The pH of the processing solution after granulation is approximately
It was 4.0. The ash was separated and precipitated while the pH remained at approximately 4.0. The filtrate was 2700ml. The pellets obtained had a particle size of 1.0 m/m. The unburnt carbon used in this example is a volatile component.
7.20%, and a mixture of fixed carbon content of 80.34% and ash content. Example 2 The same slop tank sludge and unburned carbon as in Example 1 were used as raw materials. 500g of oil sludge without preheating and 185g of unburned carbon, which is equivalent to about 1.4 times the amount of oil, along with 2300ml of water.
Put it in the SPS device and set the rotation speed to 1700 r.p. without adjusting the PH.
The mixture was stirred at m for 80 minutes. The temperature reached 85°C after 60 minutes from 23°C. The pH of the processing solution after granulation is approximately
It was 4.0. The ash was separated and precipitated while the pH remained at approximately 4.0. The filtrate was 2700ml, and the pellets obtained had a particle size of
It was 0.5m/m. A comparison between Example 1 and Example 2 shows that when the oil sludge was heated in advance, the pellets had a uniform shape and a larger particle size. Example 3 The same slop tank sludge and unburned carbon as in Example 1 were used as raw materials. Put 500 g of preheated oil sludge and 185 g of unburned carbon into the SPS device along with 2200 g of water.
After adjusting the pH to 9.5 with a 5% NaOH aqueous solution, the mixture was stirred at a rotation speed of 1700 rpm for 80 minutes. When granulated at pH 9.5, the amount of granules (pellets) was small and the ash content was high. In other words, it was found that the separation of oil and ash in the sludge was insufficient. In addition, if the treatment solution after granulation has a pH of 9.5, the settling rate of the precipitate is slow even if it is allowed to stand still. The pH of the processing solution after granulation is 4.
When the mixture was adjusted to Comparative Example 1 500g of oil sludge same as Example 1 (oil content 130g)
g), unburned carbon equivalent to approximately 2.3 times the amount
300 g was put into an SPS device along with 2400 ml of water, and stirred for 60 minutes at a rotational speed of 1700 rpm without adjusting the pH. The temperature reached 100°C after 60 minutes from 23°C.
The pH of the treatment solution after granulation was approximately 4.0. 5 more
% (by weight) of caustic soda aqueous solution to adjust the pH of the treatment solution.
11.0, and the ash was separated and precipitated. The filtrate is
It was 2700ml. As a result, 374 g of pellets and 27 g of ash were obtained. The obtained pellets have a particle size of
It was between 0.5m/m and 1.0m/m. Comparative Example 2 The analysis values of the air floatation sludge used as a raw material were: oil content 8.9%, ash content 2.5%, moisture 88.6%, sulfur 0.51%, and PH 8.0. For 500 g of this oil sludge (oil content 44.5 g), 185 g of unburned carbon (used in Example 1), which is equivalent to about 4.2 times the amount, and 50 g of binder were placed in an SPS device along with 2500 ml of water, and the PH was left unadjusted. Stirring treatment was carried out for 60 minutes at a rotational speed of 1700 rpm. The temperature reached 100°C after 60 minutes from 32°C. The pH of the treatment solution after granulation was 4.0. Another 5%
(by weight) of caustic soda aqueous solution to 11.0
The ash was separated and precipitated. The liquid volume was 2600ml. 244 g of pellets and 21 g of ash were obtained. The particle size of the pellets obtained was 0.5 m/m to 1.0 m/m. Comparative Example 3 Slop tank sludge and air floatation sludge were used as raw materials at a ratio of 2:1 (weight ratio).
The sludge mixed with A mixture of 500 g of slop tank sludge (130 g of oil), 250 g of air floatation sludge, and 23 g of hydrocarbon oil and about 2.0 times the amount of unburned carbon (same as that used in Example 1)
300 g was placed in an SPS device along with 2000 ml of water, and treated at a rotational speed of 1700 rpm for 60 minutes without adjusting the pH.
The temperature reached 100°C after 60 minutes from 25°C. The pH of the treatment solution after granulation was 4.0. Adjust the pH of the treatment solution to 11.0 with a 5% (by weight) caustic soda aqueous solution,
The ash was separated and precipitated. The liquid volume was 2600ml. 390 g of pellets and 35 g of ash were obtained. The particle size of the pellets obtained was 0.5 m/m to 1.0 m/m. Comparative Example 4 The same oil sludge as in Example 1 was used as a raw material, and the treatment was carried out in substantially the same manner as in Example 1, except that unburned carbon was not added in Comparative Example 4. The results are shown in Table 1. As shown in Comparative Example 4, granulation could not be achieved when unburned carbon was not added.

【表】【table】

【表】 発明の効果 (1) オイルスラツジ中に含まれる油分を現在産業
廃棄物として処理されているEPスーツなどの
未燃カーボン中の固形炭素のペレツト化の粘結
剤として利用することによつてオイルスラツジ
中の油分を分離回収できると共にオイルスラツ
ジおよび未燃カーボン中に含まれる灰分を分離
回収できる。 (2) 上記固形炭素のペレツトは燃料として、また
炭素質の工業原料として利用できる。また同時
に分離、採取される灰分に含まれる有用物質
(Fe、Ni、V、SiO2)も利用できる。
[Table] Effects of the invention (1) By using the oil contained in oil sludge as a binder for pelletizing solid carbon in unburned carbon such as EP suit, which is currently treated as industrial waste. The oil content in the oil sludge can be separated and recovered, and the ash content contained in the oil sludge and unburned carbon can be separated and recovered. (2) The solid carbon pellets mentioned above can be used as fuel and as carbonaceous industrial raw material. At the same time, useful substances (Fe, Ni, V, SiO 2 ) contained in the ash separated and collected can also be used.

