JPH0360798B2 - - Google Patents

Info

Publication number
JPH0360798B2
JPH0360798B2 JP58005182A JP518283A JPH0360798B2 JP H0360798 B2 JPH0360798 B2 JP H0360798B2 JP 58005182 A JP58005182 A JP 58005182A JP 518283 A JP518283 A JP 518283A JP H0360798 B2 JPH0360798 B2 JP H0360798B2
Authority
JP
Japan
Prior art keywords
crystal
heater member
crucible
magnetic field
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58005182A
Other languages
Japanese (ja)
Other versions
JPS59131593A (en
Inventor
Kazutaka Terajima
Tsuguo Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP518283A priority Critical patent/JPS59131593A/en
Priority to US06/571,194 priority patent/US4606037A/en
Priority to GB08401195A priority patent/GB2136310B/en
Publication of JPS59131593A publication Critical patent/JPS59131593A/en
Publication of JPH0360798B2 publication Critical patent/JPH0360798B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 この発明は磁界印加装置を備えた化合物半導体
単結晶の製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a compound semiconductor single crystal manufacturing apparatus equipped with a magnetic field application device.

−族化合物半導体、特にガリウム砒素
(GaAs)は電子移動度が大きく、超高速集積回
路、光−電子集積回路の素子用結晶基板として、
広く用いられつつある。このようにGaAsが注目
を浴びているのは高品質のGaAsの比抵抗が107
Ω・cm以上と高絶縁性であること、結晶内の欠陥
が少く、分布が均一であるものが得られること、
大型ウエハーの製造が容易であること等が挙げら
れる。このような要求を満すGaAs単結晶の製造
方法としては液体封止引き上げ法(LEC法)が
注目を浴びている。この封止引き上げ法は低圧封
止引き上げ法と高圧封止引き上げ法とが知られて
いる。低圧封止引き上げ法はボート成長法で作成
したGaAs多結晶を原料とするため、原料純度が
低く、半絶縁性とするためのクロムの添加を必要
として好ましくない。また直接合成を行う高圧封
止引き上げ法はクロムの添加は不要であるが、結
晶原料であるGaとAs及び液体封止剤である酸化
ボロン(B2O3)を高圧下で加熱、合成するため、
ルツボ内で溶融している結晶原料融液は熱対流に
より極めて不安定な状態となり、そのような状態
で結晶成長操作を行つているため固液界面の形状
が激しく変化し、生成する結晶には熱変動による
微少な成長縞が発生し、結晶の転位分布が不均一
となり易い。このような結晶基板を用いて素子を
形成すると、結晶基板に形成している欠陥は制御
出来ないため、電気特性、素子特性が均一である
集積回路を再現性良く製造することは困難であつ
た。
- group compound semiconductors, especially gallium arsenide (GaAs), have high electron mobility and are used as crystal substrates for ultrahigh-speed integrated circuits and opto-electronic integrated circuits.
It is becoming widely used. The reason why GaAs is attracting attention is that high-quality GaAs has a specific resistance of 10 7
It has high insulation properties of Ω・cm or more, has few defects in the crystal, and has a uniform distribution.
For example, it is easy to manufacture large wafers. The liquid confinement pulling method (LEC method) is attracting attention as a method for manufacturing GaAs single crystals that meets these requirements. This sealing pulling method is known as a low pressure sealing pulling method and a high pressure sealing pulling method. The low-pressure seal pulling method uses GaAs polycrystals produced by the boat growth method as a raw material, so the purity of the raw material is low and it requires the addition of chromium to make it semi-insulating, which is not preferable. In addition, the high-pressure sealed pulling method, which performs direct synthesis, does not require the addition of chromium, but the crystal raw materials Ga and As and the liquid sealant boron oxide (B 2 O 3 ) are heated and synthesized under high pressure. For,
The crystal raw material melt melting in the crucible becomes extremely unstable due to thermal convection, and since the crystal growth operation is performed in such a state, the shape of the solid-liquid interface changes drastically, and the formed crystals Minute growth striations occur due to thermal fluctuations, and the dislocation distribution of the crystal tends to become non-uniform. When devices are formed using such crystal substrates, it is difficult to manufacture integrated circuits with uniform electrical and device characteristics with good reproducibility because defects formed in the crystal substrate cannot be controlled. .

