JPH0359988B2 - - Google Patents

Info

Publication number
JPH0359988B2
JPH0359988B2 JP20497584A JP20497584A JPH0359988B2 JP H0359988 B2 JPH0359988 B2 JP H0359988B2 JP 20497584 A JP20497584 A JP 20497584A JP 20497584 A JP20497584 A JP 20497584A JP H0359988 B2 JPH0359988 B2 JP H0359988B2
Authority
JP
Japan
Prior art keywords
gas
reaction
treated
workpiece
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20497584A
Other languages
Japanese (ja)
Other versions
JPS6184376A (en
Inventor
Kazuo Maeda
Toku Tokumasu
Toshihiko Fukuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Japan Inc
Original Assignee
Applied Materials Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Japan Inc filed Critical Applied Materials Japan Inc
Priority to JP20497584A priority Critical patent/JPS6184376A/en
Priority to US06/780,205 priority patent/US4731255A/en
Publication of JPS6184376A publication Critical patent/JPS6184376A/en
Publication of JPH0359988B2 publication Critical patent/JPH0359988B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45504Laminar flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/60Deposition of organic layers from vapour phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/487Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using electron radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/488Protection of windows for introduction of radiation into the coating chamber
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • C30B25/105Heating of the reaction chamber or the substrate by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体工業分野での気相成長装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a vapor phase growth apparatus in the semiconductor industry.

(従来の技術) 従来の気相成長装置は、第4図に示すように、
反応チヤンバー(図示せず)内において、サセプ
タ10と平行に配置した分散板12によつて反応
ガスを分散して、反応ガスをウエハー14表面に
向けて垂直に供給する装置や、第5図に示すよう
に、反応チヤンバー(図示せず)内において、ノ
ズル16から反応ガスをウエハー14に放射状に
供給する装置、あるいは第6図に示すように反応
管18中において、ウエハー14表面と平行な方
向に反応ガスを流す装置等がある。
(Prior Art) A conventional vapor phase growth apparatus, as shown in FIG.
In the reaction chamber (not shown), there is a device that disperses the reaction gas by a dispersion plate 12 disposed parallel to the susceptor 10 and supplies the reaction gas vertically toward the surface of the wafer 14, as shown in FIG. As shown in FIG. 6, in a reaction chamber (not shown), a device for radially supplying a reaction gas from a nozzle 16 to a wafer 14, or in a reaction tube 18 as shown in FIG. There are devices that flow reactive gases, etc.

(発明が解決すべき問題点) しかしながら上記の気相成長装置には以下のご
とき問題点がある。
(Problems to be Solved by the Invention) However, the above vapor phase growth apparatus has the following problems.

すなわち、第4図や第5図に示す装置において
は、反応ガス中で生成した気相反応生成物(粒
子)や、チヤンバーの壁面へ付着した反応生成物
が、反応ガスの流れに乗つて、あるいは反応ガス
の吹き上げによつて、被処理物表面に成長した皮
膜上に落下して付着する、いわゆるパーテイクル
の発生をみる問題点がある。また第5図に示す装
置においては、反応生成物がノズル16に付着し
て、ノズル16の目詰まりが生ずる問題もある。
That is, in the apparatus shown in FIGS. 4 and 5, gas-phase reaction products (particles) generated in the reaction gas and reaction products attached to the wall of the chamber ride on the flow of the reaction gas. Another problem is the generation of so-called particles, which fall and adhere to the film grown on the surface of the object to be treated due to the blowing up of the reaction gas. Further, in the apparatus shown in FIG. 5, there is a problem in that reaction products adhere to the nozzle 16, causing the nozzle 16 to become clogged.

