JP2672307B2 - Optical fiber connection structure for waveguide - Google Patents

Optical fiber connection structure for waveguide

Info

Publication number
JP2672307B2
JP2672307B2 JP62288459A JP28845987A JP2672307B2 JP 2672307 B2 JP2672307 B2 JP 2672307B2 JP 62288459 A JP62288459 A JP 62288459A JP 28845987 A JP28845987 A JP 28845987A JP 2672307 B2 JP2672307 B2 JP 2672307B2
Authority
JP
Japan
Prior art keywords
waveguide
optical fiber
face
tip
connection structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62288459A
Other languages
Japanese (ja)
Other versions
JPH01130110A (en
Inventor
直之 女鹿田
實 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62288459A priority Critical patent/JP2672307B2/en
Priority to CA000561753A priority patent/CA1309240C/en
Priority to US07/170,320 priority patent/US4948219A/en
Priority to DE8888302387T priority patent/DE3877597T2/en
Priority to EP88302387A priority patent/EP0283301B1/en
Publication of JPH01130110A publication Critical patent/JPH01130110A/en
Application granted granted Critical
Publication of JP2672307B2 publication Critical patent/JP2672307B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4212Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element being a coupling medium interposed therebetween, e.g. epoxy resin, refractive index matching material, index grease, matching liquid or gel
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3801Permanent connections, i.e. wherein fibres are kept aligned by mechanical means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4207Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback

Description

【発明の詳細な説明】 〔概要〕 例えばコヒーレント光通信システムや超高速光通信シ
ステム等を初めとする各種の光システムや光デバイスに
適用できる、導波路と光ファイバの接続構造に関し、 導波路の端面からの反射戻り光を簡単な構成で低減す
ることを目的とし、 導波路の端面を該導波路に対して垂直な方向よりも傾
いた角度に形成すると共に、光ファイバの先端部をテー
パ状に形成し、該光ファイバからの出射光の前記端面で
の屈折方向に合わせて前記光ファイバの光軸を前記導波
路の光軸に対し傾けた状態で、前記光ファイバの先端部
を前記導波路の端面に固定配置してなるように構成す
る。 〔産業上の利用分野〕 本発明は、例えばコヒーレント光通信システムや超音
速光通信システム等を初めとする各種の光システムや光
デバイスに適用できる、導波路と光ファイバの接続構造
に関する。 〔従来の技術〕 従来、導波路と光ファイバの接続は、第3図に示すよ
うに、導波路1に対して垂直な端面1aへ、光ファイバ2
の先端部2aを接着剤3で固定することによって行ってい
る。 〔発明が解決しようとする問題点〕 上記従来の接続構造では、例えば導波路1がTi拡散Li
NbO3導波路であり、かつ光ファイバ2が石英ファイバで
ある場合を考えると、この両者間で屈折率の差が大きい
ため、光ファイバ2のコア領域2bを伝搬されてきた光l1
が導波路1の導波領域1bに入射する際、その入射光の一
部が端面1aで反射されて光ファイバ2中へ逆戻りしてし
まう。すなち、反射戻り光l2が生じる。 具体的な光通信システムとして、例えば第4図に示す
ような、DFB型の半導体レーザ11、導波路型の光変調器
(Ti拡散LiNbO3変調器)12及び光ファイバ(石英ファイ
バ)13,14等からなるコヒーレント光通信システムや超
高速光通信システムを考えた場合、導波路型の光変調器
12と光ファイバ13との接続部で、上述したような反射戻
り光が生じ、この反射戻り光の影響でDFB型の半導体レ
ーザ11の特性が変動するという問題が起こる。そこで、
このような光通信システムでは、通常、半導体レーザ11
と光変調器12の間にアイソレータ15を挿入することによ
り、反射戻り光が半導体レーザ11に入射するのを阻止す
るようにしている。 ところが、反射戻り光が大きい場合は、アイソレータ
15として、アイソレーションの非常に大きい高性能なも
のを用いる必要が生じ、するとシステムが非常に高価な
ものになってしまう。そこで、上記反射戻り光を低減す
るために、例えば第3図における導波路1の端面1aに無
反射コーティングを施すようにしたものがあるが、これ
はコーティング時の膜厚制御が非常に難しく、しかもデ
バイスの製造工程を増やしてしまうため、デバイスの価
格が非常に高くなってしまうという問題点がある。 本発明は、上記問題点に鑑み、導波路の端面からの反
射戻り光を簡単な構成で低減することのできる、導波路
と光ファイバの接続構造を提供することを目的とする。 〔問題点を解決するための手段〕 本発明は、導波路の端面を該導波路に対して垂直な方
向よりも傾いた角度に形成すると共に、光ファイバの先
端部をテーパ状に形成し、該光ファイバからの出射光の
前記端面での屈折方向に合わせて前記光ファイバの光軸
を前記導波路の光軸に対し傾けた状態で、前記光ファイ
バの先端部を前記導波路の端面に固定配置したことを特
徴とするものである。 〔作用〕 光ファイバ中を伝搬されてきた光は、導波路の端面を
介して導波路中へ入射する。この際、端面で反射光が生
じるが、端面が上述したように傾斜していることから、
上記反射光は入射光と同一の方向へは戻らない。すなわ
ち、上記反射光が光ファイバ中を逆方向に伝搬されるこ
とがなくなり、よって反射戻り光が防止される。 また、光ファイバの先端部がテーパ状に形成されてい
るため、位置決めの際、斜めに傾いた導波路の端面と上
記光ファイバの先端部周辺とが互いにぶつかり合うよう
なことがなく、よって光の挿入損失を増大させることな
く正確に位置合わせできる。 〔実施例〕 以下、本発明の実施例について、図面を参照しながら
説明する。 第1図は、本発明の一実施例の構成図である。 本実施例では、まずTi拡散LiNbO3導波路等の導波路21
の端面21aを、導波路21の方向に対して垂直な方向より
も角度θ(例えば2゜以上)だけ傾けて形成す。それ
と共に、石英ファイバ等の光ファイバ22の先端部22aを
テーパ先球状に形成する。この形状は、エッチングを利
用すれば、簡単に得ることができる。そして更に、例え
ば導波路21の導波領域21bの屈折率n1が光ファイバ22の
コア領域22bの屈折率n2よりも大きい(例えばn1=2.2、
n2=1.45)ことに基づく、端面21aでの光の屈折を考慮
して、光ファイバ22を導波路21の端面21aの法線に対し
角度θ(<θ)だけ傾けて位置決めする。続いて、
そのままの状態で、光ファイバ22と同程度の屈折率を持
つ例えばエポキシ系の紫外線硬化接着剤等である接着剤
23を使用して、光ファイバ22の先端部22aと導波路21の
端面21aとを接着し、互いに固定する。以上のようにし
て、導波路21と光ファイバ22の接続構造が得られる。 以上のように構成された接続構造において、光ファイ
バ22のコア領域22b中を伝搬されてきた光l11は、導波路
21の端面21aに入射角θで入射し、屈折角θで屈折
して、導波領域21b中に伝搬される。光l11が端面21aに
入射した際に反射光l12が生じるが、端面21aと光(入射
光)l11との角度関係から、反射光l12は入射光l11に対
しθの2倍の角度(2θ)だけずれた方向へ反射さ
れる。すなわち、上記反射光l12は、光ファイバ22の外
へ反射されるか、あるいはコア領域22b内に反射された
としてもその入射角が2θと大きいために即座に減衰
してしまう。従って、反射光l12がコア領域22b中を逆方
向に伝搬されることがなくなり、よって端面21aからの
反射戻り光は大幅に減少される。なお、光が導波路21側
から光ファイバ22側へ伝搬される場合も、端面21aの法
線が導波領域21bに対して角度θだけ傾斜しているこ
とから、上記と同様に端面21aでの反射光を導波領域21b
中に逆戻りすることはない。 本実施例を、第4図に示したようなコヒーレント光通
信システムや超高速光通信システムに適用した場合、上
記のように反射戻り光を著しく低減できるので、アイソ
レーションのそれほど大きくない通常のアイソレータを
使用することができる。しかも本実施例では、端面21a
は斜めに形成されていればよく、従来のように膜厚制御
の困難な無反射コーティングを施す必要がないため、デ
バイス価格が高くなるという問題も生じない。 また、例えば先端部が単に劈開されただけの光ファイ
バを用いた場合、これを導波路21の傾いた端面21aに対
して位置決めする際、光ファイバの先端部周辺(クラッ
ド領域)が端面21aにぶつかってしまい、コア領域を端
面21aに近づけることができないという問題点が生じ
る。これは、光の挿入損失を増大させることになる。と
ころが、本実施例では光ファイバ22の先端部22aをテー
パ先球状としたことから、位置決めの際に端面21aにぶ
つかる部分がなく、よって上記のような問題は生じな
い。よって、光の挿入損失を増大させることなく、正確
に位置合わせできる。しかも、テーパ先球状の光ファイ
バ22を使用すると、その先端面が球面であるため、ここ
で発生する反射戻り光を抑えることもできる。 なお、導波路21の端面21aの傾斜する角度θは、非
常に小さい角度であっても反射戻り光を減少させること
ができるが、望ましくは2゜以上とすることにより、通
常の光通信システムではほとんど問題とならない程度ま
で反射戻り光を抑えることができる。また、光ファイバ
22の傾斜する角度θは、上記の角度θ及び屈折率
n1,n2に応じ、伝搬光を最も低損失に結合できるように
設定されることが望ましい。 また、光ファイバ22の先端部22aは必ずしもテーパ先
球状である必要はなく、光の挿入損失を増加させること
なく位置決めできる程度のテーパ面をもつものであれば
全く問題はない。例えば第2図に示すように、光ファイ
バ22として、単に劈開されただけの先端部22aの、端面2
1aと突き当たる部分22cだけを研磨してテーパ状とした
ものを用いてもよい。 〔発明の効果〕 以上説明したように、本発明によれば、導波路の端面
に高精度の無反射コーティングを施すといった困難な技
術を必要とすることなく、上記端面からの反射戻り光を
