JPH0359619A - Optical amplifier - Google Patents

Optical amplifier

Info

Publication number
JPH0359619A
JPH0359619A JP19601989A JP19601989A JPH0359619A JP H0359619 A JPH0359619 A JP H0359619A JP 19601989 A JP19601989 A JP 19601989A JP 19601989 A JP19601989 A JP 19601989A JP H0359619 A JPH0359619 A JP H0359619A
Authority
JP
Japan
Prior art keywords
semiconductor laser
optical
waveguide
polarization
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19601989A
Other languages
Japanese (ja)
Inventor
Norio Nishi
功雄 西
Norio Takato
高戸 範夫
Masayuki Okuno
将之 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP19601989A priority Critical patent/JPH0359619A/en
Publication of JPH0359619A publication Critical patent/JPH0359619A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily eliminate polarization dependency by setting the direction of polarized light wherein the maximum gain of a 1st and a 2nd semiconductor laser is obtained to the direction of polarized light that light beams projected from a 3rd a 4th optical waveguide given after passing through Faraday rotators. CONSTITUTION:A semiconductor laser 8-1 is rotated around the optical axis by 45 deg. and arranged so that the active layer of the semiconductor laser 8-1 coincides with the electric field direction of TE polarized light projected from the 3rd optical waveguide 3-3 since the electric field direction rotates by 45 deg. after passing through the Faraday rotator 6-1. A semiconductor laser 8-2 is rotated around the optical axis by -45 deg. and arranged so that the active layer of the semiconductor laser coincides with the electric field direction of TM polarized light projected from the 4th optical waveguide 3-4 since the electric field direction rotates by 45 deg. after passing through a Faraday rotator 6-2. Thus, input light is split into two specific polarized light beams, whose polarization directions are made coincident with the direction of the polarization where the maximum gain of the semiconductor lasers is obtained through the Faraday rotator 6-2 to easily eliminate the polarization dependency.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は半導体レーザを用いた光増幅器に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to an optical amplifier using a semiconductor laser.

「従来の技術と発明が解決しようとする課題」従来の光
増幅器には両端面に無反射フートを施した半導体レーザ
の両端面をそれぞれ人力ファイバおよび出力ファイバと
結合する構成が通常用いられているが、入力端および出
力側でそれぞれ3方向の精密な位置調整固定を必要とす
るため組立が困難であった。また通常の半導体レーザの
利得は偏光方向に依存するため、偏光無依存の光増幅器
を構成するためには特殊な半導体レーザ素子構造が必要
となった。
``Prior art and problems to be solved by the invention'' Conventional optical amplifiers usually have a configuration in which both end faces of a semiconductor laser with anti-reflection feet provided on both end faces are coupled to a power fiber and an output fiber, respectively. However, assembly was difficult because it required precise position adjustment and fixing in three directions on the input end and output side, respectively. Furthermore, since the gain of a normal semiconductor laser depends on the polarization direction, a special semiconductor laser element structure is required to construct an optical amplifier that is independent of polarization.

本発明の目的は偏光無依存化か容易でかつ組立容易な光
増幅器を提供することにある。
An object of the present invention is to provide an optical amplifier that is polarization independent and easy to assemble.

