JPH0361394A - Electroplating device - Google Patents

Electroplating device

Info

Publication number
JPH0361394A
JPH0361394A JP19393589A JP19393589A JPH0361394A JP H0361394 A JPH0361394 A JP H0361394A JP 19393589 A JP19393589 A JP 19393589A JP 19393589 A JP19393589 A JP 19393589A JP H0361394 A JPH0361394 A JP H0361394A
Authority
JP
Japan
Prior art keywords
electrolyte
cathode
anode
slit hole
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19393589A
Other languages
Japanese (ja)
Inventor
Teruaki Yamamoto
輝昭 山本
Norio Kawachi
河内 範夫
Katsuro Aoshima
青島 克郎
Hisao Takai
高井 久雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiko Electronics Co Ltd
Toagosei Co Ltd
Original Assignee
Meiko Electronics Co Ltd
Toagosei Co Ltd
Meiko Denshi Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiko Electronics Co Ltd, Toagosei Co Ltd, Meiko Denshi Kogyo Co Ltd filed Critical Meiko Electronics Co Ltd
Priority to JP19393589A priority Critical patent/JPH0361394A/en
Publication of JPH0361394A publication Critical patent/JPH0361394A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a uniformly plated layer in a range over the whole surface of metal without generating a gas pit by traveling a cathode with a metallic plate fitted to the rear surface thereof in the upper part of an anode and ejecting an electrolyte to the metallic plate from the upper face of the anode and performing electroplating. CONSTITUTION:A metallic plate 15 is fitted to the rear surface of a cathode 10 and fixed with the fixtures 16a by an air cylinder 16. The electrolyte circulating pumps 7 are operated to sent the electrolyte 6a in a tank 6 into the anodes 8 from the feed ports 3a. The electrolyte 6a is ejected from the slit holes 8b provided on the upper faces of the anodes 8 and circulated between an upper step part 4a and a lower step part 4b. In this state, a motor 14 is operated to drive a traveling chain 12 and the cathode 10 is traveled along a guide shaft 9 at the prescribed velocity. Therefore the electrolyte 6a ejected from the slits 8b is jetted on the metallic plate 15 and electroplating is performed by conducting electricity between the anodes 8 and the cathode 10. At this time, the ejected electrolyte 6a is controlled by regulating the valves 7a. Thereby a plated layer uniform in film thickness and surface roughness is formed in a range over the whole surface of the metallic plate 15 and generation of a gas pit is prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電解銅箔を製造するための電解めっき装置に関
し、更に詳しくは、膜厚および表面粗度が均一でしかも
ガスピットの発生が少ない電解銅箔を製造するために有
効な新規構造の電解めっき装置に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an electrolytic plating apparatus for producing electrolytic copper foil, and more specifically, an electrolytic plating apparatus that produces uniform film thickness and surface roughness and produces fewer gas pits. The present invention relates to an electrolytic plating device with a new structure that is effective for producing copper foil.

(従来の技術) プリント回路板の素材である銅張積層板は、各種の方法
で製造されているが、その1つの方法として転写法があ
る この転写法は、表面研磨された金属板の表面に電解めっ
き処理を施して所定厚みのw4箔層を形成し、必要に応
してその銅trs層表面を粗化し、ここに絶縁基材を圧
着して銅箔層と絶縁基材を接着−体化したのち、金属板
のみを分離して絶縁基材側に銅箔層を残置せしめる方法
である。
(Prior art) Copper-clad laminates, which are the material for printed circuit boards, are manufactured using various methods. One of these methods is the transfer method. This transfer method uses a polished surface of a metal plate. Electrolytic plating is applied to form a W4 foil layer of a predetermined thickness, the surface of the copper TRS layer is roughened if necessary, and an insulating base material is crimped onto this to bond the copper foil layer and the insulating base material. This method involves separating only the metal plate and leaving the copper foil layer on the insulating base material side.

この場合の電解めっきに関しては、最近、高生産性の実
現を目的として、高電流密度で電解めっきを行なう高速
めっき法が採用されはしめている。
Regarding electrolytic plating in this case, high-speed plating methods in which electrolytic plating is performed at high current density have recently been adopted for the purpose of achieving high productivity.