簡単に低減することができる。従って、本発明を光通信
システムに適用した場合は、アイソレーションの非常に
高い高性能なアイソレータを用いる必要もなく、また導
波路型デバイスが高価格になることもないので、システ
ム全体の価格を低く維持することができる。
DETAILED DESCRIPTION OF THE INVENTION [Outline] The present invention relates to a waveguide-optical fiber connection structure applicable to various optical systems and optical devices such as coherent optical communication systems and ultrahigh-speed optical communication systems. For the purpose of reducing the reflected light from the end face with a simple structure, the end face of the waveguide is formed at an angle inclined from the direction perpendicular to the waveguide, and the tip of the optical fiber is tapered. The optical fiber, the optical axis of the optical fiber is tilted with respect to the optical axis of the waveguide in accordance with the refraction direction of the light emitted from the optical fiber at the end face, and the tip of the optical fiber is guided to the optical fiber. It is configured to be fixedly arranged on the end face of the waveguide. TECHNICAL FIELD The present invention relates to a connection structure for a waveguide and an optical fiber, which can be applied to various optical systems and optical devices such as a coherent optical communication system and a supersonic optical communication system. [Prior Art] Conventionally, as shown in FIG. 3, a waveguide and an optical fiber are connected to an optical fiber 2 to an end face 1a perpendicular to the waveguide 1.
This is done by fixing the tip portion 2a of the above with an adhesive 3. [Problems to be Solved by the Invention] In the above conventional connection structure, for example, the waveguide 1 is made of Ti-diffused Li.
Considering the case where the optical fiber 2 is an NbO 3 waveguide and the optical fiber 2 is a silica fiber, the difference in the refractive index between the two is large, so that the light l 1 propagated through the core region 2b of the optical fiber 2
When is incident on the waveguide region 1b of the waveguide 1, a part of the incident light is reflected by the end face 1a and returns to the optical fiber 2. That is, reflected return light l 2 is generated. As a specific optical communication system, for example, as shown in FIG. 4, a DFB type semiconductor laser 11, a waveguide type optical modulator (Ti diffused LiNbO 3 modulator) 12 and optical fibers (quartz fiber) 13, 14 are shown. Considering a coherent optical communication system and an ultra high-speed optical communication system including
The reflected return light described above is generated at the connection between the optical fiber 13 and the optical fiber 13, and there is a problem in that the characteristics of the DFB semiconductor laser 11 change due to the influence of the reflected return light. Therefore,
In such an optical communication system, the semiconductor laser 11 is usually used.
By inserting the isolator 15 between the optical modulator 12 and the optical modulator 12, the reflected return light is prevented from entering the semiconductor laser 11. However, when the reflected return light is large, the isolator
As 15, it becomes necessary to use a high-performance one with extremely large isolation, which makes the system very expensive. Therefore, in order to reduce the reflected return light, there is, for example, one in which the end face 1a of the waveguide 1 in FIG. 3 is provided with a non-reflective coating, but this is very difficult to control the film thickness during coating. Moreover, since the number of manufacturing steps of the device is increased, there is a problem that the price of the device becomes very high. In view of the above problems, it is an object of the