「課題を解決するための手段」 本発明の光増幅器は、第1の光導波路に入射した光のT
E酸成分TM酸成分をそれぞれ第3および第4の光導波
路に分離導波するとともに第2の光導波路に入射した光
のTM酸成分TE酸成分をそれぞれ第3および第4の光
導波路に分離導波する機能を有する導波跡形偏光分離素
子と、片側の光出射端面に無反射コートを施した第1お
よび第2の半導体レーザと、前記第3および第4の光導
波路と第1および第2の半導体レーザとをそれぞれ光学
的に結合するレンズと、第3および第4の光導波路と第
1および第2の半導体レーザとの間に設けた45度のフ
ァラデー回転角を有するファラデー回転子とを備え、上
記第3および第4の光導波路から出射した各光が上記フ
ァラデー回転子を経由したのちに示す偏光の方向に第1
および第2の半導体レーザの最大利得が得られる偏光の
方向をそれぞれ一致させたことを特徴とする。
"Means for Solving the Problems" The optical amplifier of the present invention has a T of light incident on a first optical waveguide.
The E acid component and the TM acid component are separated into third and fourth optical waveguides, and the TM acid component and TE acid component of the light incident on the second optical waveguide are separated into third and fourth optical waveguides, respectively. a waveguide trace-shaped polarization separation element having a waveguiding function; first and second semiconductor lasers each having an anti-reflection coating applied to one side of the light emitting end face; the third and fourth optical waveguides; a Faraday rotator having a Faraday rotation angle of 45 degrees provided between the third and fourth optical waveguides and the first and second semiconductor lasers; after each light emitted from the third and fourth optical waveguides passes through the Faraday rotator, a first
The second semiconductor laser is characterized in that the directions of polarization in which the maximum gain is obtained are made to coincide with each other.

「作用」 本発明の光増幅器においては、入力光をTE酸成分TM
酸成分に分離することにより、二つの特定した偏光に分
け、その偏光方向をファラデー回転子によって半導体レ
ーザの最大利得が得られる偏光の方向に一致させること
により、TE偏光、7M偏光とも最大利得を得ることが
でき、これらを合波して出力するものである。
"Operation" In the optical amplifier of the present invention, input light is converted into TE acid component TM.
By separating the acid components into two specified polarized lights, and by using a Faraday rotator to match the direction of polarization to the direction of polarization that provides the maximum gain of the semiconductor laser, the maximum gain can be achieved for both TE and 7M polarized lights. These signals are combined and output.

「実施例」 以下、本発明の光増幅器の一実施例について図面を参照
しながら説明する。
"Embodiment" Hereinafter, an embodiment of the optical amplifier of the present invention will be described with reference to the drawings.

図において、1は導波跡形偏光分離素子、2は導波跡形
偏光分離素子lを形成した導波路基板、3−1〜3−4
は導波跡形偏光分離素子1を構成する光導波路で、3−
1が第1の光導波路、3−2が第2の光導波路、3−3
−が第3の光導波路、3−4が第4の光導波路である。
In the figure, 1 is a waveguide trace type polarization separation element, 2 is a waveguide substrate on which a waveguide trace type polarization separation element l is formed, 3-1 to 3-4
is an optical waveguide constituting the waveguide trace polarization separation element 1, and 3-
1 is a first optical waveguide, 3-2 is a second optical waveguide, 3-3
- is the third optical waveguide, and 3-4 is the fourth optical waveguide.

4−1.1−2は導波跡形偏光分離素子1を構成する第
1および第2の3dBカブラ、5−1.5−2は導波跡
形偏光分離素子1を構成する応力付与導波路、61.6
−2は45度のファラデー回転角を有するファラデー回
転子、’!−1.7−2はレンズ、81.8−2は第1
および第2の半導体レーザ、9−1.9−2は半導体レ
ーザ8−1.8−2の無反射コートを施した端面、10
−1.10−2は半導体レーザ8−1.8−2の他方の
端面である。そして、第3および第4の光導波路3−3
゜3−4と第1および第2の半導体レーザ9−1゜9−
2との間にレンズ’11.7−2およびファラデー回転
子6−1.6−2が配置されている。
4-1.1-2 is a first and second 3 dB coupler that constitutes the waveguide trace type polarization separation element 1; 5-1.5-2 is a stress applying waveguide that constitutes the waveguide trace type polarization separation element 1; 61.6
-2 is a Faraday rotator with a Faraday rotation angle of 45 degrees, '! -1.7-2 is the lens, 81.8-2 is the first
and a second semiconductor laser, 9-1.9-2 is an end face with anti-reflection coating of semiconductor laser 8-1.8-2;
-1.10-2 is the other end face of the semiconductor laser 8-1.8-2. And third and fourth optical waveguides 3-3
゜3-4 and the first and second semiconductor lasers 9-1゜9-
A lens '11.7-2 and a Faraday rotator 6-1.6-2 are arranged between the two.

