JPH0361298B2 - - Google Patents
Info
- Publication number
- JPH0361298B2 JPH0361298B2 JP60095387A JP9538785A JPH0361298B2 JP H0361298 B2 JPH0361298 B2 JP H0361298B2 JP 60095387 A JP60095387 A JP 60095387A JP 9538785 A JP9538785 A JP 9538785A JP H0361298 B2 JPH0361298 B2 JP H0361298B2
- Authority
- JP
- Japan
- Prior art keywords
- cathode
- hollow cathode
- layer
- carbide
- ion source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 150000002500 ions Chemical class 0.000 claims description 23
- 229910052715 tantalum Inorganic materials 0.000 claims description 10
- 239000010936 titanium Substances 0.000 claims description 10
- 239000000758 substrate Substances 0.000 claims description 9
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 9
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 7
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 239000010937 tungsten Substances 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 17
- 239000000463 material Substances 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000000151 deposition Methods 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J27/00—Ion beam tubes
- H01J27/02—Ion sources; Ion guns
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Electron Sources, Ion Sources (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明はホローカソード放電型イオン源に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a hollow cathode discharge type ion source.
従来の技術
従来、イオン源は種々の形式のものが知られて
おり、例えば熱フイラメントを用いたイオン源で
は、熱フイラメントから出た電子を加速し、この
電子を導入ガスと衝突させてプラズマを生成し、
それに基づくイオンを発生するようにしている。
熱フイラメントは放電の陰極を成しており、そし
て通常タングステンフイラメントを用いているた
め、流入するプラズマイオンの衝撃によるスパツ
タリングや使用する放電ガス或いはその分解物と
の化学反応により消耗したり断線し、寿命が比較
的短かい。また熱フイラメントを支持している電
気絶縁物の表面が飛来するスパツタされた粒子や
フイラメントから蒸発する粒子で覆われ、電気を
導通するようになる。このような理由は熱フイラ
メントは比較的短期間で定期的に交換する必要が
ある。Conventional technology Conventionally, various types of ion sources are known. For example, in an ion source using a thermal filament, electrons emitted from the thermal filament are accelerated and the electrons collide with an introduced gas to generate plasma. generate,
Based on this, ions are generated.
The thermal filament forms the cathode of the discharge, and since a tungsten filament is usually used, it may be worn out or disconnected due to sputtering due to the impact of incoming plasma ions or chemical reaction with the discharge gas used or its decomposition products. Lifespan is relatively short. Also, the surface of the electrical insulator supporting the thermal filament becomes covered with flying spatter particles and particles evaporating from the filament, and becomes electrically conductive. For this reason, the thermal filament needs to be replaced periodically over a relatively short period of time.
そこでこのような熱フイラメントに伴なう欠点
を解消するため高度にイオン化されたプラズマの
生成手段として知られたホローカソード放電を利
用したイオン源が提供されてきた。この種のホロ
ーカソード放電型イオン源は、高温にすることが
できるため多くの高融点金属のイオンを作ること
ができること、小さなプラズマ体積中で驚異的な
電流密度と効率とを得ることができること、カソ
ード面積を大きくとれ寿命が長いこと等の利点を
もつている。 In order to eliminate the drawbacks associated with such thermal filaments, ion sources have been provided that utilize hollow cathode discharge, which is known as a means for generating highly ionized plasma. This type of hollow cathode discharge type ion source can be heated to high temperatures to produce ions of many refractory metals, and can obtain amazing current densities and efficiencies in small plasma volumes. It has advantages such as a large cathode area and a long life.
発明が解決しようとする問題点
しかしながら、このような公知のホローカソー
ド放電型イオン源においてはホローカソードは通
常SUS製であり、そのため電子のエミツシヨン
が悪いこと、カソード面積が大きいため放電させ
るのに大きな電力を必要とすること、高温安定性
がよくないこと、真空ポンプに対する負荷が大き
いこと等の問題点がある。Problems to be Solved by the Invention However, in such known hollow cathode discharge type ion sources, the hollow cathode is usually made of SUS, which has poor electron emission, and the cathode area is large, making it difficult to discharge. There are problems such as the need for electric power, poor high temperature stability, and heavy load on the vacuum pump.