present invention to provide a waveguide-optical fiber connection structure capable of reducing the reflected return light from the end face of the waveguide with a simple configuration. [Means for Solving the Problems] The present invention forms the end face of the waveguide at an angle inclined with respect to the direction perpendicular to the waveguide, and forms the tip of the optical fiber in a tapered shape, In a state where the optical axis of the optical fiber is tilted with respect to the optical axis of the waveguide in accordance with the refraction direction of the light emitted from the optical fiber at the end surface, the tip of the optical fiber is set to the end surface of the waveguide. It is characterized by being fixedly arranged. [Operation] The light propagated in the optical fiber enters the waveguide through the end face of the waveguide. At this time, reflected light is generated at the end face, but since the end face is inclined as described above,
The reflected light does not return in the same direction as the incident light. That is, the reflected light is not propagated in the optical fiber in the reverse direction, and thus reflected return light is prevented. Further, since the tip of the optical fiber is formed in a tapered shape, at the time of positioning, the end surface of the waveguide that is obliquely inclined and the periphery of the tip of the optical fiber do not collide with each other. The position can be accurately adjusted without increasing the insertion loss. Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of one embodiment of the present invention. In this embodiment, first, a waveguide 21 such as a Ti-diffused LiNbO 3 waveguide is used.
The end face 21a of the above is inclined by an angle θ 1 (for example, 2 ° or more) with respect to the direction perpendicular to the direction of the waveguide 21. At the same time, the tip 22a of the optical fiber 22 such as a quartz fiber is formed into a tapered spherical tip. This shape can be easily obtained by using etching. Further, for example, the refractive index n 1 of the waveguide region 21b of the waveguide 21 is larger than the refractive index n 2 of the core region 22b of the optical fiber 22 (for example, n 1 = 2.2,
Considering the refraction of light at the end face 21a based on (n 2 = 1.45), the optical fiber 22 is positioned at an angle θ 2 (<θ 1 ) with respect to the normal line of the end face 21a of the waveguide 21. continue,
An adhesive that has a refractive index similar to that of the optical fiber 22 as it is, for example, an epoxy-based ultraviolet curing adhesive or the like.
Using 23, the tip 22a of the optical fiber 22 and the end face 21a of the waveguide 21 are bonded and fixed to each other. As described above, the connection structure of the waveguide 21 and the optical fiber 22 is obtained. In the connection structure configured as described above, the light l 11 propagated in the core region 22b of the optical fiber 22 is guided by the waveguide.
The light enters the end face 21a of 21 at an incident angle θ 2 , is refracted at a refraction angle θ 1 , and is propagated into the waveguide region 21b. When the light l 11 is incident on the end face 21a, reflected light l 12 is generated. However, due to the angular relationship between the end face 21a and the light (incident light) l 11 , the reflected light l 12 has a θ 2 of 2 with respect to the incident light l 11. It is reflected in a direction shifted by a double angle (2θ 2 ). That is, even if the reflected light l 12 is reflected to the outside of the optical fiber 22 or is reflected to the inside of the core region 22b, it is immediately attenuated because the incident angle thereof is as large as 2θ 2 . Therefore, the reflected light l 12 does not propagate in the core region 22b in the opposite direction, and the reflected return light from the end face 21a is greatly reduced. Even when light is propagated from the waveguide 21 side to the optical fiber 22 side, since the normal line of the end face 21a is inclined by the angle θ 1 with respect to the waveguide region 21b, the end face 21a is the same as above. The reflected light at the waveguide region 21b
