JPH0361342A - Zinc alloy for alkaline battery electrode - Google Patents

Zinc alloy for alkaline battery electrode

Info

Publication number
JPH0361342A
JPH0361342A JP1195221A JP19522189A JPH0361342A JP H0361342 A JPH0361342 A JP H0361342A JP 1195221 A JP1195221 A JP 1195221A JP 19522189 A JP19522189 A JP 19522189A JP H0361342 A JPH0361342 A JP H0361342A
Authority
JP
Japan
Prior art keywords
zinc
weight
zinc alloy
battery
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1195221A
Other languages
Japanese (ja)
Inventor
Junzo Nakagawa
中川 淳三
Eiichiro Mieno
三重野 栄一郎
Wataru Sekiguchi
関口 亘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Zinc Co Ltd
Toho Aen KK
Original Assignee
Toho Zinc Co Ltd
Toho Aen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Zinc Co Ltd, Toho Aen KK filed Critical Toho Zinc Co Ltd
Priority to JP1195221A priority Critical patent/JPH0361342A/en
Publication of JPH0361342A publication Critical patent/JPH0361342A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the corrosion resistance of zinc and the properties of electric discharge battery in a low mercuration or unmercuration state by incorporating specific amounts of Bi, In, and Pb to high purity zinc in which respective contents of Ni, Cr, Mo, Sn, Sb, and Fe are controlled. CONSTITUTION:A zinc alloy for alkaline battery electrode has a composition in which 0.001-2.0%, by weight, Bi, 0.01-0.05% In, and 0.01-1.0% Pb are incorporated to high purity zinc of >=99.995wt.% zinc purity containing <=1wt.ppm of Ni, Cr, Mo, Sn, and Sb and <=10ppm Fe. Both of the amount of hydrogen gas formed and the properties of battery of the above Bi-In-Pb-zinc alloy are on superior levels, respectively, even in a state of low mercuration concentration of <=1.0wt.% Hg or in an unmercuration state.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐食性が良好なり1−In−Pb−亜鉛系の
アルカリ電池電極用の亜鉛合金に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a 1-In-Pb-zinc based zinc alloy for alkaline battery electrodes which has good corrosion resistance.

〔従来の技術〕[Conventional technology]

アルカリ電池の負極に用いる亜鉛または亜鉛合金として
は、電池使用時あるいは電池貯蔵時に生じる電解液によ
る腐食や、それに伴って発生する水素ガスによって、電
池容器の変形や電池容器からの漏液を生じさせないこと
が必要条件とされている。
Zinc or zinc alloys used in the negative electrode of alkaline batteries should not cause deformation of the battery container or leakage from the battery container due to corrosion caused by the electrolyte that occurs during battery use or storage, and hydrogen gas generated as a result. This is considered a necessary condition.

亜鉛は水素過電圧が比較的高く、且つ価格も比較的低源
であることから、古くから電池電極材料として使用され
てきたが、亜鉛のみでは上記腐食による・水素ガスの発
生を実用的に支障のない程度にまで抑制することは困難
で、さらに水素過電圧を高め、腐食を抑制するために、
亜鉛を6〜10重量%の水銀により汞化することが行わ
れてきた。
Zinc has been used as a battery electrode material for a long time because it has a relatively high hydrogen overvoltage and is a relatively low-cost source. It is difficult to suppress the hydrogen overvoltage to the extent that it does not occur, and in order to further increase the hydrogen overvoltage and suppress corrosion,
Zinc has been oxidized with 6-10% by weight of mercury.

その後、水銀による環境汚染が問題となり、公害防止上
の配慮から亜鉛の汞化濃度を低減しあるいは無汞化状態
で使用することが指向され、水銀の代替用元素としてG
a、In、Pb、TE、A/!。
Subsequently, environmental pollution caused by mercury became a problem, and in order to prevent pollution, there was a trend to reduce the concentration of zinc in the form of hydrogen or to use it in a non-grained state.
a, In, Pb, TE, A/! .