ところで、シリコン(Si)やインジウムアンチ
モン(InSb)単結晶の製造において磁界を印加
しながら結晶の引き上げ操作を行うことが報告さ
れている。上述のGaAs融液に対しても磁界を印
加すると融液中の熱対流の発生は抑制され、固液
界面は安定した状態で結晶成長が行われるため成
長縞の発生もなく高品質なGaAs単結晶を得られ
ることが判明した。
Incidentally, it has been reported that in the production of silicon (Si) or indium antimony (InSb) single crystals, a crystal pulling operation is performed while applying a magnetic field. When a magnetic field is applied to the GaAs melt described above, the occurrence of thermal convection in the melt is suppressed, and crystal growth occurs in a stable state at the solid-liquid interface, resulting in high-quality GaAs single crystals without growth streaks. It turns out that crystals can be obtained.

しかし単結晶製造装置の抵抗加熱炉は通常交
流、脈流の印加により加熱され、上記の如く磁界
を印加すると磁力により加熱炉が破損し易くなる
ため供給電流を直流に変換せねばならないが、こ
のような大電力を直流に変換することは容易なこ
とではなく、更に単結晶引き上げ装置の多くは交
流電源を使用するよう設計されているため大幅な
改造を余儀なくさせられることになる。
However, resistance heating furnaces for single crystal manufacturing equipment are usually heated by applying an alternating current or pulsating current, and if a magnetic field is applied as described above, the heating furnace is likely to be damaged by the magnetic force, so the supplied current must be converted to direct current. Converting such a large amount of power to direct current is not easy, and since most single crystal pulling equipment is designed to use an alternating current power source, major modifications are required.

この発明の目的は交流を電源として使用し、磁
界を印加しても加熱炉が破損しない化合物半導体
単結晶の製造装置を提供するもので、以下図示の
一実施例に基き本発明を説明する。
An object of the present invention is to provide a compound semiconductor single crystal manufacturing apparatus that uses alternating current as a power source and whose heating furnace is not damaged even when a magnetic field is applied.

第1図はGaAs単結晶の直接合成法として知ら
れている高圧液体封止引き上げ法を実施するため
の単結晶製造装置であつて、高圧容器1内には外
周を炭素材料等の支持部材で覆れた石英、窒化ボ
ロン等のルツボ2を設け、このルツボ2は回転支
持軸4により回転且つ上下動できるように支持さ
れ、ルツボ2の周囲には抵抗加熱炉3を設けてル
ツボを所定の温度に加熱、保持する。ルツボ2の
上部には下端に種結晶を取付けた引き上げ軸5を
垂設し、この引き上げ軸は回転すると共に上下動
するように構成する。高圧容器1の外周には磁界
印加装置6が設置され、ルツボ2内に溶融してい
る結晶原料融液に磁界を印加する。
Figure 1 shows a single crystal manufacturing apparatus for carrying out the high-pressure liquid sealing pulling method, which is known as a direct synthesis method for GaAs single crystals. A covered crucible 2 of quartz, boron nitride, etc. is provided, and this crucible 2 is supported by a rotation support shaft 4 so as to be able to rotate and move up and down.A resistance heating furnace 3 is provided around the crucible 2 to heat the crucible to a predetermined position. Heat and hold at temperature. A pulling shaft 5 with a seed crystal attached to the lower end is vertically disposed above the crucible 2, and the pulling shaft is configured to rotate and move up and down. A magnetic field applying device 6 is installed around the outer periphery of the high-pressure container 1 and applies a magnetic field to the crystal raw material melt melted in the crucible 2 .

抵抗加熱炉3は第2図に示すように、側面はグ
ラフアイトヒータ部材7が櫛歯状に配列してお
り、各ヒータ部材間の間隙には絶縁材8が介在し
て微少な振動に対して安全性を高めている。加熱
炉3の底面中央にはルツボを支持している回転支
持軸4が貫通する孔9が設けられ、底面より下方
に向つてヒータ電極11を突設し、ネジ10によ
りヒータ部材と接続される(第3図)。
As shown in FIG. 2, the resistance heating furnace 3 has graphite heater members 7 arranged in a comb-teeth pattern on the side surface, and an insulating material 8 is interposed in the gap between each heater member to prevent minute vibrations. This improves safety. A hole 9 is provided at the center of the bottom surface of the heating furnace 3, through which the rotary support shaft 4 that supports the crucible passes through, and a heater electrode 11 is provided to protrude downward from the bottom surface, and is connected to a heater member by a screw 10. (Figure 3).