ところで低電圧で大きな電流密度を得ることの
できる電子放射材料として炭化物エミツタが知ら
れており、例えば特公昭41−12171号公報にはタ
ングステンのような金属製の尖頭体にジルコニウ
ムを蒸着し、ジルコニウムの層を炭素と化合させ
て成る炭化物ポイントエミツタの製造法が開示さ
れており、また特公昭55−9775号公報には、Ti、
Zr、Hf、V、Nb、Ta中の一つまたこれらの二
種以上の複合素の炭化物の単結晶を用いた炭化物
エミツタが開示されている。さらに特公昭56−
31046号公報には、侵入型炭化物形成金属単体ま
たはその合金から成るエミツタ素材を高融点物質
から成る支持体に固定し、この固定工程の前また
は後にエミツタ素材をチツプ状に成形し、その後
チツプ状エミツタ素材を加熱下で炭化水素気体と
接触させてその表層に金属炭化物層を形成するこ
とから成る炭化物ポイントエミツタの製造法が開
示されており、そして特公昭56−31047号公報に
は、侵入型炭化物形成金属単体またはその合金か
ら成るエミツタ素材金属で高融点物質から成る基
体の少なくとも一部を被覆し、エミツタ素材金属
の被覆を加熱下で炭化水素気体と接触させてその
表面に金属炭化物層を形成することから成る炭化
物エミツタの製造法が開示されている。しかし炭
化物は硬くて脆いため上述のような公知のものや
方法では炭化物を加工したり、表面層の炭化処理
を必要とするので比較的形状の単純な例えばポイ
ントエミツタ等では未だしもイオン源のカソード
のように構造が複雑でこみ入つたものになると実
際上加工上の困難さや製造工程が複雑となるため
に実質的にそのま適用することができない。 By the way, carbide emitters are known as electron-emitting materials that can obtain large current densities at low voltages. For example, in Japanese Patent Publication No. 12171/1971, zirconium is vapor-deposited on a metal point such as tungsten, and A method for manufacturing a carbide point emitter by combining a layer of zirconium with carbon is disclosed, and Japanese Patent Publication No. 55-9775 discloses a method of manufacturing a carbide point emitter by combining a layer of zirconium with carbon.
A carbide emitter using a single crystal carbide of one or more complex carbides of Zr, Hf, V, Nb, and Ta is disclosed. In addition, special public service in 1987-
Publication No. 31046 discloses that an emitter material made of an interstitial carbide-forming metal or its alloy is fixed to a support made of a high-melting point substance, the emitter material is formed into a chip shape before or after this fixing step, and then the emitter material is formed into a chip shape. A method for producing carbide point emitters is disclosed, which involves bringing an emitter material into contact with hydrocarbon gas under heating to form a metal carbide layer on the surface layer. At least a portion of a substrate made of a high-melting point substance is coated with an emitter material metal made of a single metal or an alloy thereof, and the coating of the emitter material metal is brought into contact with a hydrocarbon gas under heating to form a metal carbide layer on its surface. A method of manufacturing a carbide emitter is disclosed comprising forming a carbide emitter. However, since carbide is hard and brittle, the known methods and methods described above require processing the carbide or carbonizing the surface layer. Therefore, it is still difficult to use an ion source with a relatively simple shape, such as a point emitter. When the structure becomes complicated and intricate, such as the cathode of , it is difficult to process and the manufacturing process becomes complicated, so that it cannot be applied as is.
そこで本発明の目的は、上述のような低電圧で
大きな電流密度を得ることのできる電子放射材料
の特性を利用して従来のホローカソード放電型イ
オン源に伴なう上述の問題点を解決することにあ
る。 Therefore, an object of the present invention is to solve the above-mentioned problems associated with the conventional hollow cathode discharge type ion source by utilizing the characteristics of electron-emitting materials that can obtain high current density at low voltages as described above. There is a particular thing.
問題点を解決するための手段
上記の目的を達成するために、本発明によれ
ば、面積の大きなカソードとこのカソードに対し
て電気的に絶縁して設けたアノードとの間ホロー
カソード放電によりプラズマを生成してイオンを
発生するようにしたホローカソード放電型イオン
源においてタンタル、タングステン等の基板にチ
タンを被着し、その上にTiCを被着したカソード
を筒状にして熱シールド部材中に装着したことを
特徴としている。Means for Solving the Problems In order to achieve the above object, according to the present invention, plasma is generated by hollow cathode discharge between a cathode having a large area and an anode provided electrically insulated from the cathode. In a hollow cathode discharge type ion source that generates ions, titanium is deposited on a substrate made of tantalum, tungsten, etc., and the cathode with TiC deposited thereon is made into a cylindrical shape and placed in a heat shield member. It is characterized by being worn.
作 用
このように構成したホローカソード放電型イオ
ン源では、タンタル板上に被着されるTi層は通
常厚さ0.3μm程度に形成され、その上に厚さ20μ
m程度にTiC層が被着される。Ti層およびTiC層
の形成は適当な成膜技術手段例えば真空蒸着やス
パツタリング技術を用いて行なうことができる。
薄いTi層を介在させてタンタル板上にTiC層を被
着させることによつてタンタル基板と表面のTiC
層との堅固で十分な付着を保証することができ
る。またTiC層は従来の炭化物エミツタの場合の
ように基体上に固着した炭化物形成金属(例えば
Ti)を炭化処理せずに直接被着させているので
基板全体にわたつて均一かつ一様に所望の厚さに
容易に形成することができる。Function In the hollow cathode discharge type ion source configured as described above, the Ti layer deposited on the tantalum plate is usually formed to a thickness of about 0.3 μm, and a 20 μm thick layer is formed on top of it.