この方法においては、表面に銅箔を形成すべき金属板を
陰極とし、この金属板と所定の間隔を置いて不溶性の陽
極を配置し、両者を固定した状態で両極間のギャップに
所定流速の電解液を強制的に流し続けて電解めっきが進
められる。このとき、電解液の流速、すなわち電解液の
金属板表面との接液速度などによって電流密度は適宜選
定される。
In this method, a metal plate on which copper foil is to be formed is used as a cathode, an insoluble anode is placed at a predetermined distance from the metal plate, and with both fixed, a predetermined flow rate is applied to the gap between the two electrodes. Electrolytic plating progresses by forcing the electrolyte to continue flowing. At this time, the current density is appropriately selected depending on the flow rate of the electrolytic solution, that is, the speed at which the electrolytic solution contacts the surface of the metal plate.

(発明が解決しようとする課題) しかしながら、上記したような態様で行なう電解めっき
の場合には、つぎのような問題が発生する。
(Problems to be Solved by the Invention) However, in the case of electrolytic plating performed in the manner described above, the following problems occur.

すなわち、まず、電解めっき時に両極のギャップではガ
ス発生が起るが、このときの電解液に対するガス濃度は
、電解液の供給口側では供給されてくる新しい電解液に
希釈されて低くなるが、しかし電解液の流出口側では上
流側の発生ガスも集合するためそのガス濃度は高くなる
。その結果、両極間のギャップの電解液供給口側におけ
る銅箔層の表面は緻密になり、逆に電解液流出口側では
めっき表面が荒くなる。そのため、形成された銅箔の膜
厚や表面粗度は全面に亘って均一にならず、ばらついて
しまう。しかも、電解液流出口側で形成された銅箔には
多数のガスピットが発生する。
That is, first, gas is generated in the gap between the two electrodes during electrolytic plating, but the gas concentration in the electrolyte at this time is diluted by the new electrolyte supplied at the electrolyte supply port side, and becomes low. However, on the electrolytic solution outlet side, the gas generated on the upstream side also collects, so the gas concentration becomes high. As a result, the surface of the copper foil layer on the electrolyte supply port side of the gap between the two electrodes becomes dense, and conversely, the plating surface becomes rough on the electrolyte outlet side. Therefore, the film thickness and surface roughness of the formed copper foil are not uniform over the entire surface and vary. Moreover, many gas pits are generated in the copper foil formed on the electrolyte outlet side.

上記した傾向は、電流密度を高めれば高めるほど顕著に
現れてくる。
The above-mentioned tendency becomes more noticeable as the current density increases.

このようなw4箔を絶縁基材に転写すると、得られた銅
張積層板においては、tRfIgと絶縁基材との間の接
着強度が場所によってばらつくことになり、製品として
の信頼性は著しく低下する。
When such W4 foil is transferred to an insulating base material, the adhesive strength between the tRfIg and the insulating base material in the resulting copper-clad laminate varies depending on the location, and the reliability of the product is significantly reduced. do.

また、上記した方法の場合には、陰極と陽極の対向面の
形状は同一であることが必要とされる。
Further, in the case of the above-described method, the shapes of the opposing surfaces of the cathode and the anode are required to be the same.

仮に、陽極の対向面の形状・サイズが陰極(金属板)の
それよりも小であった場合には、陰極の全面に亘って電
解めっきを施すことかできないばかりではなく、発生ガ
スのガス抜けも悪くなりガスピントの増加を招くからで
ある。
If the shape and size of the opposing surface of the anode is smaller than that of the cathode (metal plate), not only will it be impossible to perform electrolytic plating over the entire surface of the cathode, but the gas generated will not escape. This is because the condition deteriorates, leading to an increase in gas focus.

本発明は上記したような問題を解決し、膜厚。The present invention solves the above-mentioned problems and improves film thickness.

表面粗度のいずれもが全面に亘って均一であり、しかも
ガスピットの発生のない銅箔を金属板表面に形成するこ
とができる電解めっき装置の提供を目的とする。
The purpose of the present invention is to provide an electrolytic plating apparatus capable of forming a copper foil on the surface of a metal plate that has uniform surface roughness over the entire surface and does not generate gas pits.

