JPH0358522B2 - - Google Patents

Info

Publication number
JPH0358522B2
JPH0358522B2 JP2775784A JP2775784A JPH0358522B2 JP H0358522 B2 JPH0358522 B2 JP H0358522B2 JP 2775784 A JP2775784 A JP 2775784A JP 2775784 A JP2775784 A JP 2775784A JP H0358522 B2 JPH0358522 B2 JP H0358522B2
Authority
JP
Japan
Prior art keywords
film
magnetic
magnetization
magnetic field
magnetized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2775784A
Other languages
Japanese (ja)
Other versions
JPS60170910A (en
Inventor
Mitsuaki Ikeda
Kenji Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP2775784A priority Critical patent/JPS60170910A/en
Publication of JPS60170910A publication Critical patent/JPS60170910A/en
Publication of JPH0358522B2 publication Critical patent/JPH0358522B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/003Methods and devices for magnetising permanent magnets

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁性膜の多極着磁方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a multipolar magnetization method for a magnetic film.

〔従来技術とその問題点〕[Prior art and its problems]

近年、半硬質又は硬質磁性膜は記録材料として
オーデイオなどのデイスクに使用されており、さ
らにはエネルギー積を利用した小形パルスモータ
やエンコーダなどのOA機器への用途も急速に広
まつている。このような用途においては、記録密
度を上げたり、検出精度を上げるために分割磁極
数は増える一方で、磁極方向も、膜の面内方向か
ら垂直方向に変わつてきた。
In recent years, semi-hard or hard magnetic films have been used as recording materials in audio disks, and their use in OA equipment such as small pulse motors and encoders that utilize energy products is also rapidly expanding. In such applications, the number of divided magnetic poles has increased in order to increase recording density and detection accuracy, and the magnetic pole direction has also changed from in-plane direction to perpendicular direction of the film.

膜面に対し、垂直方向の多極着磁方法として
は、磁極の幅に相当する磁界を、向きを交互に変
えながら与えていく方法が採られている。この方
法では、磁極の幅に合わせた治具を製品ごとに変
える必要があり、また磁極数が増えると一つの磁
極幅が小さくなり、精度よく製作できないという
欠点があつた。
As a multi-pole magnetization method perpendicular to the film surface, a method is adopted in which a magnetic field corresponding to the width of the magnetic poles is applied while alternating the direction. This method had the disadvantage that it was necessary to use a different jig to match the width of the magnetic poles for each product, and that as the number of magnetic poles increased, the width of each magnetic pole became smaller, making it impossible to manufacture them with high precision.

〔発明の目的〕[Purpose of the invention]

本発明は、このような欠点を解消するためにな
されたものであり、治具を変える必要がなく、容
易にしかも精度よく多極着磁を行なう方法を提供
することを目的とするものである。
The present invention has been made to eliminate these drawbacks, and aims to provide a method for easily and accurately performing multi-pole magnetization without changing the jig. .

〔発明の構成〕[Structure of the invention]

本発明の多極着磁方法は、基板上に形成した半
硬質又は硬質Sm−Co、フエライト等の磁性膜を
キユーリ点Tc(℃)の0.1〜0.95Tcの温度に予熱
したあと、その膜の厚さ方向に着磁し、その後着
磁した部分の一部又は複数部をレーザー又は電子
ビームで加熱消磁し、この部分を加熱消磁してい
ない部分の磁界を利用して着磁することを特徴と
したものである。
The multipolar magnetization method of the present invention involves preheating a semi-hard or hard magnetic film of Sm-Co, ferrite, etc. formed on a substrate to a temperature of 0.1 to 0.95 Tc of the Kyuri point Tc (°C), and then It is characterized by being magnetized in the thickness direction, then heating and demagnetizing part or more of the magnetized part with a laser or electron beam, and magnetizing this part using the magnetic field of the part that has not been heated and demagnetized. That is.

〔実施例〕 以下、本発明を実施例に基づいて具体的に説明
する。
[Examples] Hereinafter, the present invention will be specifically described based on Examples.

まず、スパツタ法により、Cu基板上に1μm厚
さのSmCo5膜を形成した。この膜の厚さ方向に
25KOeの外部磁界をかけて一方向に着磁したの
ち、真空槽に入れた。この装置を第1図に示す。
図示のように、膜加熱装置1、試料の磁性膜2、
レーザビーム導入窓3が真空槽4内に配置されて
おり、真空槽4外にはYAGレーザ発振装置5を
配置している。このレーザ発振装置5はビーム径
調整装置やビーム方向を変える装置を内臓してい
る。まず、真空槽4内を5×10-6Torr以下に排
気し、膜の温度を200℃に保持した。この状態で
104W/cm2のビームエネルギーを第2図の(a)部に
照射し、800℃まで加熱後、冷却した。すると加
熱部は加熱されていない部分の磁界の影響を受け
て、着磁方向が反転し、第3図のようになつた。
このような操作を膜の他の部分についても行な
い、最終的に多極着磁を行なつた。一つの磁極幅
を測定したところ、15μm±10%以内と、精度よ
く作製できていた。
First, a 1 μm thick SmCo 5 film was formed on a Cu substrate by sputtering. in the thickness direction of this film
After applying an external magnetic field of 25 KOe to magnetize it in one direction, it was placed in a vacuum chamber. This apparatus is shown in FIG.
As shown in the figure, a film heating device 1, a sample magnetic film 2,
A laser beam introduction window 3 is placed inside a vacuum chamber 4, and a YAG laser oscillation device 5 is placed outside the vacuum chamber 4. This laser oscillation device 5 incorporates a beam diameter adjusting device and a beam direction changing device. First, the inside of the vacuum chamber 4 was evacuated to 5×10 -6 Torr or less, and the temperature of the membrane was maintained at 200°C. in this state
A beam energy of 10 4 W/cm 2 was applied to the part (a) in Figure 2, heated to 800°C, and then cooled. Then, the heating part was influenced by the magnetic field of the unheated part, and the magnetization direction was reversed, as shown in Figure 3.
Similar operations were performed on other parts of the film to finally achieve multipolar magnetization. When the width of one magnetic pole was measured, it was found to be within 15 μm ± 10%, which was achieved with high precision.

次に予備加熱温度を変えて、SmCo5
Sm2Co17、Sm2(Cu、FeCo)12、CeCo5、Gd−Co
などの希土類元素と鉄族元素を主成分とした材料
及びフエライトの膜について同様の試験を行なつ
たところ、各磁性膜のキユーリ点(℃)の0.1か
ら0.95倍の温度範囲で多極着磁が精度よくできる
ことがわかつた。0.1倍未満では急速加熱の影響
を受けて磁性膜が割れるし、0.95倍以上では消磁
部がビームを当てている部分より広がるので、磁
極幅の精度が急速に悪くなることがわかつた。
Next, by changing the preheating temperature, SmCo 5 ,
Sm 2 Co 17 , Sm 2 (Cu, FeCo) 12 , CeCo 5 , Gd−Co
Similar tests were conducted on materials mainly composed of rare earth elements and iron group elements such as It was found that this can be done with high accuracy. If it is less than 0.1 times, the magnetic film will crack due to the effects of rapid heating, and if it is more than 0.95 times, the demagnetized area will be wider than the area where the beam is irradiated, so it was found that the accuracy of the magnetic pole width deteriorates rapidly.

以上の実施例でわかるように、膜厚方向に着磁
後、予備加熱した膜の一部をレーザを使い、加熱
することをより消磁し、冷却後他の部分の磁界を
利用してこの消磁部を着磁する方法で多極着磁を
行なえば、任意の磁極幅で精度よく着磁を行なう
ことができることは明らかである。
As can be seen from the above examples, after magnetization in the film thickness direction, a laser is used to heat a part of the preheated film to further demagnetize it, and after cooling, the magnetic field of other parts is used to further demagnetize the film. It is clear that if multi-pole magnetization is performed using a method of magnetizing parts, accurate magnetization can be performed with any magnetic pole width.

なお、実施例では最初の着磁を膜全体について
行なつたが、一部について行なつても同様の多極
着磁を行なえること、また消磁方法としてレーザ
を使つたが、電子ビームでもよい。さらに、消磁
部の着磁方向と同じ方向に外部磁界を印加して一
つの磁極の境界をより明確にしてもよい。
In the example, the initial magnetization was performed on the entire film, but similar multi-pole magnetization can be performed even if it is performed on a part of the film. Also, although a laser was used as the demagnetization method, an electron beam may also be used. . Furthermore, the boundary of one magnetic pole may be made clearer by applying an external magnetic field in the same direction as the magnetization direction of the demagnetizing section.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明によれば、従来のように
磁極の幅ごとに治具を変える必要がなく、容易に
しかも精度良く多極着磁ができるという効果を奏
するものである。
As described above, according to the present invention, there is no need to change the jig for each magnetic pole width as in the conventional case, and it is possible to easily and accurately perform multi-pole magnetization.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に使用したレーザー発
振器と真空槽の構成を示す概略図、第2図は磁性
膜の消磁部を示す説明図、第3図は消磁後の着磁
方向を示す説明図である。 1:膜加熱装置、2:磁性膜、3:レーザビー
ム導入窓、4:真空槽、5:レーザ発振器。
Fig. 1 is a schematic diagram showing the configuration of the laser oscillator and vacuum chamber used in the embodiment of the present invention, Fig. 2 is an explanatory diagram showing the demagnetizing part of the magnetic film, and Fig. 3 shows the direction of magnetization after demagnetization. It is an explanatory diagram. 1: Film heating device, 2: Magnetic film, 3: Laser beam introduction window, 4: Vacuum chamber, 5: Laser oscillator.

Claims (1)

【特許請求の範囲】 1 基板上に形成した半硬質又は硬質Sm−Co、
フエライト等の磁性膜をキユーリ点Tc(℃)の
0.1〜0.95Tcの温度に予熱したあと、その膜の厚
さ方向に着磁し、その後着磁した部分の一部又は
複数部をレーザ又は電子ビームで加熱消磁し、こ
の部分を加熱消磁していない部分の磁界を利用し
て着磁することを特徴とした多極着磁方法。 2 加熱消磁部に最初に着磁した方向と反対方向
の磁界を印加することを特徴とする特許請求の範
囲第1項記載の多極着磁方法。
[Claims] 1. Semi-rigid or rigid Sm-Co formed on a substrate,
Magnetic film such as ferrite is heated to the Kyuri point Tc (℃)
After preheating to a temperature of 0.1 to 0.95Tc, the film is magnetized in the thickness direction, and then part or more of the magnetized part is heated and demagnetized with a laser or electron beam. A multi-pole magnetization method characterized by magnetizing using the magnetic field in areas where there is no magnetic field. 2. The multi-pole magnetization method according to claim 1, characterized in that a magnetic field is applied to the heating demagnetization section in a direction opposite to the direction in which it was initially magnetized.
JP2775784A 1984-02-15 1984-02-15 Multipole magnetization Granted JPS60170910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2775784A JPS60170910A (en) 1984-02-15 1984-02-15 Multipole magnetization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2775784A JPS60170910A (en) 1984-02-15 1984-02-15 Multipole magnetization

Publications (2)

Publication Number Publication Date
JPS60170910A JPS60170910A (en) 1985-09-04
JPH0358522B2 true JPH0358522B2 (en) 1991-09-05

Family

ID=12229883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2775784A Granted JPS60170910A (en) 1984-02-15 1984-02-15 Multipole magnetization

Country Status (1)

Country Link
JP (1) JPS60170910A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6399509A (en) * 1986-10-15 1988-04-30 Yaskawa Electric Mfg Co Ltd Multipole magnetizing method
JPS6399510A (en) * 1986-10-15 1988-04-30 Yaskawa Electric Mfg Co Ltd Multipole magnetizing method
CN110473692B (en) * 2019-08-28 2021-06-08 惠州市国宏科技有限公司 Automatic magnetizing equipment for loudspeaker production

Also Published As

Publication number Publication date
JPS60170910A (en) 1985-09-04

Similar Documents

Publication Publication Date Title
US5091021A (en) Magnetically coded device and method of manufacture
US5283130A (en) Thermomagnetically patterned magnets and method of making same
US5492572A (en) Method for thermomagnetic encoding of permanent magnet materials
JPH0358522B2 (en)
US5492571A (en) Thermomagnetic encoding method and articles
JPS61121405A (en) Magnetizing method of permanent magnet
CN113093072A (en) Device and method for measuring magnetism of permanent magnet material at high temperature
JPH0363801B2 (en)
JPS6399509A (en) Multipole magnetizing method
JPS6399510A (en) Multipole magnetizing method
JPH09131025A (en) Method of magnetizing permanent magnet
JPS61127103A (en) Manufacture of magnetic head
JPS60218815A (en) Manufacture of hard magnetic film
Ciureanu et al. Yoke length optimization of a three-region thin film recording head
JPS58179921A (en) Magnetic head
JP2853204B2 (en) Method of manufacturing magnetoresistive element
JPH047572B2 (en)
JPH05299247A (en) Method of thermomagnetically coding permanent magnet material
SU444381A1 (en) The method of performing the magnetic structure on thin films
JPS60125933A (en) Production of magnetic medium
JPS62252111A (en) Multipolarly magnetizing method for rare earth magnet
JPS62188775A (en) Opposed target type sputtering device
JPS63268112A (en) Magnetic head
JPS63121660A (en) Magnetron sputtering device
JP2004005829A (en) Orientated magnetic field generating device