Bi、Ag等種々な元素が検討されてきており、例えば
Ga−In−Pb−亜鉛合金(特開昭58−26456
号、特開昭59−121780号)、In−Pb−Ae
−亜鉛合金(特開昭61−77265号)またはBi−
亜鉛合金(特公昭63−3942号)等が提案され、あ
るいは実用化されてきている。
Various elements such as Bi and Ag have been studied, and for example, Ga-In-Pb-zinc alloy (JP-A-58-26456
No., JP-A-59-121780), In-Pb-Ae
-Zinc alloy (JP-A-61-77265) or Bi-
Zinc alloys (Japanese Patent Publication No. 63-3942) have been proposed or put into practical use.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記各種の先行技術においては、その合
金成分によって明らかに亜鉛の水素過電圧を高め、腐食
を抑制するという効果は見られるものの、水素ガス発生
率のばらつきが大きく、アルカリ電池電極用として実用
に供するべく生産した製品には、検査段階で不合格とな
る生産ロフトも少なからずあり、電池電極用材料として
の供給の安定性を欠き、生産コストを押し上げるという
問題があった。さらに一方においては、水素ガス発生率
のばらつきが無視できる程度にまで材料合金の耐食性を
高めようとすると、材料合金の不働態化により、電池の
放電電池特性が低下するという問題があった。即ち、従
来においては、このような耐食性と電池性能維持のため
、依然として1.5重量%以上の汞化濃度を必要とする
という問題があった。
However, in the various prior art technologies mentioned above, although the alloy components clearly have the effect of increasing the hydrogen overvoltage of zinc and suppressing corrosion, the hydrogen gas generation rate varies widely, making it impractical for use in alkaline battery electrodes. There were quite a few production lofts that failed the inspection stage of the products produced for the market, which led to problems with the lack of stability in the supply of battery electrode materials and an increase in production costs. Furthermore, on the other hand, if an attempt is made to improve the corrosion resistance of a material alloy to such an extent that variations in the hydrogen gas generation rate can be ignored, there is a problem in that the material alloy becomes passivated and the discharge characteristics of the battery deteriorate. That is, in the past, there was a problem in that in order to maintain such corrosion resistance and battery performance, a filtration concentration of 1.5% by weight or more was still required.

以上の状況に鑑み、本発明は、さらに低濃度の汞化状態
または無汞化の状態において、使用時及び貯蔵時の水素
ガス発生量が少なく、且つそのばらつきが小さく、さら
に放電電池性能が良好であって、安定的に生産でき、従
って生産コストを抑制できるアルカリ電池電極用亜鉛合
金の開発を目的とするものである。
In view of the above circumstances, the present invention further provides a low concentration hydrogen gas state or non-hydrogen state, in which the amount of hydrogen gas generated during use and storage is small, the variation thereof is small, and furthermore, the discharge battery performance is good. The object of the present invention is to develop a zinc alloy for alkaline battery electrodes that can be produced stably and therefore reduce production costs.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するため、本発明は、不純物としての
Ni、Cr、Mo、Sn及びSbがそれぞれ1重量pp
m以下で、且つFeが10重量ppm以下であって、亜
鉛純度が99.995重量%以上の高純度亜鉛に、Bi
を0.001〜2.0重量%、Inを0.01〜0.0
5重量%、モしてPbを0.01〜0.1重量%含有さ
せたアルカリ電池電極用亜鉛合金を、また、該亜鉛合金
をHg1.0重量%以下の濃度に汞化させたアルカリ電
池電極用の亜鉛合金を提案するものである。
In order to achieve the above object, the present invention provides impurities such as Ni, Cr, Mo, Sn and Sb each containing 1 weight pp.
Bi
0.001 to 2.0% by weight, In 0.01 to 0.0
A zinc alloy for alkaline battery electrodes containing 5% by weight of Pb and 0.01 to 0.1% by weight of Pb, and an alkaline battery in which the zinc alloy is aqueous to a concentration of 1.0% by weight or less of Hg. This paper proposes a zinc alloy for electrodes.