(課題を解決するための手段) 上記した目的を達成するために、本発明においては、電
解液を貯留する電解液タンク、前記電解液タンクと接続
する電解液循環ポンプ、前記電解液循環ポンプと接続さ
れかつその上面には少なくとも1個のスリット孔が形成
されている箱状体の陽極、および、前記陽極の上部に設
置された陰極走行装置に吊設されかつその下面は前記陽
極面のスリット孔と所定間隔を置いて対向している陰極
がそれぞれ配設され、前記陰極を走行させながら、前記
陽極上面のスリット孔から前記電解液タンクの電解液を
循環ポンプにより噴出せしめて、前記陰極の下面に吹き
当てて電解めっきを行なうことを特徴とする電解めっき
装置が提供され、また、装置全体が、電解液送入日と電
解液流出口を有する仕切り板で上段部と下段部との2室
に画分され、前記下段部には、前記電解液流出口からの
流出電解液を貯留する電解液タンク、および、前記電解
液タンクと接続しかつ前記電解液送入口と液密に接続す
る電解液WI環ポンプがそれぞれ配設され、前記上段部
には、前記電解液送入口と液密に接続されかつその上面
には少なくとも1個のスリット孔が形成されている箱状
体の陽極、および、前記上段部の上部に架設された陰極
走行装置に吊設され、かつその下面は前記陽極上面のス
リット孔と所定間隔を置いて対向している陰極がそれぞ
れ配設され、前記陰極を走行させながら、前記陽極上面
のスリット孔から電解液を噴出せしめることにより、前
記陰極の下面に電解液を吹き当てて電解めっきを行なう
ことを特徴とする電解めっき装置が提供される。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention includes an electrolyte tank for storing an electrolyte, an electrolyte circulation pump connected to the electrolyte tank, and an electrolyte circulation pump. A box-shaped anode is connected to the box-shaped anode and has at least one slit hole formed in its upper surface; Each cathode is disposed facing the hole at a predetermined distance, and while the cathode is running, the electrolyte in the electrolyte tank is spouted out from the slit hole on the upper surface of the anode by a circulation pump, and the electrolyte is discharged from the cathode. An electrolytic plating apparatus is provided which performs electrolytic plating by spraying onto the lower surface, and the entire apparatus is separated into two parts, an upper part and a lower part, by a partition plate having an electrolyte inlet and an electrolyte outlet. an electrolytic solution tank that stores the electrolytic solution flowing out from the electrolytic solution outlet; and an electrolytic solution tank that is connected to the electrolytic solution tank and liquid-tightly connected to the electrolytic solution inlet. an anode having a box-like shape, in which an electrolyte WI ring pump is disposed, the upper part is liquid-tightly connected to the electrolyte inlet, and at least one slit hole is formed in the upper surface of the anode; and a cathode that is suspended from a cathode traveling device installed above the upper part, and whose lower surface faces the slit hole in the upper surface of the anode at a predetermined interval, and which runs on the cathode. There is provided an electrolytic plating apparatus characterized in that electrolytic plating is performed by spraying the electrolytic solution onto the lower surface of the cathode by spouting the electrolytic solution from a slit hole on the upper surface of the anode while the electrolytic solution is sprayed onto the lower surface of the cathode.

