JPH0360082A - Stabilizing method for thermal expansion characteristic of piezoelectric element - Google Patents

Stabilizing method for thermal expansion characteristic of piezoelectric element

Info

Publication number
JPH0360082A
JPH0360082A JP1195443A JP19544389A JPH0360082A JP H0360082 A JPH0360082 A JP H0360082A JP 1195443 A JP1195443 A JP 1195443A JP 19544389 A JP19544389 A JP 19544389A JP H0360082 A JPH0360082 A JP H0360082A
Authority
JP
Japan
Prior art keywords
thermal expansion
polarization
piezoelectric element
voltage
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1195443A
Other languages
Japanese (ja)
Other versions
JP2893736B2 (en
Inventor
Satoru Tagami
悟 田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1195443A priority Critical patent/JP2893736B2/en
Publication of JPH0360082A publication Critical patent/JPH0360082A/en
Application granted granted Critical
Publication of JP2893736B2 publication Critical patent/JP2893736B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

PURPOSE:To stabilize the size of a remaining polarization and to reduce an irregularity in thermal expansion characteristic of a piezoelectric element by conducting a polarizing method for performing once or repeating more than once of one cycle of voltage rising, keeping and voltage falling. CONSTITUTION:A piezoelectric element 11 is formed by alternately laminating piezoelectric ceramic layers 1 and inner electrode layers 2 in a structure in which the four side faces of the layer 2 are exposed. The opposed side faces of one set are alternately covered at every other layer with glass layers 3 to be electrically insulated. The side faces are further covered with silver paste to form outer electrode layers 4. As a result, the layers 1 are connected electrically in parallel and mechanically in series. The elements 11 are employed, for example, by polarizing at an ambient temperature, an element applying voltage is raised to 150V in 3 seconds, kept for 10 seconds, and fallen as one cycle, this quasi-step voltages are generated repeatedly six times. Thus, an irregularity in the thermal expansion coefficients of the elements can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は精密位置制御や物体移動時の駆動用アクチュエ
ータとして利用する圧電素子の熱膨張特性安定化法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for stabilizing the thermal expansion characteristics of a piezoelectric element used for precise position control or as a drive actuator when moving an object.

〔従来の技術〕[Conventional technology]

従来、圧電素子を精密位置決めの7クチユエータに応用
したものは、X−Yステージの微小位置決めに用いられ
た例や、レーザ装置の偏光ミラーの角度の微小制御に用
いられた例や、継電器を作製した例がある。
Conventionally, piezoelectric elements have been applied to 7-cut units for precision positioning, such as those used for minute positioning of X-Y stages, minute control of the angle of polarizing mirrors in laser devices, and the production of electrical relays. There is an example.

これらは、圧電素子の逆圧電効果による歪を直接利用す
るか、あるいはこの歪をてこの原理などにより所望の大
きさまで機械的に拡大して利用したものである。
These devices utilize strain caused by the inverse piezoelectric effect of a piezoelectric element directly, or mechanically expand this strain to a desired size using a lever principle.

圧電素子の逆圧電効果による歪を発生させるには予め素
子に自発分極を与えるため電圧を印加するいわゆる分極
操作が必要になる。この分極操作により素子には電圧除
去後も残留分極が生ずる。
In order to generate strain due to the inverse piezoelectric effect of a piezoelectric element, it is necessary to perform a so-called polarization operation in which a voltage is applied in advance to give spontaneous polarization to the element. This polarization operation causes residual polarization in the element even after the voltage is removed.

一般的に圧電素子は印加電圧に対して数PPM/Vの割
合で素子長が変化する(ここで素子長とは分極方向と平
行な歪が発生する方向の素子寸法を言う)。一方、温度
に対しても数PPM/℃の割合で変化するため、素子長
の温度依存性は大きな問題である。機械的に圧電歪を拡
大して利用する場合は一層深刻な問題である。
Generally, the length of a piezoelectric element changes at a rate of several PPM/V with respect to the applied voltage (here, the element length refers to the element dimension in the direction in which strain occurs parallel to the polarization direction). On the other hand, the temperature dependence of the element length is a big problem because it changes at a rate of several PPM/° C. with respect to temperature. The problem becomes even more serious when piezoelectric strain is mechanically expanded and utilized.