There is no turning back. When the present embodiment is applied to the coherent optical communication system and the ultrahigh-speed optical communication system as shown in FIG. 4, the reflected return light can be remarkably reduced as described above, and therefore, a normal isolator having not so large isolation is used. Can be used. Moreover, in this embodiment, the end face 21a
Need only be formed diagonally, and there is no need to apply a non-reflective coating whose film thickness is difficult to control as in the prior art, so there is no problem of increased device cost. Further, for example, when an optical fiber whose tip is simply cleaved is used, when positioning this with respect to the inclined end face 21a of the waveguide 21, the periphery (clad region) of the end of the optical fiber becomes the end face 21a. This causes a problem that the core region cannot be brought close to the end face 21a. This will increase the optical insertion loss. However, in this embodiment, since the tip end portion 22a of the optical fiber 22 has a tapered spherical tip, there is no portion that hits the end surface 21a during positioning, and therefore the above problem does not occur. Therefore, it is possible to perform accurate alignment without increasing the insertion loss of light. In addition, when the tapered optical fiber 22 having a spherical tip is used, since the tip end surface thereof is a spherical surface, the reflected return light generated here can be suppressed. It should be noted that the angle θ 1 of inclination of the end face 21a of the waveguide 21 can reduce the reflected return light even if the angle θ 1 is very small, but it is preferably 2 ° or more to allow normal optical communication systems. Then, the reflected return light can be suppressed to such an extent that it causes almost no problem. Optical fiber
The inclination angle θ 2 of 22 is equal to the above-mentioned angle θ 1 and the refractive index.
It is desirable to set the propagation light according to n 1 and n 2 so that the propagation light can be coupled with the lowest loss. Further, the tip end portion 22a of the optical fiber 22 does not necessarily have to be a tapered spherical tip, and there is no problem as long as it has a tapered surface that can be positioned without increasing the insertion loss of light. For example, as shown in FIG. 2, as the optical fiber 22, the end face 2 of the tip portion 22a that is simply cleaved is used.
It is also possible to use a taper that is formed by polishing only the portion 22c that abuts 1a. [Effects of the Invention] As described above, according to the present invention, the reflected return light from the end face can be easily converted without the need for a difficult technique such as applying a highly precise antireflection coating to the end face of the waveguide. Can be reduced to Therefore, when the present invention is applied to an optical communication system, it is not necessary to use a high-performance isolator having extremely high isolation, and the waveguide type device is not expensive, so that the price of the entire system is reduced. Can be kept low.