(作用) 本発明の装置においては、電解液循環ポンプで箱状体の
陽極内に送入された電解液は、所定の流量で、陽極上面
のスリット孔から噴出する。そして、この噴出する電解
液を横切って陰極が所定の速度で走行し、その過程で陰
極下面、すなわちそこにセットされている金属板の表面
には、電解液が膜状に吹き当る。したがって、走行する
金属板は、その表面が新鮮で定常流である電解液と接触
しながら順次電解めっきされていき、また発生ガスも滞
留することなく金属板表面を流れ去る電解液に運ばれて
速やかに電解めっき面から除去されていくので、形成さ
れる銅箔の膜厚1表面粗度は全面に亘って均一となり、
しかもガスビットの発生は起らなくなる。
(Function) In the device of the present invention, the electrolytic solution fed into the anode of the box-shaped body by the electrolyte circulation pump is ejected from the slit hole on the top surface of the anode at a predetermined flow rate. Then, the cathode runs at a predetermined speed across the spouting electrolyte, and in the process, the electrolyte is sprayed in a film onto the lower surface of the cathode, that is, the surface of the metal plate set there. Therefore, the moving metal plate is electrolytically plated one after another while its surface is in contact with a fresh, steady flow of electrolyte, and the generated gas is carried away by the electrolyte that flows away from the metal plate surface without being retained. Since it is quickly removed from the electrolytically plated surface, the thickness of the copper foil formed and the surface roughness are uniform over the entire surface.
Furthermore, gas bits no longer occur.

(実施例) 以下に、添付図面に基づいて本発明装置の1例につき更
に詳細に説明する。
(Example) Below, one example of the device of the present invention will be described in more detail based on the accompanying drawings.

第1図は実施例装置の全体構成図である。FIG. 1 is an overall configuration diagram of the embodiment device.

第1図において、装置は1、グランド1に4本のフレー
ム2a、2b、2c、2dを立設し、これら各フレーム
の途中に仕切り板3を配設することにより、上段部4a
と下段部4bの2つの区画に画分されている。
In FIG. 1, the apparatus has four frames 2a, 2b, 2c, and 2d erected on the ground 1, and a partition plate 3 is disposed in the middle of each frame.
It is divided into two sections: a lower section 4b and a lower section 4b.

仕切り板3には、電解液送入口3a、3aと電解液流出
口3bが形成され、また、この仕切り板の上には、この
仕切り板と諮問−平面形状でかつ前記電解液流入口3a
、3a、電解液流出口3bと連通ずる透孔を有する上部
タンク5が配置される。なお、上部タンク5を設けるこ
となく、各フレーム間を板で取囲み、仕切り板3を底板
とする上部開口の槽として上段部4aを形成してもよい
The partition plate 3 is formed with electrolyte inlets 3a, 3a and an electrolyte outlet 3b, and above the partition plate is an electrolyte inlet 3a which has a planar shape and is similar to the partition plate.
, 3a, and an upper tank 5 having a through hole communicating with the electrolyte outlet 3b is disposed. Note that, without providing the upper tank 5, the upper stage portion 4a may be formed as a tank with an upper opening by surrounding each frame with a plate and using the partition plate 3 as a bottom plate.

下段部4bには、電解液タンク6が配置され、上段部4
aの電解液が前記した電解液流出口3bから流入して貯
留できるようになっている。
An electrolyte tank 6 is arranged in the lower part 4b, and the upper part 4
The electrolytic solution a flows in from the electrolytic solution outlet 3b described above and can be stored therein.

また、下段部4bには、電解液循環ポンプ7゜7が配置
され、ポンプの一端は電解液タンク6と接続され、また
他端は仕切り板3の電解液送入口3aと液密に接続され
ていて、この電解液循環ポンプ7を稼動することにより
、電解液タンク6内の電解液6aが下段部4bと上段部
4aの間で循環できるようになっている。電解液循環ポ
ンプ7と電解液送入口3aを結ぶ配管には、流量Sl1
節バルブ7a、流量計7bが取付けられ、電解液タンク
6から上段部4aに噴出せしめる電解液6aの流量、流
速を1llil’fできるようになっている。
Further, an electrolyte circulation pump 7°7 is arranged in the lower part 4b, one end of the pump is connected to the electrolyte tank 6, and the other end is liquid-tightly connected to the electrolyte inlet 3a of the partition plate 3. By operating the electrolyte circulation pump 7, the electrolyte 6a in the electrolyte tank 6 can be circulated between the lower section 4b and the upper section 4a. The piping connecting the electrolyte circulation pump 7 and the electrolyte inlet 3a has a flow rate Sl1.
A control valve 7a and a flow meter 7b are attached, so that the flow rate and flow rate of the electrolytic solution 6a spouted from the electrolytic solution tank 6 to the upper stage 4a can be controlled at 1 lil'f.

上段部4aのタンク5の中には、電解液送入口3a、3
aと液密に接続して陽極8.8が配設されこれは■極に
接続されている。陽極8は、第2図の斜視図で示したよ
うに、全体が箱状の形をしていて、その上面8aには、
後述する陰極の走行方向と直交する方向に延びるスリッ
ト孔8bが形成されている。このスリット孔8bの長さ
は後述する金属板の幅(走行方向と直交する方向の長さ
)と諮問等する。
In the tank 5 of the upper part 4a, there are electrolyte inlet ports 3a, 3.
An anode 8.8 is disposed in fluid-tight connection with a, and this is connected to the pole . As shown in the perspective view of FIG. 2, the anode 8 has a box-like shape as a whole, and the upper surface 8a has a
A slit hole 8b extending in a direction perpendicular to the running direction of the cathode, which will be described later, is formed. The length of this slit hole 8b is determined based on the width of the metal plate (the length in the direction orthogonal to the running direction), which will be described later.

フレーム2aと2b、フレーム2cと2d(図示せず)
の間にはガイドシャフト9.9が架設され、このガイド
シャフト9から陰極10が吊設されている。すなわち、
陰極10は、ガイドシャフト9を滑動するベアリング滑
動部11a、llaを備えた電気絶縁性の支持体11.
11でガイドシャフト9に支持されている。また、陰極
10の両端には走行チェーン12が取付けられ、この走
行チェーン12はフレーム上部に付設されたスプロケッ
ト13a、13b、13c、13dによりループを形成
し、スプロケット3dは正逆回転自由なモータ14と一
体化している。したがって、モータ14を稼動して走行
チェーン12を駆動せしめることにより、陰極10は矢
印p方向に走行できるようになっている。そして、陰極
lOには、導電体10a、10aが取付けられ、これら
は0極に接続されている。
Frames 2a and 2b, frames 2c and 2d (not shown)
A guide shaft 9.9 is installed between them, and a cathode 10 is suspended from this guide shaft 9. That is,
The cathode 10 is an electrically insulating support 11. which is provided with bearing sliding parts 11a, lla that slide on the guide shaft 9.
11 and is supported by the guide shaft 9. Further, a traveling chain 12 is attached to both ends of the cathode 10, and this traveling chain 12 forms a loop with sprockets 13a, 13b, 13c, and 13d attached to the upper part of the frame. It is integrated with. Therefore, by operating the motor 14 to drive the traveling chain 12, the cathode 10 can travel in the direction of the arrow p. Conductors 10a, 10a are attached to the cathode IO, and these are connected to the 0 pole.

陰極10の下面は、前記した陽極8の上面8aと所定間
隔を置いて対向し、この下面にはw4箔をその表面に形
成すべき金属板15が着脱自在に取付けることができる
ようになっている。すなわち、陰8iiloの両端側部
にエアシリンダ16.16を付設し、これらエアシリン
ダ16によって上下動する固定具16a、16aで金属
板i5が着脱自在に取付けられる。
The lower surface of the cathode 10 faces the upper surface 8a of the anode 8 at a predetermined distance, and a metal plate 15 on which the W4 foil is to be formed can be detachably attached to the lower surface. There is. That is, air cylinders 16, 16 are attached to both end sides of the shade 8iilo, and the metal plate i5 is removably attached using fixtures 16a, 16a which are moved up and down by these air cylinders 16.

つぎにこの装置の作用を説明する。Next, the operation of this device will be explained.

まず、所定の材質1表面研磨状態にある金属板15を陰
極10の下面に取付け、エアシリンダ16を稼動して固
定具16aで緊締して陰極10に固定する。ついで、電
解液循環ポンプ7を稼動し電解液タンク6内の電解液6
aを電解液送入口3aから陽極8の中に送入する。送入
された電解液は、陽極上面8aのスリット孔8bから、
第2図に例示したように噴出し、上段部4aと下段部4
bとの間を循環する。
First, a metal plate 15 made of a predetermined material 1 whose surface has been polished is attached to the lower surface of the cathode 10, and is fixed to the cathode 10 by operating the air cylinder 16 and tightening it with the fixture 16a. Next, the electrolyte circulation pump 7 is operated to drain the electrolyte 6 in the electrolyte tank 6.
a into the anode 8 from the electrolyte inlet 3a. The introduced electrolyte is passed through the slit hole 8b of the anode top surface 8a.
As illustrated in FIG. 2, the upper stage part 4a and the lower stage part 4
It circulates between b.

この状態で、モータ14を所定回転数で稼動して走行チ
ェーン12を駆動せしめ、陰極10すなわち金属板15
をガイドシャフト9に沿って所定の速度で走行せしめる
In this state, the motor 14 is operated at a predetermined rotation speed to drive the traveling chain 12, and the cathode 10, that is, the metal plate 15 is driven.
is made to travel along the guide shaft 9 at a predetermined speed.

スリット孔8bから噴出する電解液が金属板15に吹き
当る直前から陽極8と陰極10の間に通電して電解めっ
きを開始する。
Immediately before the electrolyte ejected from the slit hole 8b hits the metal plate 15, electricity is applied between the anode 8 and the cathode 10 to start electrolytic plating.

このとき、流11!!ffバルブ7aを調整してスリッ
ト孔8bから噴出する電解液の流量をU4#シ、走行す
る金属板15の表面で電解液の接液速度が所定の水準と
なるようにし、それに対応させて電流密度を設定する。
At this time, flow 11! ! Adjust the flow rate of the electrolyte ejected from the slit hole 8b by adjusting the ff valve 7a so that the contact speed of the electrolyte on the surface of the traveling metal plate 15 is at a predetermined level, and the current is adjusted accordingly. Set density.

電解液のスリット孔8bからの流量は、電解液循環ポン
プ7からの電解液6aの供給量、スリット孔8bの幅、
長さ等によって規定されるので、これらの値は上記接液
速度との関係で適宜選定すればよい。
The flow rate of the electrolyte from the slit hole 8b is determined by the amount of the electrolyte 6a supplied from the electrolyte circulation pump 7, the width of the slit hole 8b,
Since these values are determined by the length, etc., these values may be appropriately selected in relation to the above-mentioned liquid contact speed.

例えば、電解液として銅めっき液を用い、金属板15と
陽極上面8aとのギャップを3〜20鵬。
For example, a copper plating solution is used as the electrolytic solution, and the gap between the metal plate 15 and the anode top surface 8a is set to 3 to 20 mm.

陰極10(金属板15)の走行速度を0.5〜2m/s
inで一定とし、スリット孔8bからの電解液の流速が
0.1〜l Om7secとなるような条件下において
は、を流密度を20〜100A/da”にしても、金属
板15の表面に形成された銅箔は、その厚みのばらつき
が±2.5%以下、表面粗度が0.1〜2μm以下であ
り、また発生するガスピントはO個/10cdと優れた
表面状態にある。ちなみに、従来の方法では、厚みのば
らつき±5%1表面粗度0.1〜10tIm、10cッ
トl〜5個/dm”というオーダーである。
The running speed of the cathode 10 (metal plate 15) is 0.5 to 2 m/s.
Under conditions where the flow rate of the electrolytic solution from the slit hole 8b is 0.1~10m7sec, even if the flow density is set to 20~100A/da'', the surface of the metal plate 15 will not reach the surface of the metal plate 15. The formed copper foil has an excellent surface condition with a variation in thickness of ±2.5% or less, a surface roughness of 0.1 to 2 μm or less, and the number of gas pins generated is O pieces/10 cd. In the conventional method, the thickness variation is on the order of ±5%, the surface roughness is on the order of 0.1 to 10 tIm, and 10 ctl to 5 pieces/dm.

(発明の効果) 以上の説明で明らかなように、本発明装置によれば、所
定の流量で電解液を吹き当てながらめっきすべき金属板
を走行させるので、金属板の表面には常時新鮮な電解液
から成る定常流が形成され、しかも発生ガスは速やかに
電解液と一緒に除去されてしまい、その結果、金属板の
表面には、その全面に亘り膜厚や表面粗度が均一でしか
もガスピットの発生していないめっき層が形成されるこ
とになる。
(Effects of the Invention) As is clear from the above explanation, according to the apparatus of the present invention, the metal plate to be plated is run while being sprayed with electrolyte at a predetermined flow rate, so that the surface of the metal plate is always kept fresh. A steady flow of electrolyte is formed, and the generated gas is quickly removed together with the electrolyte, resulting in a uniform film thickness and surface roughness over the entire surface of the metal plate. A plating layer without gas pits is formed.

また、この装置の場合は、スリット孔の長さを処理すべ
き金属板の幅と路間等にするだけで電解めっきが可能と
なるので、陽極の全体形状を小さくすることもできる。
Furthermore, in the case of this apparatus, electrolytic plating can be performed by simply adjusting the length of the slit hole to the width of the metal plate to be processed and the path, so that the overall shape of the anode can be made smaller.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例装置の全体構成図、第2図は陽
極例の斜視図である8、 1・・・グランド、2a、2b、2c、2d−フレーム
、3・・・仕切り板、3a・・・電解液送入口、3b・
・・電解液流出口、4a・・・上段部、4b・・・下段
部、5・・・上部タンク、6・・・電解液タンク、6a
・・・電解液、7・・・電解液循環ポンプ、7a・・・
流N調節バルブ、7b・・・流量計、8・・・陽極、8
a・・・陽極上面、8b・・・スリット孔、9・・・ガ
イドシャフト、10・・・陰極、10a・・・導電体、
11・・・支持体、lla・・・ベアリング滑動部、1
2・・・走行チェーン、13a。 L3b、13c、13d・・・スプロケット、14・・
・モータ、15・・・金属板、16・・・エアシリンダ
、16a・・・金属板固定具。
Fig. 1 is an overall configuration diagram of an embodiment of the device of the present invention, and Fig. 2 is a perspective view of an example of an anode. , 3a...electrolyte inlet, 3b...
... Electrolyte outlet, 4a... Upper part, 4b... Lower part, 5... Upper tank, 6... Electrolyte tank, 6a
... Electrolyte, 7... Electrolyte circulation pump, 7a...
Flow N control valve, 7b...flow meter, 8...anode, 8
a...Anode top surface, 8b...Slit hole, 9...Guide shaft, 10...Cathode, 10a...Conductor,
11...Support body, lla...Bearing sliding part, 1
2... Traveling chain, 13a. L3b, 13c, 13d... Sprocket, 14...
- Motor, 15...Metal plate, 16...Air cylinder, 16a...Metal plate fixture.

Claims (2)

