JPS61244079A - Apparatus for driving piezoelectric actuator - Google Patents

Apparatus for driving piezoelectric actuator

Info

Publication number
JPS61244079A
JPS61244079A JP60084429A JP8442985A JPS61244079A JP S61244079 A JPS61244079 A JP S61244079A JP 60084429 A JP60084429 A JP 60084429A JP 8442985 A JP8442985 A JP 8442985A JP S61244079 A JPS61244079 A JP S61244079A
Authority
JP
Japan
Prior art keywords
piezoelectric
electric field
actuator
electrodes
effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60084429A
Other languages
Japanese (ja)
Inventor
Chiaki Tanuma
千秋 田沼
Tomio Ono
富男 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60084429A priority Critical patent/JPS61244079A/en
Publication of JPS61244079A publication Critical patent/JPS61244079A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To avoid deterioration of characteristics caused by depolarization even if a high electric field is applied by a method wherein electrodes are provided on both sides of the polarizing direction of a piezoelectric slipping effect type actuator element and a DC source is connected so as to apply an electric field with the same direction as the polarization to the element. CONSTITUTION:Two terminals of a driving source 30 are connected to electrodes 22 and 23 formed on a piezoelectric slipping effect type actuator 11. An electric field formed between the electrodes 22 and 23 deforms the piezoelectric slipping effect type actuator 11 and creates a fine displacement. A subsidiary source 60 is a DC source for preventing depolarization and its two terminals are connected to electrodes 41 and 42 formed on the piezoelectric slipping effect type actuator 11 and an electric field formed between the electrodes 41 and 42 has the same direction as the polarization of the element. With this constitution, the depolarization of the element can be avoided.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、圧電すベタ効果を用いたアクチュエータの駆
動装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an actuator drive device using a piezoelectric solid effect.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

圧電効果を利用したアクチェエータは公知であり、特に
近年では小型軽量化が計れる、消費電力が少ない、発熱
しない、磁場を発生しないので他の電子部品への影響が
少ない。また電圧コントロールの之め制御が容易である
などの特徴がある。
Actuators that utilize the piezoelectric effect are well known, and in recent years in particular have become smaller and lighter, consume less power, do not generate heat, and do not generate magnetic fields, so they have little effect on other electronic components. Another feature is that voltage control is easy.

例えば、円板状の圧電セラミック素子を複数枚績し、各
素子の厚み方向KN、界を加えて微小変位を発生させる
積層たて効果型アクチェエータは、半導体製造装置にお
ける微小位置合わせ用のアクチェエータとして用いられ
ておシ、この他に、レーザ装置のビームスポット制御用
素子としても用いられている。また、短形板状の圧電板
を複数枚積層してなるコニモルフ、バイモルフ、マルチ
モルフ等の圧電よこ効果を用いたアクチーエータも広く
利用されている。つまり短形板状の圧電板t−2枚貼力
合わせ、一方が伸び、他方の板が縮む様に電界を加える
と、この短形板は長手方向に屈曲することが知られでい
る。このような屈曲をアクチェエータとして用いる圧電
形リレーやヘリカルスキャン形ビデオテ゛−ブレコーダ
のオートトラッキングアクチェエータ等が知られている
For example, a laminated effect actuator in which a plurality of disc-shaped piezoelectric ceramic elements are laminated together and a field is applied to each element in the thickness direction KN to generate a minute displacement is used as an actuator for minute positioning in semiconductor manufacturing equipment. In addition to this, it is also used as a beam spot control element of a laser device. Further, actuators using piezoelectric transverse effects such as conimorph, bimorph, and multimorph, which are formed by laminating a plurality of rectangular piezoelectric plates, are also widely used. In other words, it is known that when two rectangular plate-shaped piezoelectric plates (t-2) are bonded together and an electric field is applied so that one plate expands and the other plate contracts, the rectangular plates bend in the longitudinal direction. Piezoelectric relays and auto-tracking actuators for helical scan video recorders that use such bending as an actuator are known.

