JPH0358415A - Reactive ion etching device - Google Patents
Reactive ion etching deviceInfo
- Publication number
- JPH0358415A JPH0358415A JP19374989A JP19374989A JPH0358415A JP H0358415 A JPH0358415 A JP H0358415A JP 19374989 A JP19374989 A JP 19374989A JP 19374989 A JP19374989 A JP 19374989A JP H0358415 A JPH0358415 A JP H0358415A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- electrode
- etching
- reactive ion
- semiconductor substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001020 plasma etching Methods 0.000 title claims abstract description 13
- 238000005530 etching Methods 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 14
- 239000004065 semiconductor Substances 0.000 claims abstract description 9
- 238000009434 installation Methods 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims abstract 2
- 239000002245 particle Substances 0.000 abstract description 7
- 230000015556 catabolic process Effects 0.000 abstract description 4
- 239000003990 capacitor Substances 0.000 abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 4
- 229910052681 coesite Inorganic materials 0.000 abstract 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract 2
- 239000000377 silicon dioxide Substances 0.000 abstract 2
- 235000012239 silicon dioxide Nutrition 0.000 abstract 2
- 229910052682 stishovite Inorganic materials 0.000 abstract 2
- 229910052905 tridymite Inorganic materials 0.000 abstract 2
- 230000000694 effects Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 2
- 240000001606 Adenanthera pavonina Species 0.000 description 1
- 235000011470 Adenanthera pavonina Nutrition 0.000 description 1
Landscapes
- Drying Of Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】
【産業上の利用分野】
本発明は反応性イオンエッチング装置に関する。
〔従来の技術}
従来、この種のマグネトロン放電を利用した反応性イオ
ンエッチング装置はすでに開発されているが、セルフバ
イアス電圧の低下、あるいはエツチング速度の増加のた
めに、エッチング基板直上での磁場強度が200Gau
ss以上になっている。また、エッチング中の圧力は数
pa〜数十paと広い範囲で使用されている.
〔発明が解決しようとする課題〕
上述した従来の装置ではエッチング速度の上昇と、イオ
ンエネルギーの低下だけを考えて設定されており、荷電
粒子のチャージアップによるデバイスへの影響を考慮し
ていないという欠点がある。
本発明の目的は前記課題を解決した反応性イオンエッチ
ング装置を提供することにある。
【発明の従来技術に対する相違点〕
上述した従来の磁場を印加した反応性イオンエッチング
装置に対して、本発明はエッチングされる基板直上での
磁場強度を160Gaussとし、さらにエッチング中
の圧力を10pa以下にするという相違点を有する。
〔課題を解決するための手段〕
前記目的を達成するため、本発明に係る反応性イオンエ
ッチング装置は、半導体基板を設置する設置用電極と、
該設置用電極に対向し設けられた対向電極とを有する反
応性イオンエッチング装置において、反応室の内部ある
いは外部に磁場を印加してマグネトロン放電を用いたエ
ッチングを行う際に、前記設置用電極に設置された半導
体基板の直上における磁場強度を160Gauss以下
とし、かつエッチング中の圧力をlopa以下に設定す
るものである。
〔実施例]
次に、本発明について図面を参照して説明する。
第1図は本発明の一実施例を示す縦断面図である。
図において、lは対向電極、2は半導体基板3を設置す
る基板設置電極であり、電極1,2は上下に対向して設
けられている。4は高周波電源である。5は磁場コイル
であり、磁場コイル5により印加する磁場はエッチング
チャンバ−6の外側に形成される。この磁場はチャンバ
ー6内の設置電極2の周辺に印加されても効果は同じで
ある。
本発明の磁場を印加した反応性イオンエッチング装置は
、デバイスに対する荷電粒子のチャージアップによる影
響を抑えるために、磁場強度をl60Gauss以下、
エッチング圧力を10pa以下にするものである。
磁場強度を大きくしたり、圧力を上げることは、プラズ
マの密度を高めることになり、エッチング速度は速くな
るが、それと同時にデバイス上への荷電粒子のチャージ
アップも増加する。そこで、本発明は磁場を印加した反
応性イオンエッチング装置において、荷電粒子のチャー
ジアップの影響が発生しない磁場強度,エッチング圧力
の範囲を示している。
第2図,第3図は上記エッチング装置を用いて、CMO
Sインバーター回路にO, (27sec+a) 十S
F, (3secm)プラズマを照射した後のリーク電
流の増加を示す。
第2図は印加する磁場強度依存性を示している。
圧力を10paに固定し、パワーを150wに固定して
ある。この図に示すように、磁場強度を大きくするにつ
れて、デバイス内のリーク電流が増えることがわかる。
さらに第4図に示すように、MOSキャパシタのゲート
Sin,耐圧が160Gauss以上になると、大きく
劣化することがわかる。このことがら、印加する磁場強
度としては、160Gauss以下でなければならない
。
第3図は印加磁場を160Gaussに固定したときの
エッチング圧力依存性を示している。パワーは15OW
である。この図に示すように圧力を大きくしていくと、
リーク電流が大きくなり、さらに第5図に示すようにl
Opa以上になると、MOSキャパシタのゲートSi
n,耐圧が劣化することがわかる。このことから、エッ
チング圧力は10pa以下でなければならないと言える
。
〔発明の効果J
以上説明したように本発明は磁場を印加する反応性イオ
ンエッチング装置において、エッチング基板直上での磁
場強度を160Gauss以下、圧力は10pa以下に
することにより、荷電粒子のチャージアップによるMO
SデバイスのゲートS i O,静電破壊を防止できる
効果がある。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a reactive ion etching apparatus. [Prior art] Reactive ion etching equipment using this type of magnetron discharge has already been developed, but in order to reduce the self-bias voltage or increase the etching rate, the strength of the magnetic field directly above the etching substrate has been reduced. is 200 Gau