圧電素子の素子長の温度依存性は上記の残留分極が温度
によって消失するために起こる現象であることがわかっ
ている。
It is known that the temperature dependence of the element length of a piezoelectric element is a phenomenon that occurs because the above-mentioned residual polarization disappears with temperature.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の圧電素子を利用したアクチュエータは、
次の様な欠点を有する。
The actuator using the conventional piezoelectric element described above is
It has the following drawbacks.

例えば、雰囲気温度をコントロールして素子温度を上昇
させる場合を考えると、素子長は縮んでゆく。これは残
留分極が熱じよう乱により消失してゆくためである。即
ち圧電素子の残留分極の大きさに依存して素子長の縮み
の大きさが決まる。
For example, if we consider the case where the element temperature is increased by controlling the ambient temperature, the element length will shrink. This is because residual polarization disappears due to thermal disturbance. That is, the magnitude of the reduction in element length is determined depending on the magnitude of residual polarization of the piezoelectric element.

一方、残留分極の大きさは室温放置でも、熱力学的緩和
効果により自由エネルギーが小さくなろうとするため時
間とともに小さくなる。この結果、残留分極の大きさは
上記緩和効果あるいは、熱履歴の程度により変化するこ
とになる。
On the other hand, the magnitude of residual polarization decreases over time even when left at room temperature because the free energy tends to decrease due to thermodynamic relaxation effects. As a result, the magnitude of residual polarization changes depending on the above-mentioned relaxation effect or the degree of thermal history.

即ち、圧電素子の熱膨張係数は、その残留分極の大きさ
のバラつきに対応してバラつく結果となる。また機械的
に圧電歪を増幅すれば当然のことながらこのバラつきの
絶対値も増幅される。
That is, the thermal expansion coefficient of the piezoelectric element varies in accordance with the variation in the magnitude of its residual polarization. Furthermore, if the piezoelectric strain is mechanically amplified, the absolute value of this variation will also be amplified, as a matter of course.

本発明の目的は、残留分極の大きさを安定化させて圧電
素子の熱膨張特性のバラつきを小さくできる圧電素子の
熱膨張特性安定化法を提供することにある。
An object of the present invention is to provide a method for stabilizing the thermal expansion characteristics of a piezoelectric element, which can stabilize the magnitude of residual polarization and reduce variations in the thermal expansion characteristics of the piezoelectric element.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の圧電素子の熱膨張特性の安定化法は電圧の昇圧
、キープ、降圧を1つのサイクルとしてこのサイクルを
1回もしくはそれ以上くり返す分極法をとるか、あるい
は、上記の電圧印加サイクルに加えて素子温度の昇温、
キープ、降温も併せて行なう分極法を行うことにより構
成される。
The method for stabilizing the thermal expansion characteristics of the piezoelectric element of the present invention is to use a polarization method in which voltage step-up, hold, and step-down are repeated one or more times as one cycle, or the above-mentioned voltage application cycle. In addition, the element temperature increases,
It is constructed by performing a polarization method that also includes keeping and cooling.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第4図は本発明による熱膨張特性安定化法を適用してそ
の効果を確認した積層圧電セラミック素子11(以下素
子と略す)の構造を示す。また第5図は第4図の縦断面
の拡大図である。圧電セラミック層1はチタン酸ジルコ
ン酸鉛(PZT)からなり、厚みは1層あたり約110
μmである。
FIG. 4 shows the structure of a laminated piezoelectric ceramic element 11 (hereinafter abbreviated as element) in which the effect of the thermal expansion property stabilization method according to the present invention was confirmed. Moreover, FIG. 5 is an enlarged view of the longitudinal section of FIG. 4. The piezoelectric ceramic layer 1 is made of lead zirconate titanate (PZT) and has a thickness of approximately 110 mm per layer.
It is μm.