Claims (1)

【特許請求の範囲】 1 石油の精製過程から排出されるスラツジを含
有する水性スラリーに石油系炭化水素の燃焼過程
で発生する未燃カーボンをスラツジ中の油分の2
倍量未満添加し、上記油分をバインダーとして、
界面活性剤を使用することなく、85℃以下で撹拌
処理して油分を含有する固形炭素を造粒した後、
PHを7以下に調節して、スラツジおよび未燃カー
ボン中に含まれる灰分を含有する水性相と油分を
含有する固形炭素とを分離採取することを特徴と
するスラツジ中の油分と灰分とを分離回収する方
法。 2 石油の精製過程から排出されるスラツジがス
ロツプタンクまたはエアーフローテエイシヨン装
置から得られるオイルスラツジである請求項第1
項記載の方法。
[Scope of Claims] 1. Unburnt carbon generated in the combustion process of petroleum hydrocarbons is added to an aqueous slurry containing sludge discharged from the petroleum refining process to reduce the oil content in the sludge.
Add less than double the amount, use the above oil as a binder,
After granulating solid carbon containing oil by stirring at 85℃ or below without using a surfactant,
Separation of oil and ash in sludge, characterized by adjusting the pH to 7 or less and separating and collecting the aqueous phase containing ash and the solid carbon containing oil contained in the sludge and unburned carbon. How to collect. 2.Claim 1, wherein the sludge discharged from the petroleum refining process is oil sludge obtained from a slop tank or an air flotation device.
The method described in section.
JP21721186A 1986-09-17 1986-09-17 Method of recovering oil contained in sludge Granted JPS6372790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21721186A JPS6372790A (en) 1986-09-17 1986-09-17 Method of recovering oil contained in sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21721186A JPS6372790A (en) 1986-09-17 1986-09-17 Method of recovering oil contained in sludge

Publications (2)

Publication Number Publication Date
JPS6372790A JPS6372790A (en) 1988-04-02
JPH0361716B2 true JPH0361716B2 (en) 1991-09-20

Family

ID=16700604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21721186A Granted JPS6372790A (en) 1986-09-17 1986-09-17 Method of recovering oil contained in sludge

Country Status (1)

Country Link
JP (1) JPS6372790A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2707297C2 (en) * 2018-02-05 2019-11-26 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Fuel briquette and method for production thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174395A (en) * 1981-04-22 1982-10-27 Hitachi Ltd Granulation of petroleum sludge by addition of coal powder
JPS58109127A (en) * 1981-12-22 1983-06-29 Kawasaki Heavy Ind Ltd Treatment for ash
JPS6058494A (en) * 1983-09-10 1985-04-04 Ishikawajima Harima Heavy Ind Co Ltd Deashing of coal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174395A (en) * 1981-04-22 1982-10-27 Hitachi Ltd Granulation of petroleum sludge by addition of coal powder
JPS58109127A (en) * 1981-12-22 1983-06-29 Kawasaki Heavy Ind Ltd Treatment for ash
JPS6058494A (en) * 1983-09-10 1985-04-04 Ishikawajima Harima Heavy Ind Co Ltd Deashing of coal

Also Published As

Publication number Publication date
JPS6372790A (en) 1988-04-02

Similar Documents

Publication Publication Date Title
KR960003230B1 (en) Process for recovering regenerated absorbent particles and for separating ash therefrom
AU2011294860B2 (en) Carbonaceous fines beneficiation using micro-algae and related processes
JPH01268789A (en) Method for recycling oily waste of oil manufacturing plant
US4046683A (en) Process for separating suspended metal oxide and metal hydroxide solids from a mother liquor
CA1146893A (en) Process for removal of sulfur and ash from coal
CN1048038C (en) Process for treating ash
JPH08507577A (en) Method and system for removing and / or recycling substances
US4213779A (en) Treatment of steel mill waste materials
JPS6247416B2 (en)
JP2788858B2 (en) Method for producing coal-containing briquettes or pellets by comprehensive waste treatment
CN111375623A (en) Method for removing chlorine from fly ash
CA1136078A (en) Process for removing sulfur from coal
JPH0361716B2 (en)
EP0136688B1 (en) Treatment for phosphorus-containing waste material
JPH02174992A (en) Treatment of suspension containing metal hydroxide
US4249905A (en) Treatment of cement copper
RU2351665C2 (en) Method of phosphorus recovery
JPS6213056B2 (en)
JPS5955389A (en) Treatment of polluted water with nature coke
JP2005213527A (en) Method for dechlorinating zinc hydroxide
JPH0117739B2 (en)
JPH09314098A (en) Wet treatment of petroleum based combustion ash
CN117550774A (en) Oil sludge modifier and method for carrying out pyrolysis utilization on modified oil sludge
JPS6340726A (en) Method for recovering vanadium from combustion ash
JPH0737619B2 (en) Blast furnace coke manufacturing method