〔作用〕[Effect]

添加元素のBi、In及びpbは、共存のもとに亜鉛の
耐食性を向上させ、水素ガスの発生量を低減させると共
に、放電電池性能を向上させる。
The additive elements Bi, In, and PB improve the corrosion resistance of zinc when they coexist, reduce the amount of hydrogen gas generated, and improve discharge battery performance.

ただし、Biは0.001重量%未満、In及びpbは
、それぞれ0.01重量%未満では急激にそれらの効果
を減じる。またBiが2.0重量%、Inが0.05重
量%そしてPbが0.1重量%を上回って含有してもそ
の効果は余り向上せず、却って不経済である。またBi
については2.0重量%を越えるとBiの偏析が著しく
なり均一な合金粒がつくり難くなる。
However, if Bi is less than 0.001% by weight, and if In and PB are each less than 0.01% by weight, their effects are sharply reduced. Further, even if Bi exceeds 2.0% by weight, In exceeds 0.05% by weight, and Pb exceeds 0.1% by weight, the effect is not improved much and is rather uneconomical. Also Bi
If the amount exceeds 2.0% by weight, segregation of Bi becomes significant and it becomes difficult to form uniform alloy grains.

亜鉛に含まれる不純物は、亜鉛の腐食を促進し、亜鉛の
純度が99.995%を下回る時、特に、不純物のNi
、Cr、Mo、Sn及びSbがそれぞれ1重量ppmを
越える時、あるいはFeがlO重量ppmを越える時は
、水素ガスの発生量は著しくなり、また、ばらつきの原
因にもなる。
Impurities contained in zinc accelerate the corrosion of zinc, and when the purity of zinc is less than 99.995%, especially the impurity Ni
, Cr, Mo, Sn, and Sb each exceed 1 ppm by weight, or when Fe exceeds 10 ppm by weight, the amount of hydrogen gas generated becomes significant and also causes variations.

(実施例) 以下、実施例及び比較例によって、本発明を具体的に説
明する。
(Example) Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples.

亜鉛純度99.995重量%以上で、Ni、Cr。Zinc purity is 99.995% by weight or more, Ni, Cr.

Mo、Sn及びSbの含有量がそれぞれ1重量ppm以
下で、Feが10重量ppm以下の高純度亜鉛を用い、
合金成分として、Bi、In及びPbを添加して溶融し
た溶湯から、ガス噴霧法で粒度48〜150メツシユの
亜鉛合金粒を製造した。また、この亜鉛合金粒を10重
量%のKOH水溶液中で攪拌し、亜鉛合金粒の表面を活
性化させると共に、水銀を滴下混合させた汞化亜鉛合金
粒をも製造した。得られた本発明組成の亜鉛合金粒を第
1表に試料1〜20として示した。
Using high purity zinc in which the content of Mo, Sn and Sb is 1 ppm by weight or less, and the content of Fe is 10 ppm by weight or less,
Zinc alloy particles having a particle size of 48 to 150 mesh were produced by a gas atomization method from a molten metal to which Bi, In, and Pb were added as alloy components. In addition, the zinc alloy particles were stirred in a 10% by weight KOH aqueous solution to activate the surface of the zinc alloy particles, and mercury was added dropwise to produce zinc alloy particles. The obtained zinc alloy grains having the composition of the present invention are shown in Table 1 as Samples 1 to 20.

次に、これらの亜鉛合金粒について、酸化亜鉛で飽和し
た60℃の40重量%KOH水溶液中に浸漬して水素ガ
ス発生量を20日間測定すると共に、電池性能の評価を
行うために、これらの亜鉛合金粒を負極活物質として市
販のLR6形アルカリマンガン電池と同じ構造を有する
電池を試作し、放電負荷2Ω、20°Cの強放電条件に
より、終止電圧0.9 Vまでの放電持続時間を測定し
た。その結果を第1表に併せて示した。
Next, these zinc alloy particles were immersed in a 40% by weight KOH aqueous solution at 60°C saturated with zinc oxide to measure the amount of hydrogen gas generated for 20 days. We prototyped a battery with the same structure as a commercially available LR6 type alkaline manganese battery using zinc alloy particles as the negative electrode active material, and under strong discharge conditions of 20°C and a discharge load of 2Ω, the discharge duration to a final voltage of 0.9 V was achieved. It was measured. The results are also shown in Table 1.