内部電極層2は銀−パラジウム合金からなり、厚みは1
層あたり約5μmである。
The internal electrode layer 2 is made of a silver-palladium alloy and has a thickness of 1
Approximately 5 μm per layer.

本素子は上記圧電セラミック層1と内部電極層2を交互
に積層したものであり、内部電極層2の4側面を露出す
る構造となっている。これを対向する1組の側面には、
第5図に示すように、−層おきに互い違いにガラス層3
でおおい電気的に絶縁する。この側面にさらに銀ペース
トを塗布し外部電極層4を形成する。この結果圧電セラ
ミック層1は電気的に並列に、機械的に直列に接続され
る。尚、本素子の大きさは2×3閣の断面積で高さ10
mmである。本素子の熱膨張係数を一55℃から160
℃まで調べた。この圧電セラミックのキュリー点は約1
45℃である。周知のようにキュリー点以上は圧電効果
が発現しない。また−55℃は電気部品の使用保障範囲
の下限である。
This element has the piezoelectric ceramic layer 1 and the internal electrode layer 2 stacked alternately, and has a structure in which four sides of the internal electrode layer 2 are exposed. On one set of sides facing this,
As shown in FIG.
Cover and electrically insulate. Silver paste is further applied to this side surface to form an external electrode layer 4. As a result, the piezoceramic layers 1 are connected electrically in parallel and mechanically in series. The size of this element is 2 x 3 cabinets with a height of 10 mm.
It is mm. The coefficient of thermal expansion of this element is from -55℃ to 160℃.
The temperature was investigated up to ℃. The Curie point of this piezoelectric ceramic is approximately 1
The temperature is 45°C. As is well known, the piezoelectric effect does not occur above the Curie point. Furthermore, -55°C is the lower limit of the guaranteed usage range for electrical parts.

従って上記の温度範囲は本素子の実用使用範囲をカバー
したものである。
Therefore, the above temperature range covers the practical use range of this device.

測定の水準として、未分極の素子を4つの方法で分極し
て人工的に残留分極の大きさを変えた。
As a measurement level, an unpolarized element was polarized in four ways to artificially change the magnitude of residual polarization.

分極法は第1表に示す通りである。The polarization method is shown in Table 1.

第1表 熱膨張係数 尚、第1表には各分極法による素子の熱膨張係数(−1
5℃から100℃の平均)も併せて示した。また分極は
全て室温で行なった。第1表中水準No、(■)は本発
明による分極法である。第1図には縦軸に電圧、横軸に
時間をとりその分極法を示す。第1図によれば素子印加
電圧を150Vまで3秒で立上げ、10秒キープ、降圧
を1つのサイクルとした擬ステップ電圧を6回くり返し
発生させる。くり返し回数については第2図の結果をも
とに決めた。第2図は上記分極サイクル回数と残留分極
の大きさと対応づけられる電気機械結合係数Rs s間
の特性を示す。尚、ここでは素子の共振周波数Fitと
反共振周波数FAを用い、第2図中(1)式に従ってR
33を求めた。これによれば、6サイクル以上では電気
機械結合係数R33は約70%で一定となっている。従
ってこれを室温における飽和値とみなしくり返しサイク
ルを6回と決めた。
Table 1 Coefficient of Thermal Expansion Table 1 also lists the coefficient of thermal expansion (-1
The average temperature from 5°C to 100°C) is also shown. All polarizations were performed at room temperature. Level No. (■) in Table 1 is the polarization method according to the present invention. FIG. 1 shows the polarization method, with voltage on the vertical axis and time on the horizontal axis. According to FIG. 1, the voltage applied to the element is raised to 150 V in 3 seconds, held for 10 seconds, and a pseudo-step voltage is generated six times, with one cycle of dropping the voltage. The number of repetitions was determined based on the results shown in Figure 2. FIG. 2 shows the characteristics between the electromechanical coupling coefficient Rs s which is correlated with the number of polarization cycles and the magnitude of residual polarization. Here, using the resonance frequency Fit and anti-resonance frequency FA of the element, R is calculated according to equation (1) in FIG.
I asked for 33. According to this, the electromechanical coupling coefficient R33 is constant at about 70% for 6 cycles or more. Therefore, this was regarded as the saturation value at room temperature, and the repetition cycle was determined to be 6 times.