図に従って本実施例の動作を以下に説明する。The operation of this embodiment will be explained below according to the figures.

第1の光導波路3−1から入射した光のTE酸成分′:
4界の方向が導波路基板2に平行な成分)は3dBカブ
ラ4−1で2等分され、応力付与導波路5−1.5−2
をそれぞれ伝播したのちに3dBカプラ4−2で結合さ
れて第3の光導波路3−3に導かれる。また第1の光導
波路3−1から入射した光のTM酸成分磁界の方向が導
波路基板2に平行な成分)は第4の光導波路3−4に導
かれる。
TE acid component of the light incident from the first optical waveguide 3-1:
The component whose direction is parallel to the waveguide substrate 2) is divided into two equal parts by the 3 dB coupler 4-1, and the stress-applying waveguide 5-1.
After propagating, they are coupled by a 3 dB coupler 4-2 and guided to a third optical waveguide 3-3. Further, the TM acid component magnetic field of the light incident from the first optical waveguide 3-1 (component whose direction is parallel to the waveguide substrate 2) is guided to the fourth optical waveguide 3-4.

Claims (1)

【特許請求の範囲】[Claims] 第1の光導波路に入射した光のTE成分とTM成分とを
それぞれ第3および第4の光導波路に分離導波するとと
もに第2の光導波路に入射した光のTM成分とTE成分
とをそれぞれ第3および第4の光導波路に分離導波する
機能を有する導波路形偏光分離素子と、片側の光出射端
面に無反射コートを施した第1および第2の半導体レー
ザと、前記第3および第4の光導波路と第1および第2
の半導体レーザとをそれぞれ光学的に結合するレンズと
、第3および第4の光導波路と第1および第2の半導体
レーザとの間に設けた45度のファラデー回転角を有す
るファラデー回転子とを備え、上記第3および第4の光
導波路から出射した各光が上記ファラデー回転子を経由
したのちに示す偏光の方向に第1および第2の半導体レ
ーザの最大利得が得られる偏光の方向をそれぞれ一致さ
せたことを特徴とする光増幅器。
The TE component and TM component of the light incident on the first optical waveguide are separated into third and fourth optical waveguides, respectively, and the TM component and TE component of the light incident on the second optical waveguide are separated, respectively. a waveguide-type polarization splitting element having a function of separating and guiding waves into third and fourth optical waveguides; first and second semiconductor lasers each having a non-reflection coating applied to one side of the light emitting end face; and the third and fourth semiconductor lasers. the fourth optical waveguide and the first and second optical waveguides;
and a Faraday rotator having a Faraday rotation angle of 45 degrees provided between the third and fourth optical waveguides and the first and second semiconductor lasers. and the direction of polarization in which the maximum gain of the first and second semiconductor lasers is obtained is determined in the direction of polarization after each light emitted from the third and fourth optical waveguides passes through the Faraday rotator. An optical amplifier characterized by matching.
JP19601989A 1989-07-28 1989-07-28 Optical amplifier Pending JPH0359619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19601989A JPH0359619A (en) 1989-07-28 1989-07-28 Optical amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19601989A JPH0359619A (en) 1989-07-28 1989-07-28 Optical amplifier

Publications (1)

Publication Number Publication Date
JPH0359619A true JPH0359619A (en) 1991-03-14

Family

ID=16350871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19601989A Pending JPH0359619A (en) 1989-07-28 1989-07-28 Optical amplifier

Country Status (1)