このような構造の加熱炉に対して第3図に示す
ように横方向から磁界を印加すると(矢印
“B”)、磁力の方向に対して90゜ずれた方向にヒー
タ部材を引つ張る力が加わり(矢印“F”)、特
に、加熱炉を交流或は脈流で稼動させると、ヒー
タ部材に加わる力の方向が常に変化するため、疲
労が早く起りヒータ部材は破損し易くなる。従つ
て、これまで、磁場を印加する場合は加熱炉を改
良して直流で稼動するようにしていた。
When a magnetic field is applied from the lateral direction (arrow "B") to a heating furnace with such a structure as shown in Figure 3, a tensile force is generated that pulls the heater member in a direction deviated by 90 degrees from the direction of the magnetic force. (arrow "F"), and in particular, when the heating furnace is operated with alternating current or pulsating current, the direction of the force applied to the heater member constantly changes, which causes fatigue to occur quickly and the heater member to be easily damaged. Therefore, until now, when applying a magnetic field, the heating furnace has been modified to operate on direct current.

しかし、磁場を印加する場合、加熱炉を直流で
稼動するようようにしても完全にヒータ部材に上
述の力が加わることを防ぐことができず、また加
熱炉の加熱用の大電力を直流に変換するため、大
規模な直流変換装置が必要となる。
However, when applying a magnetic field, even if the heating furnace is operated with direct current, it is not possible to completely prevent the above-mentioned force from being applied to the heater member, and the large electric power for heating the heating furnace is converted to direct current. For conversion, a large-scale DC converter is required.

これに対して、この発明では結晶原料融液を収
容したルツボの外側面をヒータ部材で囲み、該ヒ
ータ部材で上記ルツボを加熱するとともに、ルツ
ボ内の結晶原料融液に磁界を印加しながら、種結
晶の引き上げにより結晶の成長を行う単結晶の製
造装置において、上記ヒータ部材の上縁部には断
面コ字形の補強部材を被せて補強し、更に上記ヒ
ータ部材の下部には環状補強部材を嵌合して補強
し、上記補強部材をアルミナ、パイロリテイツク
窒化ボロンのような窒化ボロンからなる絶縁性の
耐火部材で構成するようにした化合物半導体単結
晶の製造装置を提案するものである。
In contrast, in the present invention, the outer surface of the crucible containing the crystal raw material melt is surrounded by a heater member, and the crucible is heated by the heater member, and while applying a magnetic field to the crystal raw material melt in the crucible, In a single crystal manufacturing apparatus that grows a crystal by pulling a seed crystal, the upper edge of the heater member is reinforced by covering it with a reinforcing member having a U-shaped cross section, and an annular reinforcing member is further provided at the bottom of the heater member. The present invention proposes an apparatus for manufacturing a compound semiconductor single crystal in which the reinforcing member is an insulating fireproof member made of alumina or boron nitride such as pyrolytic boron nitride.

これを、第2図の実施例に基づいて説明する
と、先ずヒータ部材7の上縁部には断面がコ字形
の補強部材12aを被せて補強する。ヒータ部材
の下部外周にはL字形の環状補強部材12bを外
面より底部にかけて嵌合させて補強する。更にヒ
ータ部材の内面下部には環状の補強部材12cを
嵌合させて補強する。
This will be explained based on the embodiment shown in FIG. 2. First, the upper edge of the heater member 7 is reinforced by covering it with a reinforcing member 12a having a U-shaped cross section. An L-shaped annular reinforcing member 12b is fitted to the lower outer periphery of the heater member from the outer surface to the bottom for reinforcement. Further, an annular reinforcing member 12c is fitted to the lower inner surface of the heater member for reinforcement.

このような補強部材にてヒータの上部と下部を
補強すると、磁場を印加してもヒータ部材の各先
端はそれぞれの補強部材によつて動かないように
固定されているため、上述の従来法のようにヒー
タ部材を直流で稼動することなく、交流や脈流で
稼動させても疲労が起りにくくヒータ部材の破損
は確実に防止される。
When the upper and lower parts of the heater are reinforced with such reinforcing members, each tip of the heater member is fixed so that it does not move even when a magnetic field is applied, so the conventional method described above is fixed. Even if the heater member is operated with alternating current or pulsating current instead of direct current, fatigue is less likely to occur and damage to the heater member is reliably prevented.