A TiC layer is deposited to a depth of about 100 m. The formation of the Ti layer and the TiC layer can be carried out using suitable film deposition techniques such as vacuum evaporation or sputtering techniques.
By depositing a TiC layer on a tantalum plate with a thin Ti layer interposed between the tantalum substrate and the TiC on the surface.
A firm and sufficient adhesion with the layer can be ensured. The TiC layer also has a carbide-forming metal (e.g.
Since Ti is directly deposited without carbonization, it can be easily formed to a desired thickness evenly and uniformly over the entire substrate.
実施例
以下添附図面を参照して本発明の実施例につい
て説明する。Embodiments Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
第1,2図には本発明によるホローカソード放
電型イオン源の要部を示し、1は円筒形のホロー
カソードで、このホローカソード1はタンタル基
板2の一表面にほぼ0.3μm程度の厚さにTi層3を
被着し、その上にほぼ20μm程度の厚さでTiC層
4を被着したものを円筒状にすることによつて構
成され、この場合ホローカソード1を円筒状に保
持するため直径0.5φのタングステンワイヤ5を用
いて周囲を束ねており、また基板材料としては必
ずしもタンタル板に限定するものではなく必要に
よりその他の金属材料(例えばタングステン等)
を用いることができる。このようにして構成され
た円筒状のホローカソード1の両端には絶縁部材
6を介してアノード7(図面にはその一方のみを
示す)が取付けられる。こうして形成されたカソ
ード組立体は符号8,9で示すモリブデン製の二
重構造の熱シールド内に挿置される。またホロー
カソード1および二重の熱シールド8,9には軸
線方向に平行にイオン引出し用スリツト10が設
けられている。なおアノード7の構造および配置
を変えてイオンの引出しを端壁側から行なうよう
にしてもよい。図面には示してないが当然放電ガ
ス導入手段およびカソード表面物質供給手段が設
けられる。 1 and 2 show the main parts of the hollow cathode discharge type ion source according to the present invention. Reference numeral 1 denotes a cylindrical hollow cathode, and this hollow cathode 1 is attached to one surface of a tantalum substrate 2 with a thickness of approximately 0.3 μm. It is constructed by depositing a Ti layer 3 on it, and depositing a TiC layer 4 on top of it with a thickness of about 20 μm into a cylindrical shape. In this case, the hollow cathode 1 is held in a cylindrical shape. Therefore, the periphery is bundled using tungsten wire 5 with a diameter of 0.5φ, and the substrate material is not necessarily limited to tantalum plate, but other metal materials (for example, tungsten, etc.) may be used as necessary.
can be used. Anodes 7 (only one of which is shown in the drawing) are attached to both ends of the cylindrical hollow cathode 1 constructed in this manner with insulating members 6 interposed therebetween. The cathode assembly thus formed is placed within a double heat shield made of molybdenum, shown at 8 and 9. Furthermore, slits 10 for extracting ions are provided in the hollow cathode 1 and the double heat shields 8 and 9 in parallel to the axial direction. Note that the structure and arrangement of the anode 7 may be changed so that ions are extracted from the end wall side. Although not shown in the drawings, means for introducing discharge gas and means for supplying cathode surface material are naturally provided.
このように構成したイオン源の動作においてホ
ローカソード1の表面のTiC4は仕事関数が
2.63eVと低く、高温安定性をもち、スパツタリ
ング率が低くしかも化学的に活性なガスに対して
安定であるので、低い電力で長時間にわたつて安
定した放電を得ることができる。 In the operation of the ion source configured in this way, the work function of TiC4 on the surface of the hollow cathode 1 is
It has a low 2.63 eV, high temperature stability, low sputtering rate, and is stable against chemically active gases, making it possible to obtain stable discharge over a long period of time with low power.
発明の効果
以上説明してきたように本発明によれば、ホロ
ーカソードイオン源におけるホローカソードを、
タンタルのような基板上にTiを被着し、その上
にTiCを被着したものを筒状にして熱シールド部
材中に装着しているので、従来公知の炭化物エミ
ツタの製造法のように複雑で手間のかかる工程を
用いずに簡単にかつ容易にTiCホローカソードを
得ることができると共に、低電力で放電させるこ
とができ、しかも熱シールド部材を設けているの
で高温安定性がよく、寿命を飛躍的にのばすこと
ができ、そしてポンプ系の負荷を軽減させること
ができる。Effects of the Invention As explained above, according to the present invention, the hollow cathode in the hollow cathode ion source is
Since Ti is deposited on a substrate such as tantalum, and TiC is deposited on top of it, it is formed into a cylinder and installed in the heat shield member, so it is not as complicated as the conventional manufacturing method of carbide emitters. TiC hollow cathodes can be obtained simply and easily without using time-consuming processes, and can be discharged with low power.Furthermore, since a heat shield material is provided, high temperature stability is achieved and the lifespan is extended. It can be extended dramatically and the load on the pump system can be reduced.