一方、圧電効果には前述以外の効果としてすベタ効果が
ある。すペタ効果型アクチュエータは圧電アクチェエー
タの感度(変位量/印加電圧)を決定する圧電定数がた
て効果型のそれよりも太きいこと、平面上を平行移動さ
せるアクチェエータとしては、たて効果よりも構造が簡
単であることなどの理由からソリッドアクチュエータと
して期待されている。このすベシ効果とは、圧電体素子
に分極を行ないこの分極方向と直角方向に電界を加える
と、圧電体素子は厚み方向に対して(この場合印加電界
と同一方向)前記の分極方向と同一方向に圧電体素子が
変形するものである。第2図は圧電すベシ効果を説明す
るための圧電体素子の断面図であり、長方性の矢印の方
向に分極された圧電素子10に電極20,21t−介し
て電界を印加し、前記圧電体素子の変形を発生させるも
のである。同図(5)は電極20及び21間の電界が1
□%の場合であり、同図(B)は電界を印加中の素子の
様子を示すもので、電極20の面は、電極210面に対
して移動していることを示す、さて、このような圧電す
ベク効果を用いたアクチュエータにおいては。
On the other hand, the piezoelectric effect has a flattening effect in addition to the above-mentioned effects. The piezoelectric constant of the piezoelectric actuator, which determines the piezoelectric actuator's sensitivity (displacement amount/applied voltage), is thicker than that of the vertical effect type, and as an actuator that moves parallel on a plane, it has a higher piezoelectric constant than the vertical effect. It is expected to be used as a solid actuator because of its simple structure. This effect means that when a piezoelectric element is polarized and an electric field is applied in a direction perpendicular to the polarization direction, the piezoelectric element will be polarized in the same direction in the thickness direction (in this case, in the same direction as the applied electric field). The piezoelectric element deforms in this direction. FIG. 2 is a cross-sectional view of a piezoelectric element for explaining the Beshi effect of piezoelectricity. This causes deformation of the piezoelectric element. Figure (5) shows that the electric field between electrodes 20 and 21 is 1
□%, and Figure (B) shows the state of the element while an electric field is being applied, showing that the surface of the electrode 20 is moving relative to the surface of the electrode 210. In actuators using the piezoelectric vector effect.

分極時の電界方向つまシ分極軸と微小変位発生時の電界
方向が直角となるため、大きな電界を加えた場合には、
脱分極の危検性がある。たとえば、東芝セラミックス社
製のT−96材による圧電すペシ効果型のアクチェエー
タでは駆動電界としてlkv/mの直流または交流電界
を加えると約1゜分の後には脱分極が起こシ、変位量が
減少することが確認されている。この脱分極は用いる材
料の抗電界電圧や駆動時の印加電界などの条件によって
も異なるが、一般的に、抗電界電圧が低い材料で起こシ
易い、つまフ圧電た゛そ効果及びょこ効果を用いたアク
チュエータと比較すると、圧電すべ〕効果を用いたアク
チェエータは高電界下で使用することが困難であシ、前
述T−96材の例においては約イの電界しか加えること
が出来ない、従って、圧電すぺ)効果を用いたアクチェ
エータでは印加できる電界に大きな制限があるため、圧
電すベク効果を用いたアクチェエータ本来の特徴である
大きな変位量を発生させることを困難にしていた。
The direction of the electric field during polarization is perpendicular to the polarization axis and the direction of the electric field when a small displacement occurs, so when a large electric field is applied,
There is a risk of depolarization. For example, in a piezoelectric Pesci effect actuator made of T-96 material manufactured by Toshiba Ceramics, when a DC or AC electric field of lkv/m is applied as a driving electric field, depolarization occurs after about 1° and the amount of displacement decreases. It has been confirmed that this decreases. This depolarization differs depending on conditions such as the coercive electric field voltage of the material used and the electric field applied during driving, but generally it uses the pinch piezoelectric effect and the horizontal effect, which tend to occur with materials with low coercive electric field voltage. Compared to actuators that use piezoelectric sliding, it is difficult to use them under high electric fields, and in the example of T-96 material mentioned above, an electric field of only about 100 m can be applied. Actuators that use piezoelectric effects have large limitations on the electric field that can be applied, making it difficult to generate large displacements, which is the original characteristic of actuators that use piezoelectric effects.

〔発明の目的〕[Purpose of the invention]

本発明は、以上の点を考慮してなされたもので、大きな
印加電界に対しても脱分極による特性の劣化を皆無にし
た圧電アクチェエータの駆動装置を提供することを目的
とする。
The present invention has been made in consideration of the above points, and it is an object of the present invention to provide a piezoelectric actuator drive device that eliminates any deterioration of characteristics due to depolarization even when applied with a large electric field.

〔発明の概要〕[Summary of the invention]

本発明は、圧電すベタ効果形アクチーエータ素子の駆動
電界方向と直角方向となる素子端面に電極を設け、つi
フ、前記アクチェエータ素子の分極方向の両端面に電極
を設け、これに分極時と同一方向の電界が加わるように
直流電源を接続したことを特徴とした圧電アクチェエー
タの駆動装置である。
The present invention provides an electrode on the end face of the piezoelectric solid-effect actuator element in a direction perpendicular to the direction of the driving electric field.
F. A piezoelectric actuator driving device characterized in that electrodes are provided on both end faces of the actuator element in the polarization direction, and a DC power source is connected to the electrodes so that an electric field in the same direction as that during polarization is applied to the electrodes.

圧電すベフ効果形アクチ纂エータは1分極処理をした圧
電性材料からなる所望形状の材料である単一あるいは複
数枚積層してなるものである。一般に圧電すベタ効果形
アクチェエータに用いられる圧電材料には、圧電定数d
15が大きいこと、結合係数k15が大きいこと、機械
的強度が大きいことが要求され、たとえば、 PZT(Pb(Zr 、Ti)Os)系ノ二成分材料、
 Pb(Yt/z、Nbx/z)03  (Pb、5r
)TtOa  PbZrO3系、P b (Co 1/
2 t Wl/2 ) 03  P b (T j t
 Z r ) 03系、pb(Mg3A、Nb%)03
  Pb(’r+ 、Zr)03系s Pb(Sb%、
Nb犀03−P b (T’ t zr) 03系、P
b CZn5AtNb’pf) 03系s Pb (T
i、Zr)03系* P b (Zn%、Nbm Os
系、P b (Lad、Nb%)03系等の三成分材料
等のものがある。またモルフオトロピック相転移近傍の
組成のものが良い特性を示す。
A piezoelectric Bef effect type actuator is made of a single layer or a plurality of piezoelectric materials having a desired shape and made of a piezoelectric material subjected to a single polarization treatment. In general, piezoelectric materials used in piezoelectric solid-effect actuators have a piezoelectric constant d
For example, PZT (Pb(Zr,Ti)Os)-based two-component materials,
Pb(Yt/z, Nbx/z)03 (Pb, 5r
)TtOa PbZrO3 system, P b (Co 1/
2 t Wl/2 ) 03 P b (T j t
Z r ) 03 series, pb (Mg3A, Nb%) 03
Pb('r+, Zr)03 series Pb(Sb%,
Nb Rhino 03-P b (T' t zr) 03 series, P
b CZn5AtNb'pf) 03 series Pb (T
i, Zr) 03 series* P b (Zn%, Nbm Os
There are three-component materials such as P b (Lad, Nb%) 03 series and the like. In addition, compositions near the morphotropic phase transition exhibit good properties.

一般にこのような圧電材料を用いた圧電すべ夛効果形ア
クチェエータは変位発生のための大きな駆動電界を加え
ると、圧電材料のすベク効果を発生させる圧電定数dl
sや結合係数k15が減少し発生させる変位量が小さく
なってくる。つまり脱分極によ夕圧電性が低下すること
が知られており。
In general, when a large driving electric field is applied to a piezoelectric shear effect type actuator using a piezoelectric material, the piezoelectric constant dl that generates the shear effect of the piezoelectric material increases.
s and the coupling coefficient k15 decrease, and the amount of displacement to be generated becomes smaller. In other words, it is known that piezoelectricity decreases due to depolarization.