【図面の簡単な説明】 第1図は本発明の一実施例の構成図、 第2図は本発明の他の実施例の構成図、 第3図は従来における導波路と光ファイバの接続構造を
示す構成図、 第4図は光通信システムの一例を示す概略構成図であ
る。 21……導波路、 21a……端面、 21b……導波領域、 22……光ファイバ、 22a……先端部、 22b……コア領域、 23……接着剤.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration diagram of an embodiment of the present invention, FIG. 2 is a configuration diagram of another embodiment of the present invention, and FIG. 3 is a conventional connection structure of a waveguide and an optical fiber. FIG. 4 is a schematic configuration diagram showing an example of an optical communication system. 21 ... Waveguide, 21a ... End face, 21b ... Waveguide region, 22 ... Optical fiber, 22a ... Tip, 22b ... Core region, 23 ... Adhesive.

Claims (1)

(57)【特許請求の範囲】 1.導波路(21)の端面(21a)を該導波路(21)に対
して垂直な方向よりも傾いた角度に形成すると共に、光
ファイバ(22)の先端部(22a)をテーパ状に形成し、
該光ファイバからの出射光の前記端面(21a)での屈折
方向に合わせて前記光ファイバの光軸を前記導波路の光
軸に対し傾けた状態で前記光ファイバの先端部(22a)
を前記導波路の端面(21a)に固定配置してなることを
特徴とする導波路と光ファイバの接続構造。 2.前記光ファイバの先端部(22a)は、前記導波路の
端面(21a)に突き当たらない程度に傾いたテーパ面を
持つように形成されていることを特徴とする特許請求の
範囲第1項記載の導波路と光ファイバの接続構造。 3.前記光ファイバの先端部(22a)はテーパ先球状に
形成されていることを特徴とする特許請求の範囲第2項
記載の導波路と光ファイバの接続構造。 4.前記導波路の端面(21a)の前記角度は2゜以上で
あることを特徴とする特許請求の範囲第1項乃至第3項
のいずれか1つに記載の導波路と光ファイバの接続構
造。 5.前記光ファイバの先端部(22a)と前記導波路の端
面(21a)とは互いに接着剤(23)で固定されているこ
とを特徴とする特許請求の範囲第1項乃至第4項のいず
れか1つに記載の導波路と光ファイバの接続構造。 6.前記接着剤(23)は前記光ファイバ(22)とほぼ等
しい屈折率を持つことを特徴とする特許請求の範囲第5
項記載の導波路と光ファイバの接続構造。
(57) [Claims] The end face (21a) of the waveguide (21) is formed at an angle inclined with respect to the direction perpendicular to the waveguide (21), and the tip end (22a) of the optical fiber (22) is formed in a tapered shape. ,
A tip portion (22a) of the optical fiber in a state where the optical axis of the optical fiber is tilted with respect to the optical axis of the waveguide in accordance with the refraction direction of the emitted light from the optical fiber at the end surface (21a).
A waveguide-optical fiber connection structure, characterized in that the waveguide is fixedly arranged on the end face (21a) of the waveguide. 2. The tip end (22a) of the optical fiber is formed so as to have a taper surface that is inclined to the extent that it does not abut the end surface (21a) of the waveguide. Connection structure of the waveguide and optical fiber. 3. 3. The connection structure between a waveguide and an optical fiber according to claim 2, wherein the tip end portion (22a) of the optical fiber is formed in a tapered spherical tip shape. 4. The waveguide and optical fiber connection structure according to any one of claims 1 to 3, wherein the angle of the end face (21a) of the waveguide is 2 ° or more. 5. The tip portion (22a) of the optical fiber and the end surface (21a) of the waveguide are fixed to each other with an adhesive (23), according to any one of claims 1 to 4. One of the waveguide and optical fiber connection structures. 6. The adhesive (23) has a refractive index substantially equal to that of the optical fiber (22).
A structure for connecting a waveguide and an optical fiber according to the item.
JP62288459A 1987-03-20 1987-11-17 Optical fiber connection structure for waveguide Expired - Lifetime JP2672307B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62288459A JP2672307B2 (en) 1987-11-17 1987-11-17 Optical fiber connection structure for waveguide
CA000561753A CA1309240C (en) 1987-03-20 1988-03-17 Method of connecting optical fibers
US07/170,320 US4948219A (en) 1987-03-20 1988-03-18 Method of connecting optical fibers and connection aids and fiber holders employed therewith, and optical waveguide modules employing same
DE8888302387T DE3877597T2 (en) 1987-03-20 1988-03-18 CONNECTION OF OPTICAL FIBERS.
EP88302387A EP0283301B1 (en) 1987-03-20 1988-03-18 Connecting optical fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62288459A JP2672307B2 (en) 1987-11-17 1987-11-17 Optical fiber connection structure for waveguide