第 1 表 なお、現在市販されているLRB形のアルカリマンガン
電池の電極に使用されている1、5重量%汞化濃度の亜
鉛合金について、上記実施例と同し方法で測定した水素
ガス発生量は40μl/gで、また放電持続時間は13
0 minであった。
Table 1 The amount of hydrogen gas generated was measured using the same method as in the above example for a zinc alloy with a chloride concentration of 1.5% by weight, which is used in the electrodes of LRB type alkaline manganese batteries currently on the market. was 40 μl/g, and the discharge duration was 13
It was 0 min.

止較梃工 合金組成を本発明組成の範囲外としたほかは、上記の実
施例と同し高純度亜鉛を用い、同じ方法によって製造し
た亜鉛合金粒を比較試料1〜12として第2表に示した
Zinc alloy grains manufactured by the same method and using the same high-purity zinc as in the above examples are shown in Table 2 as Comparative Samples 1 to 12, except that the comparison alloy composition was outside the range of the present invention composition. Indicated.

次に、これらの亜鉛合金粒を、上記実施例と同じ方法に
よって水素ガス発生量を測定し、また2Ω強放電持続時
間による電池性能評価を行った。
Next, the hydrogen gas generation amount of these zinc alloy particles was measured by the same method as in the above example, and the battery performance was evaluated based on the 2Ω strong discharge duration.

その結果を第2表に併せて示した。The results are also shown in Table 2.

第 表 此圭■牝i 不純物の含有量が本発明の範囲外としたほかは、上記の
実施例の場合と同し方法によって製造して得た亜鉛合金
粒を、第3表に、比較試料13〜24として示した。
Table 3 shows comparative samples of zinc alloy grains produced by the same method as in the above example, except that the content of impurities was outside the range of the present invention. It was shown as 13-24.

次に、これらの亜鉛合金粒について、上記実施例と同じ
方法によって水素ガス発生量を測定した。
Next, the amount of hydrogen gas generated was measured for these zinc alloy grains by the same method as in the above example.

その結果を第3表に併せて示した。The results are also shown in Table 3.

第 3 表 以上、第1表に示した実施例及び第2表と第3表の比較
例の結果のように、本発明の亜鉛合金は、上記市販LR
6形電池用 1.5%永化亜鉛合金の場合に比べると、
水素ガス発生率において若干高めに分布するが、それで
も40〜100μl/gの範囲において合金成分含有率
に応じて低減する傾向を示し、汞化濃度を一定にすると
、ばらつきも少なく安定している。
Table 3 As shown in the results of the examples shown in Table 1 and the comparative examples shown in Tables 2 and 3, the zinc alloy of the present invention
Compared to the case of 1.5% permanent zinc alloy for type 6 batteries,
Although the hydrogen gas generation rate is distributed slightly higher, it still shows a tendency to decrease depending on the alloy component content in the range of 40 to 100 μl/g, and when the hydrogenation concentration is kept constant, it is stable with little variation.

また、本発明の亜鉛合金は、2Ωの強放電負荷条件下に
あっても、130 winという高水準の放電持続時間
を示した。この130 sinという数値は、電極材中
の亜鉛が有効に使用された場合の結果値を示している。
Further, the zinc alloy of the present invention exhibited a high discharge duration of 130 win even under a strong discharge load condition of 2Ω. This value of 130 sin indicates the resultant value when zinc in the electrode material is effectively used.

このように、本発明のB1−In−Pb−亜鉛合金にあ
っては、水素ガス発生量及び電池性能の双方共に、Hg
1.0重量%以下の低木化濃度であっても、また無汞化
状態であっても、良好水準にある。なお、理由は不明で
あるが、本発明の亜鉛合金では、1.0重量%以下の低
汞化域では、汞化度に応じて水素ガス発生量が低減する
が、無汞化状態においてさらに水素ガス発生量が少ない
のが特徴的である。
Thus, in the B1-In-Pb-zinc alloy of the present invention, both the amount of hydrogen gas generated and the battery performance are
Even if the shrub concentration is 1.0% by weight or less, and even if it is in a non-grading state, it is at a good level. Although the reason is unknown, in the zinc alloy of the present invention, the amount of hydrogen gas generated decreases in accordance with the degree of viscosity in the low viscosity range of 1.0% by weight or less, but even more in the non-viscous state. A characteristic feature is that the amount of hydrogen gas generated is small.

合金成分Bi、In及びpbが、それぞれ本発明亜鉛合
金組成範囲の下限値を下回るときは、第2表に示した比
較例1の場合のように、急激に水素ガス発生量が大とな
り・、放電持続時間も概ね100m1n以下に低下する
。一方、上記合金成分Bi。
When the alloy components Bi, In, and Pb are each below the lower limit of the zinc alloy composition range of the present invention, as in the case of Comparative Example 1 shown in Table 2, the amount of hydrogen gas generated suddenly increases. The discharge duration also decreases to approximately 100 m1n or less. On the other hand, the alloy component Bi.

In及びPbが、本発明合金組成の上限値を上回って含
有されても、水素ガス発生量及び放電電池性能は余り変
らないので不経済である。なお、Biについては2重量
%以上では偏析を生じ易いので、均一組成の亜鉛合金を
得るためにも、2.0重量%以下が望ましい。
Even if In and Pb are contained in an amount exceeding the upper limit of the alloy composition of the present invention, it is uneconomical because the amount of hydrogen gas generated and the performance of the discharge battery do not change much. Note that Bi content of 2% by weight or more tends to cause segregation, so in order to obtain a zinc alloy with a uniform composition, Bi is desirably 2.0% by weight or less.

さらに、比較例2の場合の第3表に示すように、上記N
i、Cr、Mo、Sn、Sb及びFeという不純物が本
発明の上限値を上回って含有する場合は、Hg1.0重
量%の低汞化または無汞化の状態の如何に拘らず、水素
ガス発生量が、その測定器容量からくる限界値の300
μm/gをも上回る量に急増するので使用に耐えない。
Furthermore, as shown in Table 3 for Comparative Example 2, the above N
When the impurities Cr, Mo, Sn, Sb, and Fe are contained in amounts exceeding the upper limits of the present invention, hydrogen gas is The amount generated is 300, which is the limit value due to the capacity of the measuring device.
The amount rapidly increases to exceed μm/g, making it unusable.

以上のように、本発明は、Ni、Cr、Mo。As described above, the present invention can be applied to Ni, Cr, and Mo.

Sn、Sb及びFe等の不純物を上記請求項記載範囲に
規制し、Bi、In及びPbからなる合金成分を上記請
求項記載範囲に限定することにより、それらの成分の共
存効果を十分に向上させたので、低汞化乃至無汞化状態
において、アルカリ電池における亜鉛の耐食性と放電電
池性能の高水準維持を図ることができる。
By restricting impurities such as Sn, Sb, and Fe to the range described in the above claim, and by limiting the alloy components consisting of Bi, In, and Pb to the range described in the claim, the coexistence effect of these components can be sufficiently improved. Therefore, it is possible to maintain a high level of zinc corrosion resistance and discharge battery performance in an alkaline battery in a low-rate to no-rate state.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、無汞
化またはHg 1.0重量%以下の低木化濃度において
も、水素ガス発生量が少なく且つばらつきが少なく、ま
た良好な放電電池特性を維持でき、従って安定的に生産
できるので、生産コストを抑制できるアルカリ電池電極
用亜鉛合金を提供できる。
As is clear from the above description, according to the present invention, the amount of hydrogen gas generated is small and there is little variation even when the Hg concentration is 1.0% by weight or less, and good discharge battery characteristics are achieved. can be maintained and therefore produced stably, making it possible to provide a zinc alloy for alkaline battery electrodes that can suppress production costs.

Claims (2)

【特許請求の範囲】[Claims] (1)Ni,Cr,Mo,Sn及びSbがそれぞれ1重
量ppm以下で、且つFeが10重量ppm以下であっ
て、亜鉛純度が99.995重量%以上の高純度亜鉛に
、Biを0.001〜2.0重量%、Inを0.01〜
0.05重量%、そしてPbを0.01〜0.1重量%
含有させたことを特徴とするアルカリ電池電極用亜鉛合
金。
(1) High-purity zinc containing Ni, Cr, Mo, Sn, and Sb each at 1 ppm by weight or less, Fe at 10 ppm or less, and a zinc purity of 99.995% by weight or more, with 0.0% Bi added. 001-2.0% by weight, In 0.01-2.0% by weight
0.05% by weight, and 0.01-0.1% by weight of Pb.
A zinc alloy for alkaline battery electrodes, characterized in that it contains zinc.
(2)請求項(1)記載の亜鉛合金を、Hg1.0重量
%以下の濃度に汞化させたことを特徴とするアルカリ電
池電極用亜鉛合金。
(2) A zinc alloy for an alkaline battery electrode, characterized in that the zinc alloy according to claim (1) is aqueousized to a Hg concentration of 1.0% by weight or less.
JP1195221A 1989-07-27 1989-07-27 Zinc alloy for alkaline battery electrode Pending JPH0361342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1195221A JPH0361342A (en) 1989-07-27 1989-07-27 Zinc alloy for alkaline battery electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1195221A JPH0361342A (en) 1989-07-27 1989-07-27 Zinc alloy for alkaline battery electrode

Publications (1)

Publication Number Publication Date
JPH0361342A true JPH0361342A (en) 1991-03-18

Family

ID=16337482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1195221A Pending JPH0361342A (en) 1989-07-27 1989-07-27 Zinc alloy for alkaline battery electrode

Country Status (1)

Country Link
JP (1) JPH0361342A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0500313A2 (en) * 1991-02-19 1992-08-26 Mitsui Mining & Smelting Co., Ltd. Zinc alloy powder for alkaline cell and method to produce the same
EP1612879A1 (en) * 2000-05-24 2006-01-04 Eveready Battery Company, Inc. Zero mercury air cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0500313A2 (en) * 1991-02-19 1992-08-26 Mitsui Mining & Smelting Co., Ltd. Zinc alloy powder for alkaline cell and method to produce the same
EP1612879A1 (en) * 2000-05-24 2006-01-04 Eveready Battery Company, Inc. Zero mercury air cell

Similar Documents

Publication Publication Date Title
JP3215448B2 (en) Zinc alkaline battery
US5198315A (en) Zinc alkaline cells
JP3215447B2 (en) Zinc alkaline battery
JPH0361342A (en) Zinc alloy for alkaline battery electrode
JPH04237952A (en) Manufacture of unamalgamated zinc alloy powder for alkaline dry battery
JP3545985B2 (en) Zinc alloy powder and alkaline battery using the same
JP2832227B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JP2832228B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JP3561299B2 (en) Zinc alloy powder for alkaline batteries
JPS6177257A (en) Zinc alkaline battery
JPH0459374B2 (en)
JPH0356637A (en) Zinc alloy for alkaline battery electrode
JP3111773B2 (en) Mercury-free alkaline battery and its manufacturing method
JPS62123653A (en) Zinc-alkaline battery
JP3944537B2 (en) Zinc alloy powder for alkaline batteries
JPH04368776A (en) Zinc-alloy powder for alkaline battery, and manufacture thereof
JPH09161781A (en) Negative electrode active material for alkaline battery
JP2796154B2 (en) Zinc negative electrode for alkaline batteries
JPH0317182B2 (en)
JPS63279567A (en) Alkaline battery
JPS6316553A (en) Zinc alkaline battery
JP2832229B2 (en) Zinc alloy powder for alkaline battery and method for producing the same
JP3155202B2 (en) Negative electrode zinc base alloy powder for alkaline battery and method for producing the same
JPS6164074A (en) Zinc alloy powder for the negative electrode of a mercury-free alkaline battery and its manufacture
JPS63281356A (en) Alkaline battery