本発明者らの研究においても確認されている。This has also been confirmed in the research conducted by the present inventors.

第3図は東芝セラミックス製T−96材を用いた圧電す
ベタ効果形の素子に交流電界を加え念際の素子の圧電定
数と印加電界の大きさの関係を示す。
FIG. 3 shows the relationship between the piezoelectric constant of the element and the magnitude of the applied electric field when an alternating current electric field is applied to a piezoelectric solid effect type element made of T-96 material manufactured by Toshiba Ceramics.

同図で、この特性は非可逆であj)、1.Okv/w以
上の電界を印加した素子の圧電定数は、初期値に対して
60%以上低下し、電界除去後も特性は回復しない、こ
の脱分極を抑止する方法として圧電すべり効果素子の分
極軸と同一方向に電界を加えることで脱分極を防止する
ことが可能である。第1図は分極軸と同一方向に電界を
加えることを可能にした圧電すベタ効果形のアクチェエ
ータの一例であり、補助電源60は脱分極防止用の直流
電源でもり、電極41及び42は素子に設けられた分極
と同一方向に電界を加えるための電極である5本発明者
らの研究によれば、第1図に示す回路構成において、第
4図に示す如く大きな駆動電界を与えても、素子の圧電
定数の劣化がほとんどないことが判った。
In the figure, this characteristic is irreversible j), 1. The piezoelectric constant of the element to which an electric field of more than 0 kv/w is applied decreases by more than 60% of its initial value, and the characteristics do not recover even after the electric field is removed.As a method to suppress this depolarization, the polarization axis of the piezoelectric slip effect element It is possible to prevent depolarization by applying an electric field in the same direction as . Figure 1 shows an example of a piezoelectric solid-effect actuator that makes it possible to apply an electric field in the same direction as the polarization axis.The auxiliary power supply 60 is a DC power supply for preventing depolarization, and the electrodes 41 and 42 are connected to the elements. According to research by the present inventors, in the circuit configuration shown in FIG. 1, even if a large driving electric field is applied as shown in FIG. It was found that there was almost no deterioration of the piezoelectric constant of the element.

以上1本発明の駆動方法を用いれば、変位量の大きなそ
して信頼性のすぐれた圧電すベタ効果形のアクチュエー
タが実現できる。
By using the driving method of the present invention as described above, a piezoelectric solid effect type actuator with a large displacement amount and excellent reliability can be realized.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の実施例を詳細に説明する。第1図は本発
明による圧電アクチェエータの駆動方法を用い次圧電す
ベヤ効果形アクチュエータの駆動回路の概略図である。
Examples of the present invention will be described in detail below. FIG. 1 is a schematic diagram of a driving circuit for a piezoelectric Bayer effect actuator using the piezoelectric actuator driving method according to the present invention.

駆動電源30は、希望の波形を発生するファンクション
ジェネレータと最大発生電圧が±200vの直流アンプ
により構成されており1本実施例に用いた直流アンプは
DC〜5oo)(zまでfxooVの電圧を発生するこ
とができる。前記駆動電源3002つの端子は圧電すベ
タ効果形アクチェエータ11上に形成された電極22及
び23に接続されておシ、これらによる電界が圧電すべ
り効果形アクチェエータlit変形させ微小変位を発生
させる。補助電源60は脱分極防止用の直流電源である
。前記補助電源60の2つの端子は圧電すベタ効果形ア
クチュエータ11上に形成された電極41及び電極42
・に接続されておp1素子の脱分極を防止するため、こ
れらKよる電界は素子の分極方向と同一方向に加わるよ
うに構成する。
The drive power supply 30 consists of a function generator that generates a desired waveform and a DC amplifier with a maximum generated voltage of ±200V.The DC amplifier used in this example generates a voltage of DC to 5ooV (fxooV up to z). The two terminals of the drive power source 300 are connected to electrodes 22 and 23 formed on the piezoelectric solid effect actuator 11, and the electric field generated by these causes the piezoelectric slip effect actuator to deform and cause minute displacement. The auxiliary power source 60 is a DC power source for preventing depolarization.The two terminals of the auxiliary power source 60 are electrodes 41 and 42 formed on the piezoelectric solid effect actuator 11.
In order to prevent depolarization of the p1 element, the electric field due to K is applied in the same direction as the polarization direction of the element.

ここで圧電すベタ効果形アクチェエータ11は東芝セラ
ミックス製T−96材を用いた5mX5mX0.2鱈形
状のものft5o枚接着によ)積層したものでちゃ。
Here, the piezoelectric solid effect type actuator 11 is made of T-96 material manufactured by Toshiba Ceramics and is laminated with 5 m x 5 m x 0.2 ft.

電極は人?蒸着により形成したものである。前述のよう
に接続した圧電アクチェエータに±2oo會。
Are the electrodes people? It is formed by vapor deposition. ±2oo to the piezoelectric actuator connected as described above.

30Hzの電圧を印加して経時特性を調べたところ、変
位量の減少ははとんど見られなかった。
When a voltage of 30 Hz was applied and the characteristics over time were investigated, no decrease in the amount of displacement was observed.

以上のように圧電すべり効果形アクチェエータにおいて
脱分極による劣化防止の方法として前記アクチーエータ
の分極軸に一致する電極を設け、さらにこの電極間お電
界を加えることで脱分極を防止することができた。
As described above, as a method for preventing deterioration due to depolarization in a piezoelectric slip effect type actuator, depolarization could be prevented by providing an electrode that coincides with the polarization axis of the actuator and further applying an electric field between the electrodes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するための基本原理図かつ
実施例を示す回路図、第2図は圧電すべり効果形アクチ
ェエータの構造断面図、第3図及び第4図は圧電すベタ
効果形アクチュエータの印加電界に対する素子の圧電定
数d15の変化の様子を示す特性図である。 11・・・圧電すぺQ効果形アクチーエータ30・・・
駆動電源 60・・・補助電源 代理人 弁理士 則近憲佑(ほか1名)第1図 第2図
Fig. 1 is a basic principle diagram and a circuit diagram showing an embodiment for explaining the present invention in detail, Fig. 2 is a structural sectional view of a piezoelectric slip effect type actuator, and Figs. 3 and 4 are piezoelectric solid effect actuators. FIG. 3 is a characteristic diagram showing how the piezoelectric constant d15 of the element changes with respect to the applied electric field of the shaped actuator. 11...Piezoelectric SpeQ effect type actuator 30...
Drive power source 60... Auxiliary power source agent Patent attorney Kensuke Norichika (and one other person) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims]  圧電すべり効果形アクチュエータと、前記圧電すべり
効果形アクチュエータの分極軸方向の端面に設けた一対
の電極と、この電極に分極方向と同方向の直流電圧を印
加するための直流電源を備えたことを特徴とする圧電ア
クチュエータの駆動装置。
A piezoelectric slip effect actuator, a pair of electrodes provided on an end face in the direction of the polarization axis of the piezoelectric slip effect actuator, and a DC power supply for applying a DC voltage in the same direction as the polarization direction to the electrodes. Features a piezoelectric actuator drive device.
JP60084429A 1985-04-22 1985-04-22 Apparatus for driving piezoelectric actuator Pending JPS61244079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60084429A JPS61244079A (en) 1985-04-22 1985-04-22 Apparatus for driving piezoelectric actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60084429A JPS61244079A (en) 1985-04-22 1985-04-22 Apparatus for driving piezoelectric actuator

Publications (1)

Publication Number Publication Date
JPS61244079A true JPS61244079A (en) 1986-10-30

Family

ID=13830337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60084429A Pending JPS61244079A (en) 1985-04-22 1985-04-22 Apparatus for driving piezoelectric actuator