また、この発明において使用する補強部材はヒ
ータ部材と直接接触するため、耐熱性の他に、高
温部における絶縁性、更に化合物半導体単結晶の
成長過程で結晶に悪影響を与えないこと等が要求
されるが、この発明において上記補強部材をアル
ミナ、パイロリテイツク窒化ボロンのような窒化
ボロンからなる絶縁性の耐火部材で構成するた
め、高温部においても十分に使用に耐えることが
でき、特に化合物半導体結晶の成長に与える影響
についてはアルミナ、窒化ボロンは結晶の成長に
無害であるばかりでなく、アルミニウム、ボロン
等の原子が結晶中に混入することによつて結晶成
長の過程で結晶の転位を妨げるなどの優れた性質
があることが本願発明者等の研究によつて明らか
になつている。
In addition, since the reinforcing member used in this invention comes into direct contact with the heater member, it is required to have not only heat resistance but also insulation properties in high-temperature parts, and not to adversely affect the compound semiconductor single crystal during its growth process. However, in this invention, since the reinforcing member is made of an insulating fireproof member made of boron nitride such as alumina or pyrolytic boron nitride, it can sufficiently withstand use even in high-temperature areas, and is particularly suitable for compound semiconductor crystals. Regarding the influence on crystal growth, alumina and boron nitride are not only harmless to crystal growth, but also have the potential to interfere with crystal dislocation during the crystal growth process by mixing atoms such as aluminum and boron into the crystal. It has been revealed through research by the inventors of the present application that it has excellent properties.

これに対して、シリカ系の断熱材を補強部材と
して使用した場合は、GaAs等の化合物半導体単
結晶の成長中にシリカが結晶中に混入して結晶の
電気的特性を劣化させるなどの悪影響を与えるの
で、好なしくない。
On the other hand, when a silica-based heat insulating material is used as a reinforcing material, silica gets mixed into the crystal during the growth of compound semiconductor single crystals such as GaAs, causing negative effects such as deteriorating the electrical properties of the crystal. Because I give, I don't like it or not.

上述の如く加熱炉のヒータ部材を補強すると、
交流電源で稼動する抵抗加熱炉に対して3000ガウ
スの磁場を印加して結晶成長を行つたが、ヒータ
部材の振動は全く見られず、安定して単結晶が生
成した。
When the heater member of the heating furnace is reinforced as described above,
Crystal growth was performed by applying a magnetic field of 3000 Gauss to a resistance heating furnace operated by an AC power supply, but no vibrations were observed in the heater member, and single crystals were stably produced.

本発明の装置により効果的に製造される単結晶
としてはSi、GaAs、InP、InSb、GaSb等が挙げ
られる。
Single crystals that can be effectively produced by the apparatus of the present invention include Si, GaAs, InP, InSb, GaSb, and the like.

この発明は上記の説明で明らかなように、加熱
炉のヒータ部材を補強部材により補強するように
したのであつて、既に使用されている交流電流用
の単結晶引き上げ装置にそのまま適用することが
でき、磁場を印加しながら結晶成長を行うことに
より成長縞の発生が抑制され、高品質の単結晶が
形成されることになる。なお、この発明は交流電
源を使用する結晶引き上げ装置ばかりでなく直流
電源を使用する結晶引き上げ装置に適用しても効
果があることは言うまでもない。
As is clear from the above description, the present invention is such that the heater member of the heating furnace is reinforced with a reinforcing member, and can be applied as is to the single crystal pulling apparatus for alternating current that is already in use. By performing crystal growth while applying a magnetic field, the generation of growth stripes is suppressed and a high quality single crystal is formed. It goes without saying that the present invention is effective when applied not only to a crystal pulling apparatus using an AC power source but also to a crystal pulling apparatus using a DC power source.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は磁場印加装置を備えた単結晶製造装置
の一例を示す概略断面図、第2図は本発明による
単結晶製造装置の加熱炉を示す一部断面とした側
面図、第3図は第2図の加熱炉の−線に沿つ
て切断した断面平面図。 図中、1は高圧容器、2はルツボ、3は加熱
炉、6は磁気印加装置、7はヒータ部材、8は絶
縁体、12a,12b,12cは補強材を示す。
FIG. 1 is a schematic sectional view showing an example of a single crystal manufacturing apparatus equipped with a magnetic field application device, FIG. 2 is a partially sectional side view showing a heating furnace of the single crystal manufacturing apparatus according to the present invention, and FIG. FIG. 3 is a cross-sectional plan view taken along the - line of the heating furnace in FIG. 2; In the figure, 1 is a high-pressure container, 2 is a crucible, 3 is a heating furnace, 6 is a magnetic application device, 7 is a heater member, 8 is an insulator, and 12a, 12b, and 12c are reinforcing materials.

Claims (1)

【特許請求の範囲】[Claims] 1 結晶原料融液を収容したルツボの外側面をヒ
ータ部材で囲み、該ヒータ部材を交流電流で稼動
して上記ルツボを加熱するとともに、ルツボ内の
結晶原料融液に磁界を印加しながら、種結晶の引
き上げにより結晶の成長を行う化合物半導体単結
晶の製造装置において、上記ヒータ部材の上縁部
には断面コ字形の補強部材を被せて補強し、更に
上記ヒータ部材の下部には環状補強部材を嵌合し
て補強し、上記補強部材をアルミナ、窒化ボロン
からなる絶縁性の耐火部材で構成するようにした
ことを特徴とする化合物半導体単結晶の製造装
置。
1. Surrounding the outer surface of the crucible containing the crystal raw material melt with a heater member, and heating the crucible by operating the heater member with alternating current, and applying a magnetic field to the crystal raw material melt in the crucible, seeding is performed. In a compound semiconductor single crystal manufacturing apparatus that grows a crystal by pulling the crystal, the upper edge of the heater member is covered with a reinforcing member having a U-shaped cross section for reinforcement, and the lower part of the heater member is further reinforced with an annular reinforcing member. 1. An apparatus for manufacturing a compound semiconductor single crystal, characterized in that the reinforcing member is made of an insulating fireproof member made of alumina and boron nitride.
JP518283A 1983-01-18 1983-01-18 Apparatus for producing compound semiconductor single crystal Granted JPS59131593A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP518283A JPS59131593A (en) 1983-01-18 1983-01-18 Apparatus for producing compound semiconductor single crystal
US06/571,194 US4606037A (en) 1983-01-18 1984-01-16 Apparatus for manufacturing semiconductor single crystal
GB08401195A GB2136310B (en) 1983-01-18 1984-01-17 Apparatus for manufacturing semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP518283A JPS59131593A (en) 1983-01-18 1983-01-18 Apparatus for producing compound semiconductor single crystal

Publications (2)

Publication Number Publication Date
JPS59131593A JPS59131593A (en) 1984-07-28
JPH0360798B2 true JPH0360798B2 (en) 1991-09-17

Family

ID=11604088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP518283A Granted JPS59131593A (en) 1983-01-18 1983-01-18 Apparatus for producing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPS59131593A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4668100B2 (en) * 2006-03-17 2011-04-13 コバレントマテリアル株式会社 Recharge tube for solid material and recharge method using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2651481B2 (en) * 1987-09-21 1997-09-10 株式会社 半導体エネルギー研究所 How to make superconducting materials
US5186784A (en) * 1989-06-20 1993-02-16 Texas Instruments Incorporated Process for improved doping of semiconductor crystals

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104791A (en) * 1980-01-28 1981-08-20 Sony Corp Growth of crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104791A (en) * 1980-01-28 1981-08-20 Sony Corp Growth of crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4668100B2 (en) * 2006-03-17 2011-04-13 コバレントマテリアル株式会社 Recharge tube for solid material and recharge method using the same

Also Published As

Publication number Publication date
JPS59131593A (en) 1984-07-28

Similar Documents

Publication Publication Date Title
JP7025395B2 (en) Reflective screen of single crystal growth furnace and single crystal growth furnace
EP0162467A2 (en) Device for growing single crystals of dissociative compounds
JPH0360798B2 (en)
US4619811A (en) Apparatus for growing GaAs single crystal by using floating zone
JPH0365593A (en) Single crystal growing apparatus
JP3018738B2 (en) Single crystal manufacturing equipment
JPS6251238B2 (en)
JPH03193694A (en) Crystal growing device
JP4155085B2 (en) Method for producing compound semiconductor single crystal
JPS6217496Y2 (en)
JP3247829B2 (en) Crystal growth furnace and crystal growth method
JPS5918357B2 (en) crystal growth equipment
JPS6339558B2 (en)
JP3158661B2 (en) Method and apparatus for producing high dissociation pressure single crystal
JP2003206195A (en) Apparatus for manufacturing semiconductor single crystal
JPS5957992A (en) Manufacture of single crystal of semiconductor of compound
JPS6251237B2 (en)
JPS6128634B2 (en)
JPH0524964A (en) Production of compound semiconductor single crystal
JPS62119198A (en) Device for rotating and pulling up single crystal provided with magnetic field impressing device
JPS58151398A (en) Method and device for pulling group 3-5 compound semiconductor single crystal
JPH0416591A (en) Single crystal pulling up device for compound semiconductor
Miskys et al. InP synthesis by the synthesis, solute diffusion (SSD) method using glassy-carbon crucibles
JPH0383888A (en) Apparatus for pulling up single crystal
JPS61183197A (en) Apparatus for growing crystal of compound semiconductor