第6図に示す装置においては、反応ガス中で生
成した気相反応生成物は反応ガス流に乗つて比較
的排出され易いものではあるが、一般的に反応ガ
ス流は乱流状態で供給されるから(反応ガスがウ
エハー14近辺で加熱されることにより、一層乱
流状態となる)、気相中で生成した粒子がやはり
ウエハー14上の成長皮膜上に落化付着して、パ
ーテイクルの発生をみることがある。また反応管
18内壁に付着した反応生成物が、反応ガスの乱
流によつて剥がれ、落下して皮膜上に付着するパ
ーテイクルの発生を免れない。
In the apparatus shown in FIG. 6, although the gas phase reaction products generated in the reaction gas are relatively easily discharged along with the reaction gas flow, the reaction gas flow is generally supplied in a turbulent state. (The reactant gas is heated near the wafer 14, resulting in a more turbulent flow state.) Particles generated in the gas phase fall onto the grown film on the wafer 14, resulting in the generation of particles. I sometimes see it. Further, the reaction products adhering to the inner wall of the reaction tube 18 are peeled off by the turbulent flow of the reaction gas, and inevitably generate particles that fall and adhere to the film.

そこで発明者は上記問題点を解決すべく、反応
ガス流を被処理物表面に沿つて帯状に供給すると
ともに、反応ガス流の外側を覆つてN2ガスカー
テン流を帯状に流して、反応系を外界と遮断する
ことによつて、チヤンバー内壁への反応生成物付
着を防止し、さらには上記の反応ガス流とN2
スカーテン流とを層流状態に流すことによつて、
気相中で成長した反応生成物を系外へ運び去つ
て、パーテイクルの発生をほぼ完全なまでに抑止
できる気相成長方法を発案し、既に特許出願して
いる。
Therefore, in order to solve the above problems, the inventors supplied a reaction gas flow in a band shape along the surface of the object to be treated, and at the same time passed a N2 gas curtain flow in a band shape to cover the outside of the reaction gas flow. By blocking the reaction product from the outside world, it is possible to prevent reaction products from adhering to the inner wall of the chamber, and furthermore, by flowing the reaction gas flow and the N2 gas curtain flow in a laminar flow state,
He has devised a vapor phase growth method that can almost completely suppress the generation of particles by transporting the reaction products grown in the gas phase out of the system, and has already applied for a patent.

本願は上記出願に係る発明をさらに改良するも
のであり、その目的とするところは、有機シラン
系の反応ガス流とN2ガスとをほぼ完全な層流状
態とすることができ、パーテイクルの発生防止を
一層確実にすることができるのみならず、被処理
物表面上に皮膜を所望のパターンに迸択成長させ
ることのできる気相成長装置を提供するものであ
る。
The present application further improves the invention of the above-mentioned application, and its purpose is to make the organic silane-based reaction gas flow and N 2 gas into a nearly completely laminar flow state, and to prevent the generation of particles. It is an object of the present invention to provide a vapor phase growth apparatus which not only can further ensure prevention but also can selectively grow a film in a desired pattern on the surface of an object to be treated.

(問題点を解決するための手段〕 本発明は次のような構成を備える。(Means for solving problems) The present invention has the following configuration.

被処理物表面に有機シラン系の反応ガスを流通
させて被処理物表面に皮膜を成長させる気相成長
装置において、被処理物を載置し、該被処理物を
反応温度にまで加熱するホツトプレートを備え、
該ホツトプレート周辺が開放されている開放チヤ
ンバーと、前記有機シラン系の反応ガスを被処理
物表面に沿つて被処理物表面と平行な方向に流す
反応ガス供給ノズルと、この有機シラン系の反応
ガス流の少なくとも反被処理物側を覆つて不活性
ガスカーテンを形成するように不活性ガスを供給
する不活性ガス供給ノズルと、前記被処理物表面
に紫外線を照射する紫外線照射ランプと、該紫外
線照射ランプよりも前記両ガスの供給手前側に配
置されて、有機シラン系の反応ガスと不活性ガス
とをあらかじめ被処理物表面における反応温度と
ほぼ等しい温度にまで加熱する加熱手段とを具備
することを特徴としている。
In a vapor phase growth apparatus that grows a film on the surface of a workpiece by flowing an organic silane-based reaction gas over the surface of the workpiece, a hot-drying device that places the workpiece on the workpiece and heats the workpiece to a reaction temperature. Equipped with a plate,
an open chamber in which the periphery of the hot plate is open; a reaction gas supply nozzle that flows the organosilane-based reaction gas along the surface of the object to be processed in a direction parallel to the surface of the object; an inert gas supply nozzle that supplies an inert gas to form an inert gas curtain covering at least a side of the gas flow opposite to the object to be treated; an ultraviolet irradiation lamp that irradiates the surface of the object with ultraviolet rays; A heating means is provided, which is disposed closer to the supply side of the two gases than the ultraviolet irradiation lamp, and heats the organic silane-based reaction gas and the inert gas to a temperature approximately equal to the reaction temperature on the surface of the object to be treated. It is characterized by