Country Status (1)

Country Link
JP (1) JPS61244079A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011211059A (en) * 2010-03-30 2011-10-20 Taiheiyo Cement Corp Ultrasonic generator, method of driving ultrasonic generator, and ultrasonic sensor
US9849273B2 (en) 2009-07-03 2017-12-26 Ekos Corporation Power parameters for ultrasonic catheter
US9943675B1 (en) 2002-04-01 2018-04-17 Ekos Corporation Ultrasonic catheter power control
US10182833B2 (en) 2007-01-08 2019-01-22 Ekos Corporation Power parameters for ultrasonic catheter
JP2019011989A (en) * 2017-06-29 2019-01-24 Fdk株式会社 Current sensor
US10188410B2 (en) 2007-01-08 2019-01-29 Ekos Corporation Power parameters for ultrasonic catheter
US10656025B2 (en) 2015-06-10 2020-05-19 Ekos Corporation Ultrasound catheter
US10926074B2 (en) 2001-12-03 2021-02-23 Ekos Corporation Catheter with multiple ultrasound radiating members

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10926074B2 (en) 2001-12-03 2021-02-23 Ekos Corporation Catheter with multiple ultrasound radiating members
US9943675B1 (en) 2002-04-01 2018-04-17 Ekos Corporation Ultrasonic catheter power control
US10182833B2 (en) 2007-01-08 2019-01-22 Ekos Corporation Power parameters for ultrasonic catheter
US10188410B2 (en) 2007-01-08 2019-01-29 Ekos Corporation Power parameters for ultrasonic catheter
US11925367B2 (en) 2007-01-08 2024-03-12 Ekos Corporation Power parameters for ultrasonic catheter
US9849273B2 (en) 2009-07-03 2017-12-26 Ekos Corporation Power parameters for ultrasonic catheter
JP2011211059A (en) * 2010-03-30 2011-10-20 Taiheiyo Cement Corp Ultrasonic generator, method of driving ultrasonic generator, and ultrasonic sensor
US10656025B2 (en) 2015-06-10 2020-05-19 Ekos Corporation Ultrasound catheter
US11740138B2 (en) 2015-06-10 2023-08-29 Ekos Corporation Ultrasound catheter
JP2019011989A (en) * 2017-06-29 2019-01-24 Fdk株式会社 Current sensor

Similar Documents

Publication Publication Date Title
US5471721A (en) Method for making monolithic prestressed ceramic devices
US5276657A (en) Metal-electroactive ceramic composite actuators
JP2842448B2 (en) Piezoelectric / electrostrictive film type actuator
Kwon et al. Flexoelectric sensing using a multilayered barium strontium titanate structure
JPH03128680A (en) Piezoelectric/electrostrictive actuator
JP2001503920A (en) Driving or adjusting element by piezoelectric actuator
JPS6310595B2 (en)
JPS61244079A (en) Apparatus for driving piezoelectric actuator
JP3104550B2 (en) Piezoelectric actuator and method of manufacturing the same
JP2007067125A (en) Single-plate bimorph element
US20060079619A1 (en) Piezoelectric transducing sheet
JPS59108378A (en) Driving process of piezoelectric bimorph
WO2021256370A1 (en) Drive method, drive circuit, and displacement drive device
JP3283386B2 (en) Piezoelectric film type element, its processing method and its driving method
JPS62298189A (en) Piezoelectric actuator
JPS5963783A (en) Piezoelectric bimorph element
JPS5963782A (en) Piezoelectric bimorph element
JPS6372171A (en) Manufacture of electrostrictive driver
JPS5931078A (en) Piezoelectric bimorph
JPS61244080A (en) Apparatus for driving piezoelectric actuator
JPS5936440B2 (en) Electrical/mechanical conversion element
JPH0779030A (en) Preparation of pzt layer
JPS6372172A (en) Sheet-like electrostrictive laminated body
JPH0639468Y2 (en) Ceramics actuator
JPH0443684A (en) Laminated bimorph type piezoelectric element