It has become more than ss. Furthermore, the pressure used during etching varies widely from several pa to several tens of pa. [Problems to be Solved by the Invention] The conventional equipment described above is designed with only an increase in etching rate and a decrease in ion energy in mind, and does not take into account the effect on devices due to the charge-up of charged particles. There are drawbacks. An object of the present invention is to provide a reactive ion etching apparatus that solves the above problems. Differences between the invention and the prior art] In contrast to the above-described conventional reactive ion etching apparatus that applies a magnetic field, the present invention uses a magnetic field strength of 160 Gauss directly above the substrate to be etched, and a pressure of 10 pa or less during etching. The difference is that it is [Means for Solving the Problems] In order to achieve the above object, a reactive ion etching apparatus according to the present invention includes an installation electrode for installing a semiconductor substrate;
In a reactive ion etching apparatus having a counter electrode provided opposite to the installation electrode, when performing etching using magnetron discharge by applying a magnetic field inside or outside the reaction chamber, the installation electrode is The magnetic field strength directly above the installed semiconductor substrate is set to 160 Gauss or less, and the pressure during etching is set to lopa or less. [Example] Next, the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view showing one embodiment of the present invention. In the figure, 1 is a counter electrode, 2 is a substrate installation electrode on which a semiconductor substrate 3 is placed, and the electrodes 1 and 2 are provided vertically to face each other. 4 is a high frequency power source. 5 is a magnetic field coil, and the magnetic field applied by the magnetic field coil 5 is formed outside the etching chamber 6. Even if this magnetic field is applied around the installed electrode 2 in the chamber 6, the effect is the same. In the reactive ion etching apparatus according to the present invention, the magnetic field strength is set to 160 Gauss or less in order to suppress the influence of charged particle charge-up on the device.
The etching pressure is set to 10 pa or less. Increasing the magnetic field strength or increasing the pressure increases the density of the plasma, increasing the etching rate, but at the same time increases the charge-up of charged particles on the device. Therefore, the present invention indicates a range of magnetic field strength and etching pressure in which the influence of charge-up of charged particles does not occur in a reactive ion etching apparatus that applies a magnetic field. Figures 2 and 3 show CMO using the above etching apparatus.
O to S inverter circuit, (27sec+a) 10S
F, (3 sec) shows the increase in leakage current after plasma irradiation. FIG. 2 shows the dependence on the applied magnetic field strength. The pressure is fixed at 10pa and the power is fixed at 150w. As shown in this figure, it can be seen that as the magnetic field strength increases, the leakage current within the device increases. Furthermore, as shown in FIG. 4, it can be seen that when the gate Sin and breakdown voltage of the MOS capacitor exceeds 160 Gauss, it deteriorates significantly. For this reason, the applied magnetic field strength must be 160 Gauss or less. FIG. 3 shows the etching pressure dependence when the applied magnetic field was fixed at 160 Gauss. Power is 15OW
It is. As the pressure is increased as shown in this figure,
The leakage current increases, and as shown in Figure 5,
When it becomes more than Opa, the gate Si of the MOS capacitor
n, it can be seen that the withstand voltage deteriorates. From this, it can be said that the etching pressure must be 10 pa or less. [Effect of the Invention J As explained above, the present invention provides a reactive ion etching apparatus that applies a magnetic field, by setting the magnetic field strength directly above the etching substrate to 160 Gauss or less and the pressure to 10 pa or less, thereby reducing the charge-up of charged particles. M.O.
This has the effect of preventing electrostatic damage to the gate S i O of the S device.
第1図は本発明の一実施例を示す縦断面図、第2図はデ
バイスに対する荷電粒子のチャージアップの影響の磁場
強度依存性を示す図、第3図は圧力依存性を示す図、第
4図はMOSキャパシタにおけるゲートSiO.の耐圧
劣化の磁場強度依存性を示す図、第5図はゲートSin
,の耐圧劣化の圧力依存性を示す図である。
l・・・対向電極 2・・・基板設置電極3・
・・半導体基板 4・・・高周波電源5・・・磁
場コイルFIG. 1 is a longitudinal cross-sectional view showing an embodiment of the present invention, FIG. 2 is a diagram showing the magnetic field strength dependence of the charge-up effect of charged particles on the device, FIG. 3 is a diagram showing the pressure dependence, and FIG. Figure 4 shows the gate SiO. Figure 5 shows the dependence of the breakdown voltage deterioration on the magnetic field strength.
, is a diagram showing the pressure dependence of pressure deterioration of . l...Counter electrode 2...Substrate installed electrode 3.
...Semiconductor substrate 4...High frequency power supply 5...Magnetic field coil
Claims (1)
極に対向し設けられた対向電極とを有する反応性イオン
エッチング装置において、反応室の内部あるいは外部に
磁場を印加してマグネトロン放電を用いたエッチングを
行う際に、前記設置用電極に設置された半導体基板の直
上における磁場強度を160Gauss以下とし、かつ
エッチング中の圧力を10pa以下に設定することを特
徴とする反応性イオンエッチング装置。(1) In a reactive ion etching apparatus that has an installation electrode for installing a semiconductor substrate and a counter electrode provided opposite to the installation electrode, a magnetic field is applied inside or outside the reaction chamber to generate magnetron discharge. A reactive ion etching apparatus characterized in that, when performing etching using the above-described method, the magnetic field strength directly above the semiconductor substrate placed on the installation electrode is set to 160 Gauss or less, and the pressure during etching is set to 10 pa or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19374989A JPH0358415A (en) | 1989-07-26 | 1989-07-26 | Reactive ion etching device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19374989A JPH0358415A (en) | 1989-07-26 | 1989-07-26 | Reactive ion etching device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0358415A true JPH0358415A (en) | 1991-03-13 |
Family
ID=16313174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19374989A Pending JPH0358415A (en) | 1989-07-26 | 1989-07-26 | Reactive ion etching device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0358415A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05214771A (en) * | 1992-02-07 | 1993-08-24 | Misawa Homes Co Ltd | Hanging tool connecting structure for roof unit |
JPH05222773A (en) * | 1992-02-10 | 1993-08-31 | Misawa Homes Co Ltd | Lifter structure of roof unit |
-
1989
- 1989-07-26 JP JP19374989A patent/JPH0358415A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05214771A (en) * | 1992-02-07 | 1993-08-24 | Misawa Homes Co Ltd | Hanging tool connecting structure for roof unit |
JPH05222773A (en) * | 1992-02-10 | 1993-08-31 | Misawa Homes Co Ltd | Lifter structure of roof unit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6777037B2 (en) | Plasma processing method and apparatus | |
JPH1079372A (en) | Plasma treating method and plasma treating equipment | |
JPS634065A (en) | Method and apparatus for sputtering material by high frequency discharge | |
US5228939A (en) | Single wafer plasma etching system | |
JPH0358415A (en) | Reactive ion etching device | |
Nojiri et al. | Study of gate oxide breakdown caused by charge buildup during dry etching | |
JPS56105480A (en) | Plasma etching method | |
JPH04180557A (en) | Plasma treating device | |
JP3599670B2 (en) | Plasma processing method and apparatus | |
JP3278732B2 (en) | Etching apparatus and etching method | |
JP2623827B2 (en) | Microwave plasma processing equipment | |
JP3687474B2 (en) | Plasma processing equipment | |
JPS6124817B2 (en) | ||
Kitabayashi et al. | Charging of glass substrate by plasma exposure | |
JPH0653192A (en) | Dry etching method | |
JPH07312362A (en) | Dry etching device | |
JPH0252855B2 (en) | ||
JP3082711B2 (en) | Method for manufacturing semiconductor device | |
JPS61174725A (en) | Thin film forming apparatus | |
JPH01100923A (en) | Ion treating apparatus | |
KR20010081035A (en) | Plasma etching apparatus | |
JPS59172716A (en) | Manufacture of semiconductor | |
JPS62267483A (en) | Dry etching device | |
JP3704423B2 (en) | Surface treatment equipment | |
JPH10284297A (en) | Plasma processing method and device |