Country Link
JP (1) JPH0359619A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6263202B1 (en) 1998-01-28 2001-07-17 Uniden Corporation Communication system and wireless communication terminal device used therein
US9700806B2 (en) 2005-08-22 2017-07-11 Nintendo Co., Ltd. Game operating device
US9946356B2 (en) 2004-04-30 2018-04-17 Interdigital Patent Holdings, Inc. 3D pointing devices with orientation compensation and improved usability
US10137365B2 (en) 2005-08-24 2018-11-27 Nintendo Co., Ltd. Game controller and game system
US10159897B2 (en) 2004-11-23 2018-12-25 Idhl Holdings, Inc. Semantic gaming and application transformation
US10514776B2 (en) 2004-04-30 2019-12-24 Idhl Holdings, Inc. 3D pointing devices and methods

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6263202B1 (en) 1998-01-28 2001-07-17 Uniden Corporation Communication system and wireless communication terminal device used therein
US9946356B2 (en) 2004-04-30 2018-04-17 Interdigital Patent Holdings, Inc. 3D pointing devices with orientation compensation and improved usability
US10514776B2 (en) 2004-04-30 2019-12-24 Idhl Holdings, Inc. 3D pointing devices and methods
US11157091B2 (en) 2004-04-30 2021-10-26 Idhl Holdings, Inc. 3D pointing devices and methods
US10159897B2 (en) 2004-11-23 2018-12-25 Idhl Holdings, Inc. Semantic gaming and application transformation
US11154776B2 (en) 2004-11-23 2021-10-26 Idhl Holdings, Inc. Semantic gaming and application transformation
US9700806B2 (en) 2005-08-22 2017-07-11 Nintendo Co., Ltd. Game operating device
US10155170B2 (en) 2005-08-22 2018-12-18 Nintendo Co., Ltd. Game operating device with holding portion detachably holding an electronic device
US10238978B2 (en) 2005-08-22 2019-03-26 Nintendo Co., Ltd. Game operating device
US10661183B2 (en) 2005-08-22 2020-05-26 Nintendo Co., Ltd. Game operating device
US10137365B2 (en) 2005-08-24 2018-11-27 Nintendo Co., Ltd. Game controller and game system
US11027190B2 (en) 2005-08-24 2021-06-08 Nintendo Co., Ltd. Game controller and game system

Similar Documents

Publication Publication Date Title
US6175668B1 (en) Wideband polarization splitter, combiner, isolator and controller
CA2011470C (en) Integrated optic star coupler
WO1997007425A1 (en) Polarization-independent optical isolator
JPH02216010A (en) Light interference angular velocity meter
JPH0321905A (en) Polarization coupler
JPH0359619A (en) Optical amplifier
JPH06138342A (en) Optical fiber function parts and their production
JP2000028865A (en) Semiconductor laser module
JPH01307707A (en) Optical coupling circuit
JP3004971B1 (en) Array waveguide diffraction grating and optical signal processing circuit using array waveguide diffraction grating
US6882759B1 (en) Four-port PM circulator
JP2672307B2 (en) Optical fiber connection structure for waveguide
JPH1130766A (en) Optical non-reciprocal circuit
JP2846382B2 (en) Optical isolator
JPS62247209A (en) Optical gyroscope
JPH0926516A (en) Waveguide type polarized light separating element and waveguide type isolator using the same
JPS60113214A (en) Fiber type optical switch
JP2000039528A (en) Waveguide type optical part and optical fiber current sensor using it
JPH10221014A (en) Optical wave guide path displacement sensor
JP3029255B2 (en) Optical circuit and method of controlling polarization state of optical circuit
JP2912758B2 (en) Connection structure between optical waveguide and optical fiber
JPH1123849A (en) Fiber type optical isolator and its manufacture
JPH02129609A (en) Structure for connection part of mode converting element and optical fiber
JPH0519307A (en) Optical fiber switch
JPH04140709A (en) Optical isolator