第1図は本発明の一実施例を概略的に示す部分
断面平面図、第2図は第1図の矢印−から見
た横断面図である。
図中、1:ホローカソード、2:タンタル基
板、3:Ti層、4:TiC層、5:タングステンワ
イヤ、6:絶縁部材、7:アノード、8,9:二
重の熱シールド、10:イオン引出用スリツト。
FIG. 1 is a partial cross-sectional plan view schematically showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken from the arrow - in FIG. 1. In the figure, 1: hollow cathode, 2: tantalum substrate, 3: Ti layer, 4: TiC layer, 5: tungsten wire, 6: insulating member, 7: anode, 8, 9: double heat shield, 10: ion Drawer slit.
Claims (1)
て電気的に絶縁して設けたアノードとの間のホロ
ーカソード放電によりプラズマを生成してイオン
を発生するようにしたホローカソード放電型イオ
ン源において、タンタル、タングステン等の基板
にチタンを被着し、その上にTiCを被着したカソ
ードを筒状にして熱シールド部材中に装着したこ
とを特徴とするホローカソード放電型イオン源。1 In a hollow cathode discharge type ion source that generates plasma and generates ions by hollow cathode discharge between a cathode having a large area and an anode provided electrically insulated from the cathode, tantalum, A hollow cathode discharge type ion source characterized by having a cylindrical cathode in which titanium is deposited on a substrate such as tungsten, and TiC is deposited on top of the titanium, and the cathode is mounted in a heat shield member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60095387A JPS61253746A (en) | 1985-05-07 | 1985-05-07 | Hollow cathode discharge type ion source |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60095387A JPS61253746A (en) | 1985-05-07 | 1985-05-07 | Hollow cathode discharge type ion source |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61253746A JPS61253746A (en) | 1986-11-11 |
JPH0361298B2 true JPH0361298B2 (en) | 1991-09-19 |
Family
ID=14136239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60095387A Granted JPS61253746A (en) | 1985-05-07 | 1985-05-07 | Hollow cathode discharge type ion source |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61253746A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63212777A (en) * | 1987-03-02 | 1988-09-05 | Natl Space Dev Agency Japan<Nasda> | Ion engine |
-
1985
- 1985-05-07 JP JP60095387A patent/JPS61253746A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61253746A (en) | 1986-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6329745B2 (en) | Electron gun and cathode ray tube having multilayer carbon-based field emission cathode | |
US20070017804A1 (en) | Device for improving plasma activity PVD-reactors | |
US4173522A (en) | Method and apparatus for producing carbon coatings by sputtering | |
US5306408A (en) | Method and apparatus for direct ARC plasma deposition of ceramic coatings | |
JPH09509005A (en) | Diamond fiber field emitter | |
TW200813413A (en) | Method and apparatus for maintaining emission capabilities of hot cathodes in harsh environments | |
US4795656A (en) | Cluster ion plating method for producing electrically conductive carbon film | |
US6441550B1 (en) | Carbon-based field emission electron device for high current density applications | |
JP2008540821A (en) | Plasma amplifier for plasma processing plant | |
JPH0361298B2 (en) | ||
US6770178B2 (en) | Cathodic arc disposable sting shielding | |
JPH0826456B2 (en) | Ion source and diamond-like carbon thin film manufacturing apparatus equipped with this ion source | |
JPS61253734A (en) | Ion source | |
GB1527022A (en) | Fieldemission cathode | |
JPH024979B2 (en) | ||
JP2001143894A (en) | Plasma generator and apparatus for producing thin film | |
JPH0554812A (en) | Ion source | |
JPH0610334B2 (en) | Method for forming boride thin film of high melting point, high boiling point, high hardness material | |
JP3691109B2 (en) | CVD diamond synthesis equipment | |
JP3041185B2 (en) | Plasma CVD equipment | |
JPH0196367A (en) | Carbon ion plating apparatus | |
JPH1072289A (en) | Device for forming diamond-like carbon thin film | |
JPS5853066B2 (en) | Hot cathode discharge type ion plating equipment | |
WO2002029844A1 (en) | Multilayer carbon-based field emission electron device for high current density applications | |
JPH08120444A (en) | Crucible for housing vapor depositing substance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |