JPH0360426A - Production of high-purity cesium chloride - Google Patents

Production of high-purity cesium chloride

Info

Publication number
JPH0360426A
JPH0360426A JP19068089A JP19068089A JPH0360426A JP H0360426 A JPH0360426 A JP H0360426A JP 19068089 A JP19068089 A JP 19068089A JP 19068089 A JP19068089 A JP 19068089A JP H0360426 A JPH0360426 A JP H0360426A
Authority
JP
Japan
Prior art keywords
cesium
soln
iodine
cool
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19068089A
Other languages
Japanese (ja)
Inventor
Satoshi Asano
聡 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP19068089A priority Critical patent/JPH0360426A/en
Publication of JPH0360426A publication Critical patent/JPH0360426A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent formation and admixture of Rb salt without generating toxic gas at a time of reaction and to easily obtain high-purity CsCl by utilizing H2O2 as an oxidizing agent and utilizing hydrazinium salt as a reducing agent respectively and treating a hydrochloric acid-based soln. contg. Cs ions. CONSTITUTION:I2 powder equivalent to Cs is added to a 5-9 N hydrochloric acid-based soln. contg. Cs<+> such as Cs2CO3. Thereafter aqueous hydrogen peroxide having >=30wt.% concn. of 1-1.7 equivalent to I2 is added. The soln. is agitated until I2 is extinguished while the temp. of the soln. is maintained at 30-40 deg.C. After CsICl2 is formed, the soln. is heated to rise the temp. and deposited crystal is dissolved. This soln. is left to cool and CsICl2 is deposited, separated and recovered. Then separated and recovered CsICl2 is mixed with the required amount of water. Hydrazinium salt is added while agitating the soln. until CsICl2 disappears and both I2 and CsCl soln. are produced. I2 is separated and the obtained CsCl soln. is heated and concentrated and thereafter left to cool. Further after adding acetone, this CsCl soln. is left to cool and deposited high- purity CsCl is separated and recovered.

Description

【発明の詳細な説明】 [産業上の利用分野]・ 本発明は、有機合成触媒、あるいはDNA精製等に使用
される高純度塩化セシウムの製造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to the production of high purity cesium chloride used as an organic synthesis catalyst or for DNA purification.

[従来の技術] 工業的に高純度塩化セシウムを製造する方法として特公
昭46−803号が開示されている。この方法は陽イオ
ン交換樹脂あるいは無機イオン交換体を用いるものであ
り、前者はセシウムとルビジウムの分離係数が非常に小
さいために希薄なセシウム溶液を用い、かつ陽イオン交
換樹脂層中の該溶液の線速度を極めて遅くせざるを得す
、多大の設備投資と低生産性を余儀なくさせるものであ
り、後者は、セシウムとルビジウムとの分離係数は高い
ものの、同様に極めて希薄なセシウム塩水溶液を用いな
ければならず、バイオテクノロジー関係で最も障害とな
る燐や重金属の混入が避けられないという欠点があるも
のである。
[Prior Art] Japanese Patent Publication No. 46-803 discloses a method for industrially producing high-purity cesium chloride. This method uses a cation exchange resin or an inorganic ion exchanger, and the former uses a dilute cesium solution because the separation coefficient between cesium and rubidium is very small, and the solution in the cation exchange resin layer is The linear velocity has to be extremely slow, which necessitates large capital investment and low productivity.The latter method uses an extremely dilute cesium salt aqueous solution, although the separation coefficient between cesium and rubidium is high. However, it has the disadvantage that it is unavoidable to be contaminated with phosphorus and heavy metals, which are the most hindrances in biotechnology.

上記欠点を解決する方法としてジクロロよう素酸セシウ
ムを経由して塩化セシウムを製造する方法が開示されて
いる(・新実験化学講座8無機化合物の合成■ 日本化
学会1976 )。この方法は塩化セシウムを9Mの塩
酸に溶解し、計算量の−塩化ヨウ素を含む9Mの塩酸溶
液とを熱時混合し、冷却してジクロロヨウ素酸セシウム
を得、これを分離回収した後150〜200 ’Cに加
熱し、分解して、塩化セシウムを得るものである。また
、硝酸セシウムを原料とするときには、硝酸セシウムを
塩酸にとかした高温の溶液にヨウ素を加えるものである
。なお、何れの場合においても酸化剤として塩素ガスや
硝酸を用いることにより高価な一塩化ヨウ素の代りにヨ
ウ素を使用することができるものである。
As a method for solving the above drawbacks, a method for producing cesium chloride via cesium dichloroiodate has been disclosed (New Experimental Chemistry Course 8 Synthesis of Inorganic Compounds, Chemical Society of Japan 1976). In this method, cesium chloride is dissolved in 9M hydrochloric acid, mixed with a calculated amount of 9M hydrochloric acid solution containing iodine chloride, and cooled to obtain cesium dichloroiodate. It is heated to 200'C and decomposed to obtain cesium chloride. When cesium nitrate is used as a raw material, iodine is added to a high temperature solution of cesium nitrate dissolved in hydrochloric acid. In any case, by using chlorine gas or nitric acid as the oxidizing agent, iodine can be used in place of the expensive iodine monochloride.

[発明が解決しようとする課題] しかし、これらの方法では高価な一塩化ヨウ素を使用す
ると経済性が損われ、これを回避するためにヨウ素と酸
化剤とを使用すると、例えば酸化剤として塩素を使用す
ると、反応に高い温度を要するために高耐食性の特殊な
材質でできた装置が必要となるばかりか、反応効率が悪
く、未反応の塩素ガスが大気中に放′出される。また、
酸化剤として硝酸を用いる場合には系が王水性となり、
同様に特殊材質の装置が必要とされるばかりか酸化反応
時に多量のNO,が発生する。また、条件によっては、
難溶性のヨウ素酸塩が生成し、ジクロロヨウ素酸セシウ
ムの純度を低下させ、得られる塩化セシウム中のRh濃
度を200 ppm程度にしてしまうという問題点があ
る。また、ジクロロヨウ素酸セシウムを加熱し分解する
際には高腐食性の塩素やヨウ素が発生し、装置等を腐食
し、不純物の混入の恐れを高めるのみでなく作業環境の
悪化をもたらすという問題点がある。
[Problems to be Solved by the Invention] However, in these methods, the use of expensive iodine monochloride impairs economic efficiency, and to avoid this, if iodine and an oxidizing agent are used, for example, chlorine is used as an oxidizing agent. When used, not only does the reaction require a high temperature and equipment made of a special material with high corrosion resistance, but the reaction efficiency is poor and unreacted chlorine gas is released into the atmosphere. Also,
When nitric acid is used as an oxidizing agent, the system becomes aqua regia,
Similarly, not only equipment made of special materials is required, but also a large amount of NO is generated during the oxidation reaction. Also, depending on the conditions,
There is a problem in that poorly soluble iodate is produced, reducing the purity of cesium dichloroiodate, and reducing the Rh concentration in the obtained cesium chloride to about 200 ppm. In addition, when cesium dichloroiodate is heated and decomposed, highly corrosive chlorine and iodine are generated, corroding equipment, etc., and not only increasing the risk of contamination with impurities but also deteriorating the working environment. There is.

本発明の目的はルビジウムを始めとする種々の不純物を
含むセシウム塩より高純度塩化セシウムを得るに際して
、上記問題点のない方法を提供することにある。
An object of the present invention is to provide a method free of the above-mentioned problems in obtaining highly purified cesium chloride from cesium salt containing various impurities including rubidium.

[課題を解決するための手段] 上記課題を解決する本発明の方法は、セシウムイオンを
含む5〜9N塩酸性溶液に、セシウムに対して当量のヨ
ウ素粉末を添加し、次いで、該ヨウ素に対して1〜゛1
.7当量の30重量%以上の過酸化水素水を加えた後、
液温を30〜40 ’Cに維持しつつヨウ素粉末が消失
するまで攪はんしてジクロロヨウ素酸セシウムを生じせ
しめ、次いで液を加熱昇温して析出した結晶を溶解し、
放冷し、ジクロロヨウ素酸セシウムを析出し、これを分
離回収する第一工程と、第一工程で得たジクロロヨウ素
酸セシウムを所望量の水と混合し、各はんしつつジクロ
ロヨウ素酸セシウムが消失するまでヒドラジニウム塩を
加え、ヨウ素と塩化セシウム溶液とを生ぜしめ、ヨウ素
を分離して得た塩化セシウム溶液を加熱濃縮した後、放
冷し、あるいはアセトン等を加えた後放冷して析出した
塩化セシウムを分離回収する第二工程とからなることを
特徴とする高純度塩化セシウムの製造方法である。
[Means for Solving the Problems] The method of the present invention for solving the above problems involves adding iodine powder in an amount equivalent to cesium to a 5-9N hydrochloric acid solution containing cesium ions, and then te1〜゛1
.. After adding 7 equivalents of 30% or more hydrogen peroxide solution,
While maintaining the liquid temperature at 30 to 40'C, stir until the iodine powder disappears to produce cesium dichloroiodate, then heat the liquid to raise the temperature to dissolve the precipitated crystals,
A first step of cooling to precipitate cesium dichloroiodate and separating and recovering it; and a first step of mixing cesium dichloroiodate obtained in the first step with a desired amount of water; Add hydrazinium salt until it disappears to produce iodine and cesium chloride solution, heat and concentrate the cesium chloride solution obtained by separating iodine, and then let it cool, or add acetone etc. and let it cool. The method for producing high-purity cesium chloride is characterized by comprising a second step of separating and recovering precipitated cesium chloride.

[作用] 以下本発明を第一工程と第二工程とに分けて説明する。[Effect] The present invention will be explained below by dividing into a first step and a second step.

(1)第一工程 第一工程は塩酸性セ・シウム溶液よりジクロロヨウ素酸
セシウムを得る工程である。
(1) First step The first step is a step of obtaining cesium dichloroiodate from a hydrochloric acid cesium solution.

本工程において、セシウムイオンを含む5〜9N塩酸性
溶液は、セシウム塩を5〜9Nの塩酸溶液に溶解しても
よく、また、セシウム塩の水溶液と塩酸溶液とを混合し
てもよく、塩酸溶液のかわりに本題−工程で得られるC
s1C1i回収後の母液を用いてもよい。用いるセシウ
ム塩としては塩酸溶液に溶解するものであれば支障はな
いが、無用の陰イオンの増加をさけるためには炭酸セシ
ウムや不純な塩化セシウムとすることが望ましい。
In this step, the 5-9N hydrochloric acid solution containing cesium ions may be prepared by dissolving the cesium salt in a 5-9N hydrochloric acid solution, or by mixing an aqueous solution of cesium salt and a hydrochloric acid solution, or by mixing a cesium salt aqueous solution and a hydrochloric acid solution. Instead of a solution, the main subject - C obtained in the process
The mother liquor after s1C1i recovery may be used. There is no problem with the cesium salt used as long as it is soluble in the hydrochloric acid solution, but in order to avoid an unnecessary increase in anions, it is preferable to use cesium carbonate or impure cesium chloride.

塩酸濃度を5〜9Nとするのは塩酸濃度が低いと生成す
るCs1C1iの溶解度が高くなり、収率が悪化し、経
済性を損い、高いとCsとRb等の不純物元素との分離
が悪化するからである。
The reason why the hydrochloric acid concentration is set to 5 to 9N is that when the hydrochloric acid concentration is low, the solubility of Cs1C1i produced becomes high, the yield deteriorates, and economic efficiency is impaired, and when it is high, separation of impurity elements such as Cs and Rb becomes worse. Because it does.

本第−工程では過酸化水素水を用いてヨウ素を酸化する
が、過酸化水素水を使用する目的は不純物の混入防止と
、塩素等の有害ガスの発生を防止するためである。すな
わち、第一工程でのCs1C1゜生成反応は以下の式で
示されるが、通常、常温においては0式の反応は“左辺
に片寄っており、■式の反応の進行に伴い0式の反応は
右辺に進行する。
In this first step, iodine is oxidized using a hydrogen peroxide solution, and the purpose of using the hydrogen peroxide solution is to prevent the contamination of impurities and the generation of harmful gases such as chlorine. That is, the Cs1C1° production reaction in the first step is shown by the following equation, but normally at room temperature, the reaction of equation 0 is biased toward the left side, and as the reaction of equation (■) progresses, the reaction of equation 0 is Proceed to the right side.

この■、■式でわかるように本発明ではCs101sの
生成にともなって0式の反応が進行するために塩素ガス
の発生はない。
As can be seen from equations (1) and (2), in the present invention, the reaction of equation 0 proceeds with the production of Cs101s, so no chlorine gas is generated.

2t[CI + flies ” C1* + 2Hs
O−m−のIs + C12+ 2C3+ C1−=2
CslCL     −0本工程では、セシウムとヨウ
素とは定量的に反応するため加えるヨウ素はセシウムに
対して当量であればよい。また、ヨウ素を酸化するため
の過酸化水素は、ヨウ素に対して当量であればよいが、
温度が高く、攪はんが不十分であり過酸化水素の自己分
解等を考慮しなければならないとき多めに加えるここが
必要であるが、あまり多く加えると塩素ガスが発生ずる
ため1.7当量以下とするこεが必要である。
2t [CI + flies” C1* + 2Hs
Is of O-m- + C12+ 2C3+ C1-=2
CslCL -0 In this step, cesium and iodine react quantitatively, so the amount of iodine added may be equivalent to that of cesium. In addition, hydrogen peroxide for oxidizing iodine may be used in an equivalent amount to iodine, but
It is necessary to add more when the temperature is high, stirring is insufficient, and self-decomposition of hydrogen peroxide must be taken into account, but if too much is added, chlorine gas will be generated, so 1.7 equivalents are added. The following ε is required.

ところで、■式の反応速度は塩酸濃度と反応温度に左右
され、特に塩酸濃度が低い場合には高い反応温度が望ま
れる。しかし、あまり反応温度を高くすると、ヨウ素が
揮散するので30〜40 ’Cとすることが望ましい°
Incidentally, the reaction rate of formula (2) depends on the hydrochloric acid concentration and reaction temperature, and a high reaction temperature is particularly desired when the hydrochloric acid concentration is low. However, if the reaction temperature is too high, iodine will volatilize, so it is preferable to set it at 30-40'C.
.

反応の終了はヨウ素の消失で判定する。このとき生成し
たCs1C1aの溶解度を越える部分は沈殿として系内
に存在するが、この沈殿にはRb等の不純物が混入して
いるため、液を昇温し、沈殿を完全に溶解し、次いで放
冷して高純度Cs1C1iを析出させる。この際、どの
程度の温度が要求されるかは存在する沈殿量により異な
るが、より反応を完結させ、かつ完全に溶解して精製効
果をあげるためには80°C前後とすることが望ましい
The completion of the reaction is determined by the disappearance of iodine. The part that exceeds the solubility of Cs1C1a generated at this time exists in the system as a precipitate, but since this precipitate contains impurities such as Rb, the temperature of the liquid is raised to completely dissolve the precipitate, and then released. It is cooled to precipitate high purity Cs1C1i. At this time, the temperature required varies depending on the amount of precipitate present, but it is preferably around 80°C in order to complete the reaction and completely dissolve the precipitate to achieve a purification effect.

析出した高純度Cs1C1iを分離する方法は特にこだ
わらない。また、高純度Cs1C1,を回収した後の母
液は、高純度Cs1C1オの収率を確保するために、前
記したように本革−工程の塩酸性セシウム溶液の作成に
用いることができるが、その不純物濃度によりその可否
が決ることはいうまでもない。
The method for separating the precipitated high-purity Cs1C1i is not particularly limited. In addition, the mother liquor after recovering high-purity Cs1C1 can be used to create a cesium hydrochloride solution in the genuine leather process as described above in order to ensure the yield of high-purity Cs1C1. Needless to say, whether or not this is possible depends on the impurity concentration.

本革−工程で使用する過酸化水素水の濃度は、Cs1C
1tの溶解度が比較的高いことからできるだけ高濃度の
ものを使用することが望ましり30重量%以上のものを
使用・することが好ましい。
Genuine leather - The concentration of hydrogen peroxide used in the process is Cs1C
Since the solubility of 1 t is relatively high, it is desirable to use as high a concentration as possible, and preferably 30% by weight or more.

なお、得られたCs1C1zの純度が不十分の場合には
塩酸溶液を用いて加熱溶解し、放冷して再結晶すること
により精製できることは言うまでもないことである。
It goes without saying that if the purity of the obtained Cs1C1z is insufficient, it can be purified by heating and dissolving it using a hydrochloric acid solution, allowing it to cool, and recrystallizing it.

(2)第二工程 本第二工程は、第一工程で得た高純度Cs1C1゜を還
元し高純度CsC1を得る工程である。
(2) Second Step This second step is a step of reducing the high purity Cs1C1° obtained in the first step to obtain high purity CsC1.

高純度Cs1CLを水と混合するのは、反応を生ぜしめ
るためであり、また生成rるC5Ctを完全に溶解する
ためである。よって、使用する水の量はこの目的を達成
できる型取上とすることが必要である。また、本工程で
用い得る還元剤としては、不純物の混入を防止できるこ
と、反応により除去不能な物が生じないことが必要であ
り、このことからヒドラジン、抱水ヒドラジン、ヒドラ
ジニウム塩の使用が考えられる。しかし、ヒドラジンや
抱水ヒドラジンでは中和熱と還元反応による発熱で生成
するヨウ素が揮散してしまうため適していない。ヒドラ
ジニウム塩はヨウ素を単体まで還元してもヨウ素イオ°
ンまで還元することはなく、かつさほどの反応熱も発生
しない。以上のことから、本第二工程で使用する還元剤
としてはヒドラジニウム塩が最適である。
The purpose of mixing high purity Cs1CL with water is to cause a reaction and to completely dissolve the C5Ct produced. Therefore, it is necessary to set the amount of water used so that this purpose can be achieved. In addition, the reducing agent that can be used in this process must be able to prevent the contamination of impurities and must not produce any substances that cannot be removed by the reaction.For this reason, the use of hydrazine, hydrazine hydrate, and hydrazinium salts is considered. . However, hydrazine and hydrazine hydrate are not suitable because the iodine produced by the heat of neutralization and reduction reaction evaporates. Even if hydrazinium salt reduces iodine to a single element, it still produces iodine ions.
There is no reduction to 100%, and no significant reaction heat is generated. From the above, hydrazinium salt is optimal as the reducing agent used in this second step.

還元剤としてN、H,C1,を用いた場合の反応を■式
に示した。
The reaction when N, H, and C1 are used as reducing agents is shown in equation (2).

4CsIC1s + N5llsC1z ” 4CsC
I + 611CI +Nt +21*■ 還元剤を加えると■式に従い橙色のCs1C1tが減少
17黒色のIオが析出してくる。反応の終了は橙色のC
s[C1iの消失により判断できる12本反応で生ずる
ヨウ素は不純物としては塩化セシウムを主とし、他の元
素は無視できる程度のものであり、第一工程の酸化反応
に十分使用できるものである。
4CsIC1s + N5llsC1z ” 4CsC
I + 611CI +Nt +21*■ When a reducing agent is added, orange Cs1C1t decreases according to the formula (■), and 17 black IO precipitates. The end of the reaction is indicated by an orange C.
The iodine produced in the 12-line reaction, which can be judged by the disappearance of s[C1i, mainly contains cesium chloride as an impurity, with negligible amounts of other elements, and can be used sufficiently for the oxidation reaction in the first step.

ヨウ素を分離除去した後の溶液はCsC1飽和になるま
で加熱濃縮し、放冷することによりCsC1を析出させ
る。あるいは、加熱濃縮後アセトン等を加えてCsC1
を析出させる。
After separating and removing iodine, the solution is heated and concentrated until it becomes saturated with CsC1, and then allowed to cool to precipitate CsC1. Alternatively, after heating and concentrating, add acetone etc. to CsC1
is precipitated.

なお、本発明の方法により得たCsC1には極微量のヨ
ウ素が含まれるが、必要であれば、第二工程で得たヨウ
素分離後′の溶液と水に不溶な有機溶媒とを接触させヨ
ウ素を抽出除去した後加熱濃縮し、ヨウ素を含まないC
sC1を得ることも可能である。
Note that CsC1 obtained by the method of the present invention contains a very small amount of iodine, but if necessary, the iodine solution obtained in the second step may be brought into contact with a water-insoluble organic solvent to remove iodine. After extracting and removing C, it is heated and concentrated to obtain iodine-free C.
It is also possible to obtain sC1.

[実施例] 炭酸セシウムを水に溶解しCs  31.2、Rb  
O,33、Ha   O,41、SO40,8?、 L
i   <0.01.K   <0.01゜Ca   
(0,01,Ba   <0.01.  AI   <
0.01.  Mg   <0.01、re  <0.
01、P  <0.01各g/lでRb/Cs比が0.
Ollの溶液を得た。この溶液121を1460 ml
に濃縮し、次いで20°CのCC51C1飽和の9 N
 HC1溶液3400 mlに添加し、次いで3〜5f
fi+1に粉砕した1032.6 gのヨウ素を加え、
攪はんしつつ808.1 mlの30 W/V1%過酸
化水素水を添加した。次いで、液温を40’Cに加温し
、ヨウ素が消失するまで攪はんした。次いで、液温を8
0℃として析出したCs1C1,結晶を完全に溶解し、
次いで放冷して結晶を得、これを乾燥し2094 gの
高純度Cs1C1xを得た。直接収率は78%であり、
得られた結晶のRb/Cs比は6.5 X  10−’
であった。
[Example] Dissolve cesium carbonate in water to obtain Cs 31.2, Rb
O, 33, Ha O, 41, SO 40, 8? , L
i<0.01. K <0.01゜Ca
(0,01, Ba <0.01. AI <
0.01. Mg <0.01, re <0.
01, P <0.01 Rb/Cs ratio is 0.0 for each g/l.
A solution of Oll was obtained. 1460 ml of this solution 121
and then 9 N of CC51C1 saturation at 20 °C.
Add to 3400 ml of HC1 solution, then 3-5f
Add 1032.6 g of crushed iodine to fi+1,
While stirring, 808.1 ml of 30 W/V 1% hydrogen peroxide solution was added. Next, the solution was heated to 40'C and stirred until iodine disappeared. Next, increase the liquid temperature to 8
Completely dissolve the precipitated Cs1C1 crystals at 0°C,
The crystals were then allowed to cool and were dried to obtain 2094 g of high purity Cs1C1x. The direct yield is 78%,
The Rb/Cs ratio of the obtained crystal was 6.5 x 10-'
Met.

この結晶の1283 gと5.7N塩酸2035 ml
とを混合し、80°Cまで加熱し溶解し、次いで室温ま
で放冷した。析出した結晶を乾燥し、1123 gの精
製高純度Cs1C1z結晶を得た。直接収率は88%で
あり、この結晶のRb/Cs比は6.5X 10−’で
あった。
1283 g of this crystal and 2035 ml of 5.7N hydrochloric acid
were mixed, heated to 80°C to dissolve, and then allowed to cool to room temperature. The precipitated crystals were dried to obtain 1123 g of highly purified Cs1C1z crystals. The direct yield was 88% and the Rb/Cs ratio of the crystals was 6.5X 10-'.

次に、精製高純度Cs1C1,結晶1096 gと水1
1とを混合し、攪はんしつつ一塩化ヒドラジニウム56
.7gを加えて還元した。発生したヨウ素は水分率20
%であり、522gであり、直接収率は99%であった
。ヨウ素を分離除去した母液をエバポレーターを用いて
80°CでCsC1が飽和になるまで濃縮し、次いで5
00 mlのアセトンを加えCsC1を析出し、これを
乾燥して480gの高純度CsC1結晶を得た。直接収
率は86%であった。
Next, purified high purity Cs1C1, 1096 g of crystals and 1 water
1 and 56 hydrazinium monochloride while stirring.
.. 7g was added for reduction. The generated iodine has a moisture content of 20
%, 522 g, and the direct yield was 99%. The mother liquor from which iodine was separated and removed was concentrated at 80°C using an evaporator until CsC1 was saturated, and then 5
00 ml of acetone was added to precipitate CsC1, which was dried to obtain 480 g of high purity CsC1 crystals. Direct yield was 86%.

なお、この結晶の不純物はRb  2、Na  O,4
、Sく5、 Li   O,2、K  O12、Ca 
  <0.5、 Ba   <0.5、 AI<0.5
、Mg  Q、1、re  <0.5、p  <o、s
各ppmであった。
Note that the impurities in this crystal are Rb 2, Na O, 4
, Sku5, Li O,2, K O12, Ca
<0.5, Ba <0.5, AI<0.5
, Mg Q,1,re <0.5, p <o,s
each ppm.

[発明の効果] 本発明の方法によれば酸化剤として過酸化水素を使用し
、還元剤としてヒドラジニウム塩を使用するために、反
応時に有毒な塩素ガス等が生じないばかりか、ルビジウ
ム塩の生成や混入を防止でき容易に高純度の塩化セシウ
ムを得ることができる。また、反応に伴い生成するヨウ
素は純度が高く、系内での繰返し使用が可能であり、本
発明の経済性をより高めることができる。
[Effects of the Invention] According to the method of the present invention, since hydrogen peroxide is used as an oxidizing agent and hydrazinium salt is used as a reducing agent, not only no toxic chlorine gas is generated during the reaction, but also no rubidium salt is produced. It is possible to easily obtain highly pure cesium chloride. Furthermore, the iodine produced during the reaction has high purity and can be used repeatedly within the system, making the present invention more economical.

Claims (1)

【特許請求の範囲】[Claims]  セシウムイオンを含む5〜9N塩酸性溶液に、セシウ
ムに対して当量のヨウ素粉末を添加し、次いで、該ヨウ
素に対して1〜1.7当量の30重量%以上の過酸化水
素水を加えた後、液温を30〜40℃に維持しつつヨウ
素粉末が消失するまで攪はんしてジクロロヨウ素酸セシ
ウムを生じせしめ、次いで液を加熱昇温して析出した結
晶を溶解し、放冷し、ジクロロヨウ素酸セシウムを析出
し、これを分離回収する第一工程と、第一工程で得たジ
クロロヨウ素酸セシウムを所望量の水と混合し、各はん
しつつジクロロヨウ素酸セシウムが消失するまでヒドラ
ジニウム塩を加え、ヨウ素と塩化セシウム溶液とを生ぜ
しめ、ヨウ素を分離して得た塩化セシウム溶液を加熱濃
縮した後、放冷し、あるいはアセトン等を加えた後放冷
して析出した塩化セシウムを分離回収する第二工程とか
らなることを特徴とする高純度塩化セシウムの製造方法
Iodine powder in an amount equivalent to cesium was added to a 5-9N hydrochloric acid solution containing cesium ions, and then 30% by weight or more hydrogen peroxide solution, which was 1 to 1.7 equivalents to the iodine, was added. After that, the solution was stirred while maintaining the temperature at 30 to 40°C until the iodine powder disappeared to form cesium dichloroiodate.Then, the solution was heated to increase the temperature to dissolve the precipitated crystals, and allowed to cool. , a first step of precipitating cesium dichloroiodate and separating and collecting it, and mixing the cesium dichloroiodate obtained in the first step with a desired amount of water, and the cesium dichloroiodate disappears during each step. Add hydrazinium salt until the hydrazinium salt is added to produce an iodine and cesium chloride solution, heat and concentrate the cesium chloride solution obtained by separating the iodine, and then let it cool, or add acetone etc. and let it cool to get the precipitated chloride. A method for producing high-purity cesium chloride, comprising a second step of separating and recovering cesium.
JP19068089A 1989-07-25 1989-07-25 Production of high-purity cesium chloride Pending JPH0360426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19068089A JPH0360426A (en) 1989-07-25 1989-07-25 Production of high-purity cesium chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19068089A JPH0360426A (en) 1989-07-25 1989-07-25 Production of high-purity cesium chloride

Publications (1)

Publication Number Publication Date
JPH0360426A true JPH0360426A (en) 1991-03-15

Family

ID=16262096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19068089A Pending JPH0360426A (en) 1989-07-25 1989-07-25 Production of high-purity cesium chloride

Country Status (1)

Country Link
JP (1) JPH0360426A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195094A (en) * 2007-02-08 2008-08-28 Honda Motor Co Ltd Front body structure of vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195094A (en) * 2007-02-08 2008-08-28 Honda Motor Co Ltd Front body structure of vehicle

Similar Documents

Publication Publication Date Title
US6017500A (en) High purity lithium salts and lithium salt solutions
JPS5953205B2 (en) Method of producing high purity chlorine dioxide
JPH0214808A (en) Production of high purity silica and ammonium fluoride
EP0620189B1 (en) Process for separating arsenic acid from an aqueous mixture comprising sulfuric and arsenic acids
JP3394981B2 (en) Method for producing free hydroxylamine aqueous solution
JPH0360426A (en) Production of high-purity cesium chloride
US5670126A (en) Method for extracting antimony from elemental phosphorus
JPS5931500B2 (en) Production method of azodicarbonamide
US3954952A (en) Continuous chemical process for the manufacture of sodium and potassium peroxydisulfate
JPH0725613A (en) Production of cuprous chloride
WO2006132375A1 (en) Method for producing high-purity silver tetrafluoroborate
JP3644245B2 (en) Separation of ruthenium and rhodium
KR930007411B1 (en) Method of treatment of waste water containing flurorine compounds and process for making ammonium fluoride
JPH01282102A (en) Method for continuously manufacturing chlorine dioxide
US4034069A (en) Method of preparing arsenic trifluoride
WO2023120294A1 (en) Method for producing lithium hydroxide
US3313593A (en) Process for the production of sodium carbonate and hydrochloric acid and/or chlorine
JPS605004A (en) Manufacture of chlorine dioxide
JPS63282113A (en) Method for recovering ammonium thiocianate
SU1726370A1 (en) Method of tellurium dioxide preparation
JP4322057B2 (en) Recovery of ammonium complex of metal fluoride and method of reuse
JPH0483710A (en) Production of high-purity phosphoric acid
JPH03257014A (en) Production of high purity rhodan salt
FI72954B (en) FOERFARANDE FOER FRAMSTAELLNING AV KALIUMSULFAT OCH FERRIKLORID FRAON KALIUMKLORID OCH FERROSULFAT.
JPH02116634A (en) Preparation of chloroiridic acid