(作用) 上記のように反応ガスを覆つて不活性ガス流が
供給されるが、加熱手段によつて反応ガス流と不
活性ガスとがあらかじめほぼ等しい温度にまで加
熱されて供給されるから、反応ガス流と不活性ガ
ス流との間で乱流をなしたり、どちらか一方が上
昇気流を生じてしまうことがなく、両者が層流を
なして供給される。したがつて気相中で生じた反
応生成物が排出ガスとともに排出され、パーテイ
クルの発生を防止できる。
(Function) As described above, the inert gas flow is supplied covering the reaction gas, but since the reaction gas flow and the inert gas are heated in advance to approximately the same temperature by the heating means, Both the reactant gas flow and the inert gas flow are supplied in a laminar flow without creating turbulence between the reactant gas flow and the inert gas flow and without causing an upward current in either one. Therefore, the reaction products generated in the gas phase are discharged together with the exhaust gas, and the generation of particles can be prevented.

このように反応ガス流と不活性ガス流とが、あ
らかじめ被処理物の表面温度付近、すなわち反応
温度付近にまで加熱されるが、この反応温度は、
反応ガスが有機シラン系の場合、紫外線照射とい
う条件が加わつて初めて反応する反応温度である
から、紫外線照射のない、被処理物に達するまで
の間は反応することなく、しかも反応温度に保つ
て供給され、完全な層流が形成され、パーテイク
ルの発生が確実に防止される。
In this way, the reaction gas flow and the inert gas flow are heated in advance to near the surface temperature of the object to be treated, that is, near the reaction temperature.
When the reaction gas is an organic silane type, the reaction temperature is such that the reaction only occurs when the condition of ultraviolet irradiation is added, so there is no reaction until it reaches the object to be treated without ultraviolet irradiation, and the reaction temperature cannot be maintained. A completely laminar flow is formed, reliably preventing the generation of particles.

また有機シラン−O2系は紫外線照射によつて
上記のように低温度で反応するとともに、この反
応は主として表面反応であり、適宜なマスクを用
いることによつて、所望のパターンの皮膜を被処
理物表面上に迸択成長させることができる。
In addition, organic silane- O2 reacts at low temperatures when irradiated with ultraviolet rays as described above, and this reaction is mainly a surface reaction, so by using an appropriate mask, a film with a desired pattern can be formed. It can be selectively grown on the surface of the treated object.

(実施例) 以下本発明の好適な実施例を添付図面に基づい
て詳細に説明する。
(Embodiments) Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

第1図は本発明装置の概要を示す説明図であ
る。
FIG. 1 is an explanatory diagram showing an outline of the apparatus of the present invention.

20はホツトプレートであり、その上面にウエ
ハー22を載置する。ホツトプレート20はウエ
ハー22を反応温度付近にまで加熱する。
20 is a hot plate, and a wafer 22 is placed on the top surface thereof. The hot plate 20 heats the wafer 22 to near the reaction temperature.

ホツトプレート20は適宜な支持体(図示せ
ず)により支持されることはもちろんであるが、
ホツトプレート20の周辺は開放されており、本
発明においては、このホツトプレート20を含む
反応部を開放チヤンバーとよぶ。
Of course, the hot plate 20 is supported by a suitable support (not shown),
The periphery of the hot plate 20 is open, and in the present invention, the reaction section including this hot plate 20 is called an open chamber.

24は反応ガス供給ノズルであり、ホツトプレ
ート20側方に配置され、反応ガスをウエハー2
2表面に沿つてウエハー22表面と平行に流す。
反応ガス供給ノズル24は、中空状のガス留め2
6を有し、このガス留め26に連通する多数のス
リツト状あるいは小孔状をなすガス噴出口28を
有するノズル本体30にガス供給管32が連結さ
れてなる(第1図,第2図)。ノズル本体30か
らはノズル本体30前方に厚さ数mmの帯状の反応
ガス流がウエハー22表面に沿つて流せるように
なつている。
Reference numeral 24 denotes a reaction gas supply nozzle, which is arranged on the side of the hot plate 20 and supplies the reaction gas to the wafer 2.
2 surface parallel to the wafer 22 surface.
The reaction gas supply nozzle 24 is connected to a hollow gas stopper 2.
6, and a gas supply pipe 32 is connected to a nozzle body 30 which has a large number of slit-shaped or small hole-shaped gas jet ports 28 that communicate with the gas stop 26 (FIGS. 1 and 2). . From the nozzle body 30, a band-shaped reactive gas flow having a thickness of several mm can flow along the surface of the wafer 22 in front of the nozzle body 30.

34は反応ガス加熱用コイルであり、ガス供給
管32の適所に巻回され、反応ガスをあらかじめ
ウエハー22表面温度付近にまで加熱してウエハ
ー22表面上を通過させるものである。
Reference numeral 34 denotes a reactant gas heating coil, which is wound around the gas supply pipe 32 at an appropriate position, and is used to heat the reactant gas in advance to near the surface temperature of the wafer 22 and pass it over the wafer 22 surface.

36はウエハー22を挟んで反応ガス供給ノズ
ル24と対向して配置された排出管であり、未反
応ガス、気相中の反応生成物を排出する。
Reference numeral 36 denotes a discharge pipe disposed opposite to the reaction gas supply nozzle 24 with the wafer 22 in between, and discharges unreacted gas and reaction products in the gas phase.

38は不活性ガス供給ノズルたるN2ガス供給
ノズルであり、反応ガス供給ノズル24とほぼ同
様に構成され、反応ガス供給ノズル24の上方に
配置されて、反応ガス供給ノズル24から流出す
る反応ガス流の上方を覆つてN2ガスを帯状に流
すものである。このN2ガスも、N2ガス供給管4
0に巻回された加熱用コイル42によつて、反応
ガスとほん同温度にまで加熱されて供給される。
Reference numeral 38 denotes an N 2 gas supply nozzle, which is an inert gas supply nozzle, and is configured in substantially the same manner as the reaction gas supply nozzle 24, and is arranged above the reaction gas supply nozzle 24 to control the reaction gas flowing out from the reaction gas supply nozzle 24. This involves flowing N 2 gas in a band over the top of the flow. This N2 gas is also N2 gas supply pipe 4
It is heated to almost the same temperature as the reaction gas by the heating coil 42 wound around zero and is supplied.

44は上記のN2ガスを排出するN2ガス排出管
である。
44 is an N 2 gas discharge pipe for discharging the above N 2 gas.

50は紫外線照射ランプ(Hgランプ)であり、
N2ガス流のさらに上方に位置するように設けら
れ、ホツトプレート20上に載置されるウエハー
22上面に紫外線を照射するものである。52は
反射板である。
50 is an ultraviolet irradiation lamp (Hg lamp),
It is provided so as to be located further above the N 2 gas flow, and irradiates the upper surface of the wafer 22 placed on the hot plate 20 with ultraviolet rays. 52 is a reflecting plate.

54は上記紫外線照射ランプ50を収納するボ
ツクスであり、ボツクス54内にはN2ガスが流
通される。ボツクス54内にN2ガスを流通させ
るのは、O2が存在するとO2ガスによつて紫外線
が吸収されるからである。、 56は石英ガラス製のカバーであり、該カバー
56の周縁部には紫外線を透過しない例えばクロ
ム蒸着皮膜が形成され、中央透過部から紫外線を
ウエハー22表面上に照射するようになつてい
る。
Reference numeral 54 denotes a box that houses the ultraviolet irradiation lamp 50, and N2 gas is passed through the box 54. The reason why N 2 gas is passed through the box 54 is that if O 2 exists, ultraviolet rays will be absorbed by the O 2 gas. , 56 is a cover made of quartz glass, and the peripheral edge of the cover 56 is formed with, for example, a chromium vapor-deposited film that does not transmit ultraviolet rays, so that ultraviolet rays are irradiated onto the surface of the wafer 22 from the central transmitting portion.

本実施例は上記のように構成される。 This embodiment is configured as described above.

しかして反応ガスをあらかじめ加熱して、反応
ガス供給ノズル24から、ウエハー22表面に沿
つて帯状に流し、N2ガスをあらかじめ加熱して
N2ガス供給ノズル24から反応ガス上方を覆つ
て帯状に流して、ウエハー22表面上に所望の皮
膜を形成させることができる。この場合に両ガス
があらかじめウエハー22表面温度付近にまで加
熱されているから、両ガス間で上昇気流等による
乱流が生じることがなく、したがつて層流状態で
供給されるから、反応ガス気相中で生成した反応
生成物がウエハー22表面上に落下して、パーテ
イクルが発生する等の事態が生じない。
In this way, the reaction gas is heated in advance and flows in a band shape from the reaction gas supply nozzle 24 along the surface of the wafer 22, and the N 2 gas is heated in advance.
A desired film can be formed on the surface of the wafer 22 by flowing the reaction gas in a band shape from the N 2 gas supply nozzle 24 over the upper part of the reaction gas. In this case, since both gases have been heated in advance to near the surface temperature of the wafer 22, turbulent flow due to upward airflow does not occur between the two gases, and therefore the reactant gas is supplied in a laminar flow state. A situation such as reaction products generated in the gas phase falling onto the surface of the wafer 22 and generation of particles does not occur.

反応ガス系は、有機シラン(テトラエトキシシ
ラン)+O2系、有機シラン+PH3(あるいは有機シ
ラン)+O2系等の反応ガス系が有用である。
As the reactive gas system, a reactive gas system such as an organic silane (tetraethoxysilane) + O 2 system, an organic silane + PH 3 (or organic silane) + O 2 system, etc. is useful.

このような有機シラン系は一般的に700℃以上
の高温条件でなければ反応しない。しかしながら
発明者は、このような有機シラン系においても、
紫外線を照射することによつて400℃程度の低温
条件でも充分に反応が進行することを見出した。
Such organic silane systems generally do not react unless the temperature is 700°C or higher. However, the inventors believe that even in such organic silane systems,
It was discovered that by irradiating with ultraviolet rays, the reaction proceeded satisfactorily even at low temperatures of around 400°C.

本実施例においては上記事実は極めて有用であ
る。すなわち反応ガス、N2ガスを上記の400℃程
度にまで予熱して供給できる。この温度では反応
ガス系は反応せず、紫外線ランプ50の紫外線照
射領域において初めて、必要な反応を起こし、ウ
エハー22上に皮膜を生成するからである。この
ように反応ガスおよびN2ガスを、反応ガスの後
に起こる反応の反応温度にまであらかじめ予熱し
て供給しうるから、他の加熱源は全く不要である
とともに、反応ガス流とN2ガスとは層流状態で
流れ、前記のパーテイクルの発生抑止を確実にす
ることができる。
The above fact is extremely useful in this embodiment. That is, the reaction gas and N 2 gas can be preheated to about 400° C. and then supplied. This is because the reactive gas system does not react at this temperature, and the necessary reaction occurs only in the ultraviolet irradiation region of the ultraviolet lamp 50 to form a film on the wafer 22. In this way, the reaction gas and the N 2 gas can be preheated and supplied to the reaction temperature of the reaction that occurs after the reaction gas, so no other heating source is required, and the reaction gas flow and the N 2 gas can be flows in a laminar flow state and can reliably suppress the generation of particles.

また上記有機シラン系に紫外線を照射して起こ
る反応は、被処理物の表面で起こる表面反応であ
る。このためこの反応においては、凹部にも凸部
と変わりなく皮膜が成長し、いわゆるステツプカ
バリツジ(均一被着性)にすぐれる。
The reaction that occurs when the organic silane system is irradiated with ultraviolet light is a surface reaction that occurs on the surface of the object to be treated. Therefore, in this reaction, a film grows on the concave portions as well as on the convex portions, resulting in excellent so-called step coverage (uniform adhesion).

さらにこの実施例においては、ウエハー22の
若干上方に、適宜なマスク(図示せず)をおくこ
とによつて、マスクのパターン通りに皮膜をウエ
ハー22上に成長させることも可能である。マス
クは石英ガラス等の紫外線を透過する素材のもの
を用い、前記のカバー56と同様にクロム蒸着等
によつて紫外線非透過部を形成して用いる。
Furthermore, in this embodiment, by placing an appropriate mask (not shown) slightly above the wafer 22, it is possible to grow a film on the wafer 22 according to the pattern of the mask. The mask is made of a material that transmits ultraviolet rays, such as quartz glass, and similarly to the cover 56, a portion that does not transmit ultraviolet rays is formed by chromium deposition or the like.

なお以上の各実施例において、N2ガスカーテ
ンを形成する例を示したが、これに限られず、ア
ルゴンその他の不活性ガスを用いることができる
のはもちろんである。
In each of the above embodiments, an example was shown in which an N 2 gas curtain was formed, but the present invention is not limited to this, and it goes without saying that argon or other inert gas may be used.

(発明の効果) 以上のように本発明によれば次の特有な作用効
果を奏する。
(Effects of the Invention) As described above, the present invention provides the following unique effects.

すなわち、 反応ガスと不活性ガスとをあらかじめほぼ等
しい温度に加熱する加熱手段を設けているの
で、被処理物表面で急に加熱されるのと異な
り、両ガスに上昇気流等の乱流を生じさせず、
したがつてチヤンバーを、クローズドでなく開
放チヤンバーに設けても確実に反応ガスと不活
性ガスとの層流を得ることができる。
In other words, since a heating means is provided to heat the reaction gas and the inert gas to approximately the same temperature in advance, unlike sudden heating on the surface of the object to be treated, turbulent flow such as an upward current is generated in both gases. Don't let it happen,
Therefore, even if the chamber is provided as an open chamber instead of a closed chamber, a laminar flow of the reactant gas and the inert gas can be reliably obtained.

チヤンバーが開放チヤンバーであるから、装
置全体の小型化とそのコストの低減化が図れる
ばかりか、チヤンバー内壁に付着した反応生成
物が落下して皮膜上に再付着するというパーテ
イクルの発生を完全に防止できる。
Since the chamber is an open chamber, not only can the entire device be made smaller and its cost reduced, but it also completely prevents the generation of particles, where reaction products adhering to the inner wall of the chamber fall and re-adhere to the film. can.