【特許請求の範囲】[Claims] (1)電解液を貯留する電解液タンク、前記電解液タン
クと接続する電解液循環ポンプ、前記電解液循環ポンプ
と接続されかつその上面には少なくとも1個のスリット
孔が形成されている箱状体の陽極、および、前記陽極の
上部に設置された陰極走行装置に吊設されかつその下面
は前記陽極面のスリット孔と所定間隔を置いて対向して
いる陰極がそれぞれ配設され、前記陰極を走行させなが
ら、前記陽極上面のスリット孔から前記電解液タンクの
電解液を循環ポンプにより噴出せしめて、前記陰極の下
面に吹き当てて電解めっきを行なうことを特徴とする電
解めっき装置。
(1) An electrolyte tank that stores an electrolyte, an electrolyte circulation pump that is connected to the electrolyte tank, and a box that is connected to the electrolyte circulation pump and has at least one slit hole formed on its top surface. an anode of the body, and a cathode suspended from a cathode traveling device installed above the anode, the lower surface of which faces the slit hole of the anode surface at a predetermined distance, and the cathode An electrolytic plating apparatus characterized in that while running the anode, the electrolytic solution in the electrolytic solution tank is spouted out from a slit hole on the upper surface of the anode by a circulation pump, and is sprayed onto the lower surface of the cathode to perform electrolytic plating.
(2)装置全体が、電解液送入口と電解液流出口を有す
る仕切り板で上段部と下段部との2室に画分され、前記
下段部には、前記電解液流出口からの流出電解液を貯留
する電解液タンク、および、前記電解液タンクと接続し
かつ前記電解液送入口と液密に接続する電解液循環ポン
プがそれぞれ配設され、前記上段部には、前記電解液送
入口と液密に接続されかつその上面には少なくとも1個
のスリット孔が形成されている箱状体の陽極、および、
前記上段部の上部に架設された陰極走行装置に吊設され
、かつその下面は前記陽極上面のスリット孔と所定間隔
を置いて対向している陰極がそれぞれ配設され、前記陰
極を走行させながら、前記陽極上面のスリット孔から電
解液を噴出せしめることにより前記陰極の下面に電解液
を吹き当てて電解めっきを行なうことを特徴とする電解
めっき装置。
(2) The entire device is divided into two chambers, an upper part and a lower part, by a partition plate having an electrolyte inlet and an electrolyte outlet. An electrolyte tank for storing a liquid, and an electrolyte circulation pump connected to the electrolyte tank and liquid-tightly connected to the electrolyte inlet are provided in the upper part, and the electrolyte inlet is connected to the electrolyte inlet. a box-shaped anode, which is fluid-tightly connected to the box-shaped anode and has at least one slit hole formed in its upper surface;
A cathode is suspended from a cathode traveling device installed on the upper part of the upper part, and the lower surface thereof faces the slit hole in the upper surface of the anode at a predetermined interval. An electrolytic plating apparatus characterized in that electrolytic plating is performed by spraying the electrolytic solution onto the lower surface of the cathode by spouting the electrolytic solution from a slit hole on the upper surface of the anode.
JP19393589A 1989-07-28 1989-07-28 Electroplating device Pending JPH0361394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19393589A JPH0361394A (en) 1989-07-28 1989-07-28 Electroplating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19393589A JPH0361394A (en) 1989-07-28 1989-07-28 Electroplating device

Publications (1)

Publication Number Publication Date
JPH0361394A true JPH0361394A (en) 1991-03-18

Family

ID=16316191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19393589A Pending JPH0361394A (en) 1989-07-28 1989-07-28 Electroplating device

Country Status (1)

Country Link
JP (1) JPH0361394A (en)

Similar Documents

Publication Publication Date Title
US6210555B1 (en) Electrodeposition of metals in small recesses for manufacture of high density interconnects using reverse pulse plating
US6863793B2 (en) Sequential electrodeposition of metals using modulated electric fields for manufacture of circuit boards having features of different sizes
US8329006B2 (en) Electroplating cell with hydrodynamics facilitating more uniform deposition across a workpiece during plating
US7947161B2 (en) Method of operating an electroplating cell with hydrodynamics facilitating more uniform deposition on a workpiece with through holes
JPH07300699A (en) Multicompartment electroplating device
US5425862A (en) Apparatus for the electroplating of thin plastic films
US7288177B2 (en) Selective shield/material flow mechanism
KR101074314B1 (en) Device and method for electrolytically treating an at least superficially electrically conducting work piece
WO2004081262A1 (en) Method of electroplating a workpiece having high-aspect ratio holes
JP2749453B2 (en) Equipment for processing printed circuit boards
EP1438446B1 (en) System and method for electrolytic plating
US4875982A (en) Plating high aspect ratio holes in circuit boards
JPH0881799A (en) Electroplating method, electroplating device and electroplating rack
KR100747132B1 (en) Plating system with remote secondary anode for semiconductor manufacturing
JPH0361394A (en) Electroplating device
US5211826A (en) Electroplating means for perforated printed circuit boards to be treated in a horizontal pass
US5342503A (en) Method for high speed continuous wire plating
JPH0354887A (en) Method and apparatus for treatment of fine hole in printed board
JPH0350792A (en) Very small hole treatment for printed board and device therefor
KR970001600A (en) Electrodeposition method of metal film and apparatus for same
KR200358909Y1 (en) Electroplating apparatus obtain two-sided uniform plated layer
JPS6147918B2 (en)
US5897756A (en) Device for chemical or electroyltic surface treatment of plate-like objects
JPS59126793A (en) Radial cell type plating device
CN115161750A (en) Semiconductor rack plating equipment