第3図は第1表の(II)と(Iv)の方法により分極
後直ちに雰囲気温度をコントロールし素子温度を一55
℃に下げ、そこから160℃に温度上昇させた時の熱膨
張測定結果である。(■)の分極法による素子の長さが
縮んでゆくのは主に残留分極が消失してゆくためである
。従って未分極素子の場合はほとんど素子長は変化しな
い。即ち、残留分極の大きさが違うと見掛は上熱膨張係
数が異なることになる。換言すれば分極時に一定の大き
さの残留分極を与えないと熱膨張係数がバラつくと言え
る。第1表の結果によれは熱膨張係数は一〇。305×
10−’/’Cから−7,385X 10−’/’Cま
で変化している。実効的に最も基準化しやすい残留分極
の大きさは飽和状態もしくはそれに近い状態である。第
1表中の(11)の本発明による分極法を数水準分極後
の熱膨張係数(−15℃から100℃の平均)の測定結
果を示す。但し、分極は室温にて行なった。
Figure 3 shows that the ambient temperature is controlled immediately after polarization using methods (II) and (Iv) in Table 1, and the element temperature is lowered to -55.
These are the results of thermal expansion measurements when the temperature was lowered to 160°C and then raised to 160°C. The reason why the length of the element using the polarization method shown in (■) decreases is mainly due to the disappearance of residual polarization. Therefore, in the case of an unpolarized element, the element length hardly changes. That is, if the magnitude of residual polarization differs, the coefficient of thermal expansion will apparently differ. In other words, it can be said that the coefficient of thermal expansion will vary unless a certain level of residual polarization is given during polarization. According to the results in Table 1, the coefficient of thermal expansion is 10. 305×
It varies from 10-'/'C to -7,385X 10-'/'C. The magnitude of remanent polarization that can be effectively standardized most easily is the saturated state or a state close to it. The results of measuring the thermal expansion coefficient (average from -15°C to 100°C) after several levels of polarization using the polarization method according to the present invention in (11) in Table 1 are shown. However, polarization was performed at room temperature.

第2表 熱膨張係数 第2表中分極済は本発明による分極を施したことを示す
Table 2 Coefficient of Thermal Expansion In Table 2, "Polarized" indicates that polarization according to the present invention was applied.

第2表より 平均値U+=  7.380X10−’/℃標準偏差σ
。−+=0.008X10−’/℃一方、第2表(1)
と同じ履歴の素子にり、C,150Vを30秒印加する
分極法をとった場合平均値(tx=  5.841 X
 10−’/’C標準偏差σ−1= 0.481 X 
10−’/’Cであり、バラつきを2桁程小さくできた
。尚、圧電セラミック材料、分極温度が異なれば、それ
ぞれに見合った分極サイクル回数が異なるのは言うまで
もない。また、電圧の時間に対する関数形(昇圧、降圧
の形)も任意でよい。
From Table 2, average value U+ = 7.380X10-'/℃ standard deviation σ
. -+=0.008X10-'/℃ Meanwhile, Table 2 (1)
When using an element with the same history as , and applying a polarization method of applying C, 150V for 30 seconds, the average value (tx = 5.841
10-'/'C standard deviation σ-1= 0.481 X
10-'/'C, and the variation was reduced by about two orders of magnitude. It goes without saying that if the piezoelectric ceramic material and polarization temperature are different, the appropriate number of polarization cycles will be different. Further, the functional form of voltage with respect to time (step-up, step-down form) may be arbitrary.

第6図は本発明の他の実施例の分極法を示す。FIG. 6 shows a polarization method according to another embodiment of the present invention.

本実施例では素子温度をキーリー点の145℃付近まで
上昇させ、30分キープ後、室温まで除冷する工程も加
えた。この間素子温度上昇から室温に冷却されるまで、
素子にはり、C,150Vを印加し続けておく。この分
極法を前記第2表に示した第1の実施例と同様の分極前
の履歴をもつ素子に適用して熱膨張係数(−15℃から
100℃の平均)を調べた。第3表に結果を示す。
In this example, a step was added in which the device temperature was raised to around 145° C., which is the Keeley point, and after being kept for 30 minutes, the device was slowly cooled to room temperature. During this period, the element temperature rises until it cools down to room temperature.
Continue to apply C, 150V to the element. This polarization method was applied to an element having a history before polarization similar to that of the first example shown in Table 2, and the coefficient of thermal expansion (average from -15°C to 100°C) was investigated. Table 3 shows the results.

第3表 熱膨張係数 第3表中分極済は本発明による分極を施したことを示す
、この結果、平均値”s”  9.128 X10−’
/’C標準偏差σm−1=o。003X10−’/℃と
なった。この方法によれば、残留分極は極限まで大きく
なり、熱膨張係数は大きくなるが、バラつきは第1の実
施例よりも小さくなる。次に、第3の実施例について説
明する。第1の実施例の第2表と同じ積層圧電セラミッ
ク素子11を第7図に示す変位拡大拡構に組み込み第1
の実施例と同様):D、C,150V30秒印加と、昇
圧、キープ、降圧を6サイクル行なう二通りの分極法に
より、出力端16の熱膨張特性を調べた。第7図中ヒン
ジ12.ベース13.アーム14は42%NiJS −Fe合金、板バネ15.はS尋嗜304を用いた。ヒ
ンジ12.ベース13.アーム14についてはワイヤ放
電加工により作成した。板バネ15はワイヤ放電加工し
た板を第7図に示すようにプレス成形した。ここで42
%Ni−Fe合金の熱膨張係数は4.4 X 10−’
/’C15US 304のそれは17.3 X 10−
@/℃である。本発明による第1の実施例と同じ分極法
(第2表中の4参照)では平均0.6μm / ’Cの
温度依存性即ち、出力端位置の温度ドリフトがありその
標準偏差は0.01p m / ’Cであったのに対し
り、C,150V30秒印加の分極法では平均1.2μ
m/’Cで、標準偏差0.6μm/’Cであった。従っ
て出力端16の熱膨張特性のバラつきを1桁程度小さく
できた。
Table 3 Coefficient of Thermal Expansion In Table 3, "Polarized" indicates that the polarization according to the present invention has been applied.As a result, the average value "s" is 9.128 X10-'
/'C standard deviation σm-1=o. 003×10-'/°C. According to this method, the residual polarization increases to the maximum and the coefficient of thermal expansion increases, but the variation becomes smaller than in the first embodiment. Next, a third example will be described. The same laminated piezoelectric ceramic element 11 as shown in Table 2 of the first embodiment is assembled into the displacement expansion structure shown in FIG.
(Same as Example): The thermal expansion characteristics of the output end 16 were investigated using two polarization methods: applying D, C, 150V for 30 seconds and performing 6 cycles of increasing, keeping, and decreasing the voltage. Hinge 12 in FIG. Base 13. Arm 14 is made of 42% NiJS-Fe alloy and leaf spring 15. S-304 was used. Hinge 12. Base 13. The arm 14 was created by wire electrical discharge machining. The plate spring 15 was press-formed from a plate processed by wire electrical discharge machining, as shown in FIG. here 42
The coefficient of thermal expansion of %Ni-Fe alloy is 4.4 X 10-'
/'C15US 304's is 17.3 x 10-
@/°C. In the same polarization method as in the first embodiment of the present invention (see 4 in Table 2), there is an average temperature dependence of 0.6 μm/'C, that is, a temperature drift of the output end position, and its standard deviation is 0.01 p. m/'C, whereas in the polarization method of applying C, 150V for 30 seconds, the average was 1.2μ
m/'C, and the standard deviation was 0.6 μm/'C. Therefore, the variation in thermal expansion characteristics of the output end 16 can be reduced by about one order of magnitude.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は圧電素子の分極法を (1)電圧の昇圧、キープ、降圧のサイクルを1回もし
くはそれ以上くり返す (2)  (1)に併せて素子温度の昇温、キープ、降
温を行なう のいずれかを行なうことにより圧電素子の熱膨張係数の
バラつきを小さくできる効果がある。
As explained above, the present invention employs a method of polarizing a piezoelectric element by (1) repeating the cycle of increasing, keeping, and decreasing the voltage one or more times; (2) increasing the element temperature in conjunction with (1); By either keeping the temperature or decreasing the temperature, it is possible to reduce variations in the coefficient of thermal expansion of the piezoelectric element.

また、この結果、圧電素子を変位拡大機構に組み込んだ
場合にもその出力端位置の温度ドリフトのバラつきを小
さくできる。
Furthermore, as a result, even when a piezoelectric element is incorporated into a displacement magnification mechanism, variations in temperature drift in the output end position can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の分極法を示す電圧と時間相
関図、第2図は本発明の第1の実施例の分極法による分
極サイクル数と電気機械結合係数間特性図、第3図は本
発明の第1の実施例の分極法による場合と未分極の場合
の熱膨張特性図、第4図は本発明による分極法を適用し
た積層圧電セラミ、り素子斜視図、第5図は第4図の縦
断面拡大図、第6図は本発明の他の実施例による分極法
を示す電圧と時間、温度と時間の各々の相関図、第7図
は本発明による分極法を適用した変位拡大機構付圧電ア
クチュエータの斜視図である。 1・・・・・・圧電セラミック層、2・・・・・・内部
電極層、3・・・・・・ガラス層、4・・・・・・外部
電極層、11・・・・・・積層圧電セラミック素子、1
2・・・・・・ヒンジ、13・・・・・・ベース、14
・・・・・・アーム、15・・・・・・板ハネ、16・
・・・・・出力端、20・・・・・・変位拡大機構付圧
電アクチュエータ。
FIG. 1 is a voltage-time correlation diagram showing the polarization method of an embodiment of the present invention, FIG. 2 is a characteristic diagram between the number of polarization cycles and the electromechanical coupling coefficient according to the polarization method of the first embodiment of the present invention, and FIG. Figure 3 is a diagram of thermal expansion characteristics in the case of polarization and non-polarization according to the first embodiment of the present invention, Figure 4 is a perspective view of a laminated piezoelectric ceramic element to which the polarization method of the present invention is applied, and Figure 5 is a perspective view of a device. The figure is an enlarged longitudinal cross-sectional view of FIG. 4, FIG. 6 is a correlation diagram of voltage and time, temperature and time, showing the polarization method according to another embodiment of the present invention, and FIG. 7 is a diagram showing the polarization method according to the present invention. It is a perspective view of the applied piezoelectric actuator with a displacement magnifying mechanism. DESCRIPTION OF SYMBOLS 1...Piezoelectric ceramic layer, 2...Internal electrode layer, 3...Glass layer, 4...External electrode layer, 11... Laminated piezoelectric ceramic element, 1
2...Hinge, 13...Base, 14
...Arm, 15...Plate fly, 16.
...Output end, 20...Piezoelectric actuator with displacement magnification mechanism.

Claims (2)

【特許請求の範囲】[Claims] (1)電圧の昇圧,キープ,降圧を1つのサイクルとし
て前記サイクルを1回もしくはそれ以上くり返す分極法
をとることを特徴とする圧電素子の熱膨張特性安定化法
(1) A method for stabilizing the thermal expansion characteristics of a piezoelectric element, which is characterized by employing a polarization method in which voltage step-up, voltage hold, and voltage step-down are repeated one or more times as one cycle.
(2)素子温度の昇温,キープ,降温も併せて行なうこ
とを特徴とする特許請求の範囲第(1)項記載の圧電素
子の熱膨張特性安定化法。
(2) A method for stabilizing thermal expansion characteristics of a piezoelectric element according to claim (1), characterized in that the temperature of the element is increased, maintained, and lowered at the same time.
JP1195443A 1989-07-27 1989-07-27 Stabilization method of thermal expansion characteristics of piezoelectric element Expired - Lifetime JP2893736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1195443A JP2893736B2 (en) 1989-07-27 1989-07-27 Stabilization method of thermal expansion characteristics of piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1195443A JP2893736B2 (en) 1989-07-27 1989-07-27 Stabilization method of thermal expansion characteristics of piezoelectric element

Publications (2)

Publication Number Publication Date
JPH0360082A true JPH0360082A (en) 1991-03-15
JP2893736B2 JP2893736B2 (en) 1999-05-24

Family

ID=16341152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1195443A Expired - Lifetime JP2893736B2 (en) 1989-07-27 1989-07-27 Stabilization method of thermal expansion characteristics of piezoelectric element

Country Status (1)

Country Link
JP (1) JP2893736B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333587B1 (en) * 1998-12-11 2001-12-25 Robert Bosch Gmbh Piezoelectric actuator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333587B1 (en) * 1998-12-11 2001-12-25 Robert Bosch Gmbh Piezoelectric actuator

Also Published As

Publication number Publication date
JP2893736B2 (en) 1999-05-24

Similar Documents

Publication Publication Date Title
Zhang et al. Change of the weak-field properties of Pb (ZrTi) O3 piezoceramics with compressive uniaxial stresses and its links to the effect of dopants on the stability of the polarizations in the materials
Uchino Materials issues in design and performance of piezoelectric actuators: an overview
US5900274A (en) Controlled composition and crystallographic changes in forming functionally gradient piezoelectric transducers
WO2002086981A2 (en) Mechanically pretensioned electroactive devices and operation methods
Zhou et al. Rate dependence of soft PZT ceramics under electric field loading
US20030175487A1 (en) Ferroelectric thin film element and its manufacturing method, thin film capacitor and piezoelectric actuator using same
Donnelly et al. Dielectric and electromechanical properties of Pb (Mg 1/3, Nb 2/3) O 3–PbTiO 3 thin films grown by pulsed laser deposition
Zhang et al. Characteristics of the electromechanical response and polarization of electric field biased ferroelectrics
Uršič et al. Pb (Mg1/3Nb2/3) O3–PbTiO3 (PMN‐PT) Material for Actuator Applications
Rittenmyer Electrostrictive ceramics for underwater transducer applications
CN112047756A (en) Method for improving electrical property of ferroelectric/piezoelectric ceramic material
US20140084749A1 (en) Thin film piezoelectric device
Zhao et al. Effect of mechanical stress on the electromechanical performance of PZT and PMN-PT ceramics
JPH0360082A (en) Stabilizing method for thermal expansion characteristic of piezoelectric element
Huang et al. Large stroke high fidelity PZN-PT single-crystal “Stake” actuator
US20070151320A1 (en) Method for establishing a correlation between a first state of a piezoelectric component and a second state of the component and use of said correlation
Ochi et al. Temperature characteristics for multilayer piezoelectric ceramic actuator
JPH08330643A (en) Piezoelectric transformer and its manufacture
JPH02143474A (en) Stabilization of thermal expansion of piezo-electric element
US6526833B1 (en) Rhombohedral-phase barium titanate as a piezoelectric transducer
JPS61244079A (en) Apparatus for driving piezoelectric actuator
Galvagni et al. Comparison of piezoelectric and electrostrictive actuator stacks
Maiwa et al. Electrical and electromechanical properties of PbZrO3 thin films prepared by chemical solution deposition
JPH0197584A (en) Piezoelectric ceramic gripper
US20070108876A1 (en) Piezoelectric device