被処理物表面に流れる反応ガスと不活性ガス
とが、両者が層流状態をなすように流れるか
ら、気相中での反応生成物は反応ガス流と共に
排出される。したがつてこの点でもパーテイク
ルの発生が抑止される。
Since the reaction gas and the inert gas flow on the surface of the object to be treated so as to form a laminar flow, the reaction products in the gas phase are discharged together with the reaction gas flow. Therefore, the generation of particles is also suppressed in this respect.

有機シラン系の反応ガスと不活性ガスとは、
あらかじめ被処理物の表面温度付近、すなわち
反応温度付近にまで加熱されるが、この反応温
度は、紫外線照射という条件が加わつて初めて
反応する反応温度であるから、有機シラン系の
反応ガスは、紫外線照射のない、被処理物に達
するまでの間は反応することがなく、完全な層
流状態で供給される。そして被処理物表面に達
すると、あらかじめ加熱されていることと相挨
つて、紫外線が照射されることによつて直ちに
効率よく反応が起るのである。
What is organic silane-based reactive gas and inert gas?
Although the object to be treated is heated in advance to near the surface temperature, that is, near the reaction temperature, this reaction temperature is the reaction temperature at which the reaction occurs only when the conditions of ultraviolet irradiation are added. There is no irradiation, there is no reaction until it reaches the object to be treated, and it is supplied in a completely laminar flow state. When the surface of the object to be treated is reached, a reaction occurs immediately and efficiently due to the fact that it has been previously heated and is irradiated with ultraviolet rays.

また有機シラン系の反応ガスに紫外線を照射
して起る反応はほぼ完全な表面反応となり、パ
ーテイクルの発生が抑止され、ステツプカバリ
ツジに優れ、また適当なマスクを用いればマス
クのパターン通りに皮膜を選択成長させること
ができる。
In addition, the reaction that occurs when organic silane-based reaction gas is irradiated with ultraviolet rays results in an almost complete surface reaction, which suppresses the generation of particles and provides excellent step coverage. can be selectively grown.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の概要を示す説明図、第3
図はその平面図、第2図は反応ガス供給ノズルの
説明図、第4図乃至第6図はそれぞれ従来の気相
成長装置を示す説明である。 10…サセプタ、12…分散板、14…ウエハ
ー、16…ノズル、18…反応管、20…ホツト
プレート、22…ウエハー、24…反応ガス供給
ノズル、26…ガス留め、28…ガス噴出口、3
0…ノズル本体、32…ガス供給管、34…反応
ガス加熱用コイル、36…排出管、38…N2
ス供給ノズル、40…N2ガス供給管、42…加
熱用コイル、44…N2ガス排出管、50…紫外
線照射ランプ、52…反射板、54…ボツクス、
56…カバー。
Fig. 1 is an explanatory diagram showing the outline of the device of the present invention;
The figure is a plan view thereof, FIG. 2 is an explanatory diagram of a reaction gas supply nozzle, and FIGS. 4 to 6 are explanatory diagrams showing a conventional vapor phase growth apparatus. DESCRIPTION OF SYMBOLS 10... Susceptor, 12... Distribution plate, 14... Wafer, 16... Nozzle, 18... Reaction tube, 20... Hot plate, 22... Wafer, 24... Reaction gas supply nozzle, 26... Gas stopper, 28... Gas jet port, 3
0...Nozzle body, 32...Gas supply pipe, 34...Reaction gas heating coil, 36...Discharge pipe, 38... N2 gas supply nozzle, 40... N2 gas supply pipe, 42...Heating coil, 44... N2 Gas exhaust pipe, 50...ultraviolet irradiation lamp, 52...reflector, 54...box,
56...Cover.