Publications (2)

Publication Number Publication Date
JPH01130110A JPH01130110A (en) 1989-05-23
JP2672307B2 true JP2672307B2 (en) 1997-11-05

Family

ID=17730484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62288459A Expired - Lifetime JP2672307B2 (en) 1987-03-20 1987-11-17 Optical fiber connection structure for waveguide

Country Status (1)

Country Link
JP (1) JP2672307B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69330563T2 (en) * 1993-11-08 2002-06-27 Corning Inc Coupling of planar optical waveguides and optical fibers with low back reflection
WO2005050271A1 (en) * 2003-11-21 2005-06-02 Namiki Seimitsu Houseki Kabushiki Kaisha Optical fiber with lens
WO2016132504A1 (en) * 2015-02-19 2016-08-25 日立化成株式会社 Connector-attached optical cable, method for manufacturing same, and optical module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100409A (en) * 1980-12-15 1982-06-22 Toshiba Corp Optical coupler
JPS60198791A (en) * 1984-03-23 1985-10-08 Hitachi Ltd Photocoupling system
JP2564836B2 (en) * 1987-07-24 1996-12-18 ブラザー工業株式会社 Method of coupling substrate of optical integrated circuit and optical fiber
JPS6457213A (en) * 1987-08-28 1989-03-03 Nippon Telegraph & Telephone Optical coupling method

Also Published As

Publication number Publication date
JPH01130110A (en) 1989-05-23

Similar Documents

Publication Publication Date Title
US4807954A (en) Optical coupling device
US5546488A (en) Waveguide-type optical path converter for converting a propagation direction of a light
JPH06138342A (en) Optical fiber function parts and their production
JP2672307B2 (en) Optical fiber connection structure for waveguide
JP3116979B2 (en) Optical coupling structure between optical waveguides
US20030174922A1 (en) Polarizer-equipped optical fiber ferrule, connector and connector adaptor
JP3229142B2 (en) Optical device
JPH05281443A (en) Optical coupling method
JPH09159865A (en) Connection structure of optical waveguide
JPS597312A (en) Optical isolator
JPH0359619A (en) Optical amplifier
JPH03269505A (en) Optical fiber connector
JPS58196521A (en) Optical coupling circuit
JPS6051088B2 (en) optical distribution circuit
JPH06273698A (en) Multicore optical isolator
JP4915583B2 (en) Faraday rotating mirror
JPS61144607A (en) Mechanism for preventing reflected return light
JP3132855B2 (en) Optical coupler and coupling method thereof
JPH0593824A (en) Optical connector and its manufacture
JP3061134B1 (en) Light switch
JPH05113517A (en) Structure for connecting optical waveguide and optical fiber
JP2003207664A (en) Optical circuit
JPS60138502A (en) Plug and jack type fixed optical attenuator
JP2001042263A (en) Faraday rotation mirror
JPH02240607A (en) Light incident/exit structure of light guide

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 11