Claims (1)

【特許請求の範囲】 1 被処理物表面に有機シラン系の反応ガスを流
通させて被処理物表面に皮膜を成長させる気相成
長装置において、 被処理物を載置し、該被処理物を反応温度にま
で加熱するホツトプレートを備え、該ホツトプレ
ート周辺が開放されている開放チヤンバーと、 前記有機シラン系の反応ガスを被処理物表面に
沿つて被処理物表面と平行な方向に流す反応ガス
供給ノズルと、 この有機シラン系の反応ガス流の少なくとも反
被処理物側を覆つて不活性ガスカーテンを形成す
るように不活性ガスを供給する不活性ガス供給ノ
ズルと、 前記被処理物表面に紫外線を照射する紫外線照
射ランプと、 該紫外線照射ランプよりも前記両ガスの供給手
前側に配置されて、有機シラン系の反応ガスと不
活性ガスとをあらかじめ被処理物表面における反
応温度とほぼ等しい温度にまで加熱する加熱手段
とを具備することを特徴とする気相成長装置。
[Scope of Claims] 1. In a vapor phase growth apparatus that grows a film on the surface of a workpiece by flowing an organic silane-based reactive gas over the surface of the workpiece, the workpiece is placed on the workpiece, and the workpiece is An open chamber that is equipped with a hot plate that is heated to a reaction temperature and whose periphery is open, and a reaction in which the organosilane-based reaction gas is flowed along the surface of the object to be treated in a direction parallel to the surface of the object to be treated. a gas supply nozzle; an inert gas supply nozzle that supplies an inert gas so as to form an inert gas curtain covering at least the side opposite to the object to be treated of the organic silane-based reaction gas flow; and the surface of the object to be treated; an ultraviolet irradiation lamp that irradiates ultraviolet rays to the surface of the object; A vapor phase growth apparatus characterized by comprising: heating means for heating to an equal temperature.
JP20497584A 1984-09-26 1984-09-28 Vapor growth device Granted JPS6184376A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP20497584A JPS6184376A (en) 1984-09-28 1984-09-28 Vapor growth device
US06/780,205 US4731255A (en) 1984-09-26 1985-09-26 Gas-phase growth process and an apparatus for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20497584A JPS6184376A (en) 1984-09-28 1984-09-28 Vapor growth device

Publications (2)

Publication Number Publication Date
JPS6184376A JPS6184376A (en) 1986-04-28
JPH0359988B2 true JPH0359988B2 (en) 1991-09-12

Family

ID=16499392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20497584A Granted JPS6184376A (en) 1984-09-26 1984-09-28 Vapor growth device

Country Status (1)

Country Link
JP (1) JPS6184376A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190074A (en) * 1985-02-15 1986-08-23 Sharp Corp Formation of thin oxide film
US4937438A (en) 1988-11-23 1990-06-26 Datacard Corporation Magnetic encoding apparatus and method

Also Published As

Publication number Publication date
JPS6184376A (en) 1986-04-28

Similar Documents

Publication Publication Date Title
EP0870852B1 (en) Method and apparatus for preventing condensation in an exhaust passage
US4702936A (en) Gas-phase growth process
JPH01107519A (en) Vapor growth apparatus
US4731255A (en) Gas-phase growth process and an apparatus for the same
JPH0359988B2 (en)
TWI733871B (en) Upper cone for epitaxy chamber
JPS6338430B2 (en)
JPS644590B2 (en)
JPS6280271A (en) Vapor growth method
JPS5936927A (en) Vapor phase growth apparatus for semiconductor
JPS6274079A (en) Vapor growth device
JPS6280272A (en) Vapor growth method
JPS593931A (en) Forming of thin film
KR101876963B1 (en) Thin film forming apparatus
JPS61117827A (en) Vapor growth apparatus
JPS61117824A (en) Vapor phase reaction container
JPS61103539A (en) Vapor growth method
KR101876961B1 (en) Thin film forming apparatus
JPS63177526A (en) Normal pressure cvd device
JPH0357189B2 (en)
JPS63276219A (en) Atmospheric pressure vapor deposition system
JPH04350169A (en) Film forming device
JPS59209643A (en) Photochemical vapor phase deposition device
JPS61121324A (en) Vapor growth equipment
JPH01161719A (en) Vapor growth apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees