JP3599670B2 - Plasma processing method and apparatus - Google Patents

Plasma processing method and apparatus Download PDF

Info

Publication number
JP3599670B2
JP3599670B2 JP2001004371A JP2001004371A JP3599670B2 JP 3599670 B2 JP3599670 B2 JP 3599670B2 JP 2001004371 A JP2001004371 A JP 2001004371A JP 2001004371 A JP2001004371 A JP 2001004371A JP 3599670 B2 JP3599670 B2 JP 3599670B2
Authority
JP
Japan
Prior art keywords
plasma
electrode
processed
power supply
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001004371A
Other languages
Japanese (ja)
Other versions
JP2002208587A (en
Inventor
尚輝 安井
誠浩 角屋
成一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001004371A priority Critical patent/JP3599670B2/en
Publication of JP2002208587A publication Critical patent/JP2002208587A/en
Application granted granted Critical
Publication of JP3599670B2 publication Critical patent/JP3599670B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はプラズマ処理方法および装置に係り、特にプラズマを用いて半導体等の被処理材の表面処理を行うのに好適なプラズマ処理方法および装置に関するものである。
【0002】
【従来の技術】
エッチング処理を行うプラズマ処理装置の場合、処理ガスを効率よく電離し活性化することで処理の高速化を図り、また被処理材に高周波バイアス電力を供給しプラズマ中のイオンを被処理材に対して垂直に入射させることで、異方性を向上させ高精度なエッチング処理を実現している。このような処理を行うプラズマ処理装置としては、例えば、特開平9−321031号公報に記載されているような有磁場UHF帯のエッチング装置が知られている。
【0003】
有磁場UHF帯のエッチング装置は、真空容器内で被加工試料に対面する位置に円形導体板を配置し、円形導体板にUHF帯の電磁波を供給するとともに真空容器内に磁場を形成してECRプラズマを発生させ、UHF帯とは異なる周波数の電界を円形導体板に重畳し、円形導体板にかかるバイアスを大きくして円形導体板と反応ガスとの反応性を高めて、エッチング反応に寄与する活性種を多く生成させるとともに、被加工試料が配置される試料台にバイアス電圧を印加して被加工試料をプラズマ処理している。なお、この装置は、試料台に印加する高周波電源と、試料台に対向する円形導体板に印加するUHF帯の高周波電源と、同じ円形導体板に印加するUHF帯高周波電源とは異なる高周波電源とを独立に制御することができるようになっている。
【0004】
また、このような有磁場プラズマ処理装置内では、リアライズ社1996発行「半導体プロセスにおけるチャージングダメージ」中村守孝編、P.9〜28 記載のように、磁場に対して垂直方向のプラズマインピーダンスが平行方向のプラズマインピーダンスに比べて大きくなり、被処理材面内に電位分布を形成する可能性があることが知られていた。
【0005】
【発明が解決しようとする課題】
半導体集積回路の集積度が高まりつつある現在、例えば、半導体素子の代表的な一例であるMOS(Metal Oxide Semiconductor)トランジスタゲート酸化膜等の薄膜化が進み、ゲート酸化膜の加工において、プラズマ処理時にゲート酸化膜が絶縁破壊する(チャージングダメージ)問題が深刻になりつつある。上記従来技術におけるプラズマ処理装置では、被処理材に印加された高周波電力による電界が試料台と接地電位にある真空容器側面との間に形成され、高周波電力が磁場を横切る方向に伝播する。このため、被処理材面内に電位分布が形成され、ゲート酸化膜の耐電圧を劣化させるチャージングダメージを発生させる恐れがある。
【0006】
本発明の目的は、チャージングダメージを抑制し、半導体デバイスの歩留まりを高め、高精度な表面処理を行なうことのできるプラズマ処理方法および装置を提供することにある。
【0007】
【課題を解決するための手段】
上記目的は、真空排気装置が接続され内部を減圧可能な処理室と、処理室内へガスを供給するガス供給装置と、処理室内に設けられ被処理材を載置可能な基板電極と、処理室内に供給されたガスをプラズマ化する電磁波を処理室内に放射する第1の高周波電源と、基板電極へ接続され被処理材に基板バイアス電圧を印加する第2の高周波電源とを具備し、基板電極に印加する高周波電圧の正のピーク電圧に対し、その値より大きい正のピーク電圧が発生する補助電極を被処理材の外周部に設けた装置とし、処理ガスが供給され内部が所定圧力に減圧排気された処理室内にプラズマを生成するとともに、処理室内に設けられた基板電極にバイアス電圧を印加し、プラズマの生成とは独立にプラズマ中のイオンの被処理材への入射エネルギを制御し、被処理材を処理する際に、基板電極外周部のプラズマ電位を被処理材上のプラズマ電位よりも高くして処理する方法とすることにより、達成される。
【0008】
すなわち、電極外周部のプラズマ電位を高くすることで、電位の高い被処理材面内から電位の低い(接地電位の)処理室内壁面、すなわち、処理室を形成する真空容器の内壁側面に形成されようとする回路の形成が阻害されるので、被処理材面内に生じる電位差を低減することができる。これにより、プラズマ特性の面内分布に起因する被処理材面内の電位分布を均一にすることができる。さらに、処理室内に基板電極と対向するアンテナ電極を設けた場合、基板電極に高周波電圧を印加しても、基板電極外周部のプラズマ電位が高いため、基板電極からアースとして機能する処理室内壁への電流の流れは減少し、対向アース電極として機能するアンテナ電極との間での電流が増加する。すなわち、高周波電流が処理室内壁よりも対向する電極間でより多く流れるようになるので、磁場を横切る方向の電流が減少し、磁場に対して垂直方向のプラズマインピーダンスの影響を受けなくなる。磁場に対して水平方向のプラズマインピーダンスは面内で均一なので、プラズマ特性の面内分布に起因する被処理材面内の電位分布はさらに低減され、チャージングダメージ発生を抑制することができ、高精度なプラズマ処理が可能となる。
【0009】
また、アンテナ電極に第3の高周波電源を接続し、基板電極に接続された第1の高周波電源とアンテナ電極に接続された第3の高周波電源の周波数を同一周波数とする装置とし、それぞれの高周波電源の位相差を180°±30°とすることで、基板電極の正の高周波ピーク電圧を小さくすることができ、被処理材上のプラズマ電位からみた基板電極外周部のプラズマ電位をさらに高くすることができる。これにより、対向する電極が効率よくアースとして機能する効果をさらに増幅し、チャージングダメージ発生を抑制することができ、高精度なプラズマ処理が可能となる。
【0010】
【発明の実施の形態】
[実施例1]
以下、本発明の第1の実施例を図1から図3を用いて説明する。図1は、本発明を適用するプラズマ処理装置の一実施例であるエッチング装置の縦断面図である。上部が開放された真空容器101の上部に処理容器104,誘電体窓102(例えば石英製),アンテナ電極103(例えばSi製)を設置、アンテナカバー121で密封することにより処理室105を形成する。処理室104の外周部とアンテナカバー121上部には磁場発生用コイル114が設置されている。アンテナ電極103はエッチングガスを流すための多孔構造となっておりガス供給装置107に接続されている。また真空容器101には真空排気口106を介して真空排気装置(図示省略)が接続されている。
【0011】
アンテナ電極103上部には同軸線路111,整合器110,フィルタ109を介して高周波電源108(例えば周波数450MHz)がプラズマ生成用電源として接続されている。さらに、アンテナ電極103上部には同軸線路111,整合器119,フィルタ113を介してアンテナバイアス電源112(例えば周波数13.56MHz )が接続されている。また、被処理材116を載置可能な基板電極115は真空容器101下部に設置され、同軸線路122,整合器118を介して基板バイアス電源117(例えば周波数800KHz)に接続されている。高周波電源108によりプラズマを生成し、アンテナバイアス電源112によりプラズマ組成あるいはプラズマ分布を制御し、基板バイアス電源117により基板への入射イオン量を制御している。このような構成により、プラズマ生成、プラズマ組成・分布、被処理材116への入射イオン量を独立に制御できるという利点がある。また被処理材116を静電的に吸着させるために静電チャック電源120が基板電極115に接続されている。
【0012】
基板電極115の外周部に補助電極127を設置しており、補助電極127は電位制御回路126,同軸線路122を介して整合器118に接続されている。
【0013】
図2に電位制御回路126の回路構成例を示す。電位制御回路126は基板バイアス電源117からの高周波電圧の波形を任意の電圧波形に制御する回路である。補助電極127と同軸線路122の間に、コンデンサ(C1)およびダイオード(D1)を並列に接続する。ダイオード(D1)は補助電極から同軸線路
122へ向う方向を順方向になるよう接続する。基板バイアス電源117により高周波電圧が補助電極127に印加されたとき、前記回路構成により、プラズマ中からの補助電極127への電子の流入を抑制し、補助電極127の高周波自己バイアス電圧(Vdc)の絶対値を小さくするように作用させる。
【0014】
上記のように構成された装置において、処理室105内部を真空排気装置により減圧した後、ガス供給装置107によりエッチングガスを処理室105内に導入し所望の圧力に調整する。高周波電源108より発振された、例えば、周波数450MHzの高周波電力は同軸線路111を伝播し、アンテナ電極103および誘電体窓102を介して処理室105内に導入され、磁場発生用コイル114(例えば、ソレノイドコイル)により形成された磁場との相互作用により、処理室105内に高密度プラズマを生成する。特に電子サイクロトロン共鳴を起こす磁場強度(例えば、160G)を処理室内に形成した場合、効率良く高密度プラズマを生成することができる。また、アンテナバイアス電源112より高周波電力(例えば、周波数13.56MHz)が同軸線路111を介してアンテナ電極103に供給される。また基板電極115に載置された被処理材116は、基板バイアス電源117より高周波電力(例えば、周波数800KHz)が供給され、表面処理(例えば、エッチング処理)される。
【0015】
基板電極115には、例えば、ピーク・ツウ・ピーク電圧(Vpp)800Vの高周波電力が供給され、自己バイアス電圧(Vdc)が発生し、基板電極115の正の高周波ピーク電圧は100V〜200V程度に固定される。このとき、補助電極127にも高周波が印加されるが、ダイオード(D1)が順方向に接続されるとともに整合器118内のコンデンサよりも容量の小さいコンデンサ(C1)を並列に設けているため、高周波電圧の正電圧が補助電極に印加された際、ダイオード(D1)によりプラズマ中から引き寄せられる電子は整合器118側へは流れることができず、またコンデンサ(C1)の容量が小さいため補助電極127に蓄積される電子量も少なくなり、補助電極127における自己バイアス電圧(Vdc)の絶対値は小さい値となる。電子電流が抑制され、自己バイアス電圧(Vdc)の絶対値が小さくなるため補助電極127の正の高周波ピーク電圧は基板電極115より高くなり、基板電極115上のプラズマ電位より、補助電極127上のプラズマ電位が高くなる。図3に補助電極127に高周波電圧を印加したときのプラズマ電位状態を示す。補助電極127上のプラズマ電位が高くなることで、被処理材116面内の電位分布は低減され、プラズマ特性の面内分布を均一にすることができる。さらに、基板電極115と処理室105の側壁である処理容器104との間にプラズマを介して形成される回路には途中に高いプラズマ電位が存在するので該回路に流れる電流が減少し、高周波電流が側壁よりも対向する電極間にさらに多く流れるようになる。これにより、磁場を横切る方向の電流が減少しチャージングダメージの発生が抑制され、さらに高精度エッチング処理ができるという効果がある。
[実施例2]
本発明の第2の実施例を図4を用いて説明する。本図において図1と同符号は同一部材を示し説明を省略する。本図が図1と異なる点を以下に説明する。アンテナ電極103上部には同軸線路111,整合器119,フィルタ113を介してアンテナバイアス電源112(例えば、周波数800KHz)が接続されている。また、被処理材116を載置可能な基板電極115は真空容器101下部に設置され、同軸線路122,整合器118を介して基板バイアス電源117(例えば、周波数800KHz)に接続されている。アンテナバイアス電源112と基板バイアス電源117は位相制御器125に接続されており、アンテナバイアス電源112と基板バイアス電源117より出力される高周波の位相を制御することができる。ここではアンテナバイアス電源112と基板バイアス電源117の周波数は同一周波数としてある。
【0016】
アンテナ電極103と基板電極115に印加される高周波電圧の位相差が180°±30°の場合、例えば、基板電極115に正の電圧が印加されているとき、アンテナ電極103には負の電圧が印加されるので、アンテナ電極103にはイオンが入射するが電子は入射せず、アンテナ電極103近傍は電子が多く存在する状態となり、対向する電極が効率よくアースとしての機能を有する。位相差180°±30°で印加することで、基板電極115から対向するアースとなるアンテナ電極103までのインピーダンスは低減され、例えば、ピーク・ツウ・ピーク電圧(Vpp)800Vの高周波電力が印加されると基板電極115の正の高周波ピーク電圧は20〜30Vに固定される。実施例1で示した基板電極115の正の高周波ピーク電圧より本実施例の基板電極115の正の高周波ピーク電圧が小さくなり、対向する電極が効率よくアースとして機能する効果をさらに増幅して実現することが可能となる。基板電極115上のプラズマ電位からみた補助電極127上のプラズマ電位をさらに高くすることで、高周波電流が側壁よりも対向する電極間にさらに多く流れることから、磁場を横切る方向の電流が減少しチャージングダメージの発生を抑制でき、高精度エッチング処理ができるという効果がある。
[実施例3]
本発明の第3の実施例を図5を用いて説明する。本図において図2と同符号は同一部材を示し説明を省略する。本図が図2と異なる点を以下に説明する。電位制御回路126のダイオード(D1)を図2と逆方向に接続し、可変抵抗器R1を直列に追加接続した点、電位制御回路126のコンデンサ(C1)を可変容量コンデンサとした点、可変抵抗器R1の抵抗値と可変容量コンデンサC1の容量を調整するための制御装置128を接続している点である。
【0017】
このような構成により、基板バイアス電源117により高周波電圧が補助電極127に印加されたときに、例えば、抵抗R1の抵抗値を大きくして電流の流れを抑制することでプラズマ中からの補助電極127への電子の流入を抑制でき、また抵抗R1の抵抗値を小さくして電流を流れ易くすることでプラズマ中からの補助電極127への電子の流入を多くすることができる。これにより、補助電極127の高周波自己バイアス電圧(Vdc)の絶対値を制御できるので、自己バイアス電圧(Vdc)が小さくなるように作用させ、前記実施例1と同様に補助電極127上でのプラズマ電位を高くしたり、自己バイアス電圧(Vdc)を少し大きくしてプラズマ中のイオンが補助電極127に入射されるようにし、イオンの入射量を制御できるようにする。補助電極127へのイオンの入射によって、補助電極127表面でのプラズマ中の活性種との反応を制御することも可能である。例えば、CF系のガスを用いた酸化膜エッチングにおいて、補助電極127の材質を高純度のシリコンとすれば、シリコンのスカベンジ作用により補助電極127でのFラジカルやCFラジカルの反応を制御して、特にウェハ外周部でのエッチング均一性を向上させることができる。
【0018】
また、基板バイアス電源117により高周波電圧が補助電極127に印加されたときに、例えば、コンデンサC1の容量を小さくして印加する高周波電力を抑制することでプラズマ中からの補助電極127へのイオンの流入を抑制でき、またコンデンサC1の容量を大きくして印加する高周波電力を増加させることでプラズマ中からの補助電極127へのイオンの流入を多くすることができる。これにより、補助電極127の高周波自己バイアス電圧(Vdc)の絶対値を制御できるので、自己バイアス電圧(Vdc)が小さくなるように作用させ、前記実施例1と同様に補助電極127上でのプラズマ電位を高くしたり、自己バイアス電圧(Vdc)を少し大きくしてプラズマ中のイオンが補助電極127に入射されるようにし、イオンの入射量を制御できるようにする。補助電極127へのイオン入射の制御によって、補助電極127表面でのプラズマ中の活性種との反応を制御することも可能である。これにより、上述の可変抵抗器(R1)を制御したときと同様の効果を得ることができる。
【0019】
上述は、可変抵抗器(R1)と可変容量コンデンサ(C1)とをそれぞれ個別に制御しても良いし、さらに最適な制御を行なうために組合わせて制御することも有効である。
【0020】
本第3の実施例によれば、補助電極127上でのプラズマ電位を制御し、チャージングダメージの発生を抑制するとともにスカベンジ作用によるエッチングの均一性を向上させることができるという効果がある。
【0021】
上述のこれらの実施例ではエッチング装置について述べたが、アッシング装置,プラズマCVD装置など、基板電極へ高周波電力を供給する他のプラズマ処理装置に同様に適用することができる。
【0022】
【発明の効果】
本発明によれば、被処理材上のプラズマ電位よりも基板電極外周部のプラズマ電位を高くすることで、被処理材の面内の電位分布を低減することができ、対向する両電極のアースとしての機能が向上し、高周波電流が処理容器内の処理室内壁よりも対向する電極により多く流れることから、磁場を横切る方向の電流が減少し、チャージングダメージの抑制が可能となり、半導体デバイスの歩留まりを高め、高精度な表面処理が可能なプラズマ処理方法および装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例であるプラズマ処理装置を示す縦断面図である。
【図2】図1の装置の電位制御回路を示す図である。
【図3】図2の電位制御回路を用いた場合のプラズマ電位を示す図である。
【図4】本発明の第2の実施例であるプラズマ処理装置を示す縦断面図である。
【図5】本発明の第3の実施例であるプラズマ処理装置の電位制御回路を示す図である。
【符号の説明】
101…真空容器、102…誘電体窓、103…アンテナ電極、104…処理容器、105…処理室、106…真空排気口、107…ガス供給装置、108…高周波電源、109,113…フィルター、110…整合器、111…同軸線路、112…アンテナバイアス電源、114…磁場発生用コイル、115…基板電極、116…被処理材、117…基板バイアス電源、118,119…整合器、120…静電チャック電源、121…アンテナカバー、122…同軸線路、125…位相制御器、126…電位制御回路、127…補助電極、128…制御装置。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a plasma processing method and apparatus, and more particularly to a plasma processing method and apparatus suitable for performing a surface treatment of a material to be processed such as a semiconductor using plasma.
[0002]
[Prior art]
In the case of a plasma processing apparatus that performs an etching process, the process gas is efficiently ionized and activated to increase the speed of the process, and a high-frequency bias power is supplied to the material to be processed so that ions in the plasma are applied to the material to be processed. By making the light incident perpendicularly, the anisotropy is improved and a highly accurate etching process is realized. As a plasma processing apparatus for performing such processing, for example, an etching apparatus in a magnetic field UHF band described in Japanese Patent Application Laid-Open No. 9-321031 is known.
[0003]
The magnetic field UHF band etching apparatus arranges a circular conductor plate at a position facing a sample to be processed in a vacuum vessel, supplies a UHF band electromagnetic wave to the circular conductor plate, and forms a magnetic field in the vacuum vessel to produce an ECR. Plasma is generated, an electric field having a frequency different from that of the UHF band is superimposed on the circular conductor plate, the bias applied to the circular conductor plate is increased, and the reactivity between the circular conductor plate and the reaction gas is increased, thereby contributing to the etching reaction. A large amount of active species is generated, and a bias voltage is applied to a sample stage on which the sample to be processed is placed, and the sample to be processed is plasma-processed. The apparatus includes a high-frequency power source applied to the sample stage, a UHF-band high-frequency power source applied to a circular conductor plate facing the sample stage, and a high-frequency power source different from the UHF-band high-frequency power source applied to the same circular conductor plate. Can be controlled independently.
[0004]
Further, in such a magnetic field plasma processing apparatus, “Charging Damage in Semiconductor Process” published by Realize Inc., 1996, edited by Moritaka Nakamura, P.S. 9 to 28, it has been known that the plasma impedance in the direction perpendicular to the magnetic field becomes larger than the plasma impedance in the direction parallel to the magnetic field, and that a potential distribution may be formed in the surface of the material to be processed. .
[0005]
[Problems to be solved by the invention]
As the degree of integration of a semiconductor integrated circuit is increasing, for example, a MOS (Metal Oxide Semiconductor) transistor, which is a typical example of a semiconductor element, is becoming thinner. The problem of dielectric breakdown (charging damage) of the gate oxide film is becoming more serious. In the above-described plasma processing apparatus in the related art, an electric field due to the high-frequency power applied to the material to be processed is formed between the sample stage and the side of the vacuum vessel at the ground potential, and the high-frequency power propagates in a direction crossing the magnetic field. For this reason, a potential distribution is formed in the surface of the material to be processed, and there is a possibility that charging damage that deteriorates the withstand voltage of the gate oxide film may occur.
[0006]
An object of the present invention is to provide a plasma processing method and apparatus capable of suppressing charging damage, increasing the yield of semiconductor devices, and performing highly accurate surface processing.
[0007]
[Means for Solving the Problems]
The object is to provide a processing chamber to which a vacuum exhaust device is connected and which can depressurize the inside, a gas supply device for supplying gas into the processing chamber, a substrate electrode provided in the processing chamber and capable of mounting a material to be processed, and a processing chamber. A first high-frequency power supply for radiating an electromagnetic wave for converting a gas supplied to the substrate into plasma into the processing chamber, and a second high-frequency power supply connected to the substrate electrode and applying a substrate bias voltage to the material to be processed, An auxiliary electrode that generates a positive peak voltage higher than the positive peak voltage of the high frequency voltage applied to the workpiece is provided on the outer peripheral portion of the material to be processed, and the processing gas is supplied and the inside is reduced to a predetermined pressure. Plasma is generated in the evacuated processing chamber, and a bias voltage is applied to the substrate electrode provided in the processing chamber to control the incident energy of ions in the plasma to the material to be processed independently of plasma generation. , When processing the processed material, the plasma potential of the substrate electrode peripheral portion by a method of processing to be higher than the plasma potential on the workpiece is achieved.
[0008]
That is, by increasing the plasma potential at the outer peripheral portion of the electrode, the plasma potential is formed on the inner wall surface of the vacuum chamber forming the processing chamber from the inner surface of the processing chamber having a lower potential (ground potential) from the surface of the material to be processed having a higher potential. Since the formation of the circuit to be performed is hindered, the potential difference generated in the surface of the material to be processed can be reduced. Thereby, the potential distribution in the surface of the material to be processed due to the in-plane distribution of the plasma characteristics can be made uniform. Further, in the case where an antenna electrode facing the substrate electrode is provided in the processing chamber, even if a high-frequency voltage is applied to the substrate electrode, the plasma potential at the outer peripheral portion of the substrate electrode is high, so that the substrate electrode is transferred to the processing chamber wall functioning as an earth. , The current flow between the antenna electrode and the antenna electrode functioning as the opposite ground electrode increases. That is, since the high-frequency current flows more between the electrodes facing each other than the inner wall of the processing chamber, the current in the direction crossing the magnetic field decreases, and the magnetic field is not affected by the plasma impedance in the direction perpendicular to the magnetic field. Since the plasma impedance in the horizontal direction with respect to the magnetic field is uniform in the plane, the potential distribution in the surface of the material to be processed due to the in-plane distribution of plasma characteristics is further reduced, and the occurrence of charging damage can be suppressed. Accurate plasma processing becomes possible.
[0009]
Also, a third high-frequency power supply is connected to the antenna electrode, and the first high-frequency power supply connected to the substrate electrode and the third high-frequency power supply connected to the antenna electrode are set to have the same frequency. By setting the phase difference of the power supply to 180 ° ± 30 °, the positive high-frequency peak voltage of the substrate electrode can be reduced, and the plasma potential at the outer periphery of the substrate electrode as viewed from the plasma potential on the material to be processed is further increased. be able to. This further amplifies the effect that the opposing electrode efficiently functions as the ground, suppresses the occurrence of charging damage, and enables highly accurate plasma processing.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
[Example 1]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a longitudinal sectional view of an etching apparatus which is one embodiment of a plasma processing apparatus to which the present invention is applied. A processing chamber 104, a dielectric window 102 (for example, made of quartz), and an antenna electrode 103 (for example, made of Si) are provided on the upper portion of a vacuum vessel 101 having an open top, and a processing chamber 105 is formed by sealing with an antenna cover 121. . A magnetic field generating coil 114 is provided on the outer peripheral portion of the processing chamber 104 and on the antenna cover 121. The antenna electrode 103 has a porous structure for flowing an etching gas, and is connected to a gas supply device 107. Further, a vacuum exhaust device (not shown) is connected to the vacuum vessel 101 via a vacuum exhaust port 106.
[0011]
A high frequency power supply 108 (for example, a frequency of 450 MHz) is connected to the upper part of the antenna electrode 103 via a coaxial line 111, a matching unit 110, and a filter 109 as a power supply for plasma generation. Further, an antenna bias power supply 112 (for example, a frequency of 13.56 MHz) is connected to the upper portion of the antenna electrode 103 via a coaxial line 111, a matching unit 119, and a filter 113. The substrate electrode 115 on which the material to be processed 116 can be placed is installed below the vacuum vessel 101 and connected to the substrate bias power supply 117 (for example, frequency 800 KHz) via the coaxial line 122 and the matching unit 118. Plasma is generated by the high frequency power supply 108, the plasma composition or plasma distribution is controlled by the antenna bias power supply 112, and the amount of ions incident on the substrate is controlled by the substrate bias power supply 117. With such a configuration, there is an advantage that the plasma generation, the plasma composition / distribution, and the amount of ions incident on the target material 116 can be independently controlled. In addition, an electrostatic chuck power supply 120 is connected to the substrate electrode 115 in order to electrostatically attract the workpiece 116.
[0012]
An auxiliary electrode 127 is provided on the outer periphery of the substrate electrode 115, and the auxiliary electrode 127 is connected to the matching unit 118 via a potential control circuit 126 and a coaxial line 122.
[0013]
FIG. 2 shows a circuit configuration example of the potential control circuit 126. The potential control circuit 126 is a circuit that controls the waveform of the high-frequency voltage from the substrate bias power supply 117 to an arbitrary voltage waveform. A capacitor (C1) and a diode (D1) are connected in parallel between the auxiliary electrode 127 and the coaxial line 122. The diode (D1) is connected so that the direction from the auxiliary electrode to the coaxial line 122 is forward. When a high-frequency voltage is applied to the auxiliary electrode 127 by the substrate bias power supply 117, the circuit configuration suppresses the flow of electrons from the plasma to the auxiliary electrode 127, and reduces the high-frequency self-bias voltage (Vdc) of the auxiliary electrode 127. Act to reduce the absolute value.
[0014]
In the apparatus configured as described above, after the inside of the processing chamber 105 is depressurized by the vacuum exhaust device, the etching gas is introduced into the processing chamber 105 by the gas supply device 107 and adjusted to a desired pressure. The high-frequency power of, for example, 450 MHz, oscillated from the high-frequency power supply 108, propagates through the coaxial line 111, is introduced into the processing chamber 105 via the antenna electrode 103 and the dielectric window 102, and is supplied with a magnetic field generating coil 114 (for example, A high-density plasma is generated in the processing chamber 105 by interaction with a magnetic field formed by the solenoid coil). In particular, when a magnetic field intensity (for example, 160 G) that causes electron cyclotron resonance is formed in the processing chamber, high-density plasma can be efficiently generated. Further, high frequency power (for example, a frequency of 13.56 MHz) is supplied from the antenna bias power supply 112 to the antenna electrode 103 via the coaxial line 111. The workpiece 116 placed on the substrate electrode 115 is supplied with high-frequency power (for example, a frequency of 800 KHz) from the substrate bias power supply 117 and subjected to a surface treatment (for example, an etching process).
[0015]
The substrate electrode 115 is supplied with, for example, a high-frequency power of 800 V peak-to-peak voltage (Vpp) to generate a self-bias voltage (Vdc), and the positive high-frequency peak voltage of the substrate electrode 115 becomes about 100 V to 200 V. Fixed. At this time, a high frequency is also applied to the auxiliary electrode 127. However, since the diode (D1) is connected in the forward direction and the capacitor (C1) having a smaller capacity than the capacitor in the matching unit 118 is provided in parallel, When a positive voltage of a high-frequency voltage is applied to the auxiliary electrode, electrons attracted from the plasma by the diode (D1) cannot flow toward the matching unit 118, and the capacity of the capacitor (C1) is small, so that the auxiliary electrode is small. The amount of electrons stored in the auxiliary electrode 127 also decreases, and the absolute value of the self-bias voltage (Vdc) at the auxiliary electrode 127 becomes a small value. Since the electron current is suppressed and the absolute value of the self-bias voltage (Vdc) decreases, the positive high-frequency peak voltage of the auxiliary electrode 127 becomes higher than that of the substrate electrode 115, and the plasma potential on the auxiliary electrode 127 becomes higher than the plasma potential on the substrate electrode 115. The plasma potential increases. FIG. 3 shows a plasma potential state when a high-frequency voltage is applied to the auxiliary electrode 127. By increasing the plasma potential on the auxiliary electrode 127, the potential distribution in the surface of the processing target material 116 is reduced, and the in-plane distribution of plasma characteristics can be made uniform. Further, in a circuit formed through plasma between the substrate electrode 115 and the processing chamber 104 which is a side wall of the processing chamber 105, a high plasma potential exists on the way, so that a current flowing through the circuit is reduced, and a high-frequency current is reduced. Flow more between the opposing electrodes than the side walls. As a result, there is an effect that the current in the direction crossing the magnetic field is reduced, the occurrence of charging damage is suppressed, and more accurate etching can be performed.
[Example 2]
A second embodiment of the present invention will be described with reference to FIG. In this figure, the same reference numerals as those in FIG. 1 denote the same members, and a description thereof will be omitted. The difference between this figure and FIG. 1 will be described below. An antenna bias power supply 112 (for example, a frequency of 800 kHz) is connected to the upper part of the antenna electrode 103 via a coaxial line 111, a matching unit 119, and a filter 113. The substrate electrode 115 on which the workpiece 116 can be placed is installed below the vacuum vessel 101, and is connected to a substrate bias power supply 117 (for example, at a frequency of 800 KHz) via a coaxial line 122 and a matching unit 118. The antenna bias power supply 112 and the substrate bias power supply 117 are connected to a phase controller 125, and can control the phase of a high frequency output from the antenna bias power supply 112 and the substrate bias power supply 117. Here, the frequencies of the antenna bias power supply 112 and the substrate bias power supply 117 are the same.
[0016]
When the phase difference between the high-frequency voltages applied to the antenna electrode 103 and the substrate electrode 115 is 180 ° ± 30 °, for example, when a positive voltage is applied to the substrate electrode 115, a negative voltage is applied to the antenna electrode 103. Since the voltage is applied, ions are incident on the antenna electrode 103 but no electrons are incident thereon, and a lot of electrons exist in the vicinity of the antenna electrode 103, and the opposing electrode has a function as a ground efficiently. When the phase difference is applied at 180 ° ± 30 °, the impedance from the substrate electrode 115 to the opposing grounding antenna electrode 103 is reduced. For example, a high-frequency power of 800V peak-to-peak voltage (Vpp) is applied. Then, the positive high frequency peak voltage of the substrate electrode 115 is fixed at 20 to 30V. The positive high-frequency peak voltage of the substrate electrode 115 of this embodiment is smaller than the positive high-frequency peak voltage of the substrate electrode 115 shown in the first embodiment, and the effect that the opposing electrode efficiently functions as ground is further amplified and realized. It is possible to do. By further increasing the plasma potential on the auxiliary electrode 127 from the viewpoint of the plasma potential on the substrate electrode 115, more high-frequency current flows between the opposing electrodes than the side walls, so that the current in the direction crossing the magnetic field decreases and the charge increases. This has the effect that generation of etching damage can be suppressed and high-precision etching processing can be performed.
[Example 3]
A third embodiment of the present invention will be described with reference to FIG. 2, the same reference numerals as those in FIG. 2 denote the same members, and a description thereof will be omitted. The difference between this figure and FIG. 2 will be described below. 2 in that the diode (D1) of the potential control circuit 126 is connected in the opposite direction to that of FIG. 2 and a variable resistor R1 is additionally connected in series. The capacitor (C1) of the potential control circuit 126 is a variable capacitance capacitor. The point is that a control device 128 for adjusting the resistance value of the device R1 and the capacitance of the variable capacitor C1 is connected.
[0017]
With such a configuration, when a high-frequency voltage is applied to the auxiliary electrode 127 by the substrate bias power supply 117, for example, the resistance value of the resistor R1 is increased to suppress the flow of current, so that the auxiliary electrode 127 The flow of electrons into the auxiliary electrode 127 from the plasma can be increased by reducing the resistance value of the resistor R1 and making the current easier to flow. Thus, the absolute value of the high-frequency self-bias voltage (Vdc) of the auxiliary electrode 127 can be controlled, so that the self-bias voltage (Vdc) is reduced, and the plasma on the auxiliary electrode 127 is actuated as in the first embodiment. The potential in the plasma is increased or the self-bias voltage (Vdc) is slightly increased so that ions in the plasma are incident on the auxiliary electrode 127 so that the incident amount of ions can be controlled. It is also possible to control the reaction with the active species in the plasma on the surface of the auxiliary electrode 127 by the incidence of ions on the auxiliary electrode 127. For example, in oxide film etching using a CF-based gas, if the material of the auxiliary electrode 127 is made of high-purity silicon, the reaction of F radicals and CF radicals at the auxiliary electrode 127 is controlled by the scavenging action of silicon. In particular, it is possible to improve the etching uniformity in the outer peripheral portion of the wafer.
[0018]
Further, when a high-frequency voltage is applied to the auxiliary electrode 127 by the substrate bias power supply 117, for example, by reducing the capacity of the capacitor C1 and suppressing the applied high-frequency power, ions from the plasma to the auxiliary electrode 127 are reduced. The inflow can be suppressed, and the inflow of ions from the plasma to the auxiliary electrode 127 can be increased by increasing the capacity of the capacitor C1 and increasing the applied high frequency power. Thus, the absolute value of the high-frequency self-bias voltage (Vdc) of the auxiliary electrode 127 can be controlled, so that the self-bias voltage (Vdc) is reduced, and the plasma on the auxiliary electrode 127 is actuated as in the first embodiment. The potential in the plasma is increased or the self-bias voltage (Vdc) is slightly increased so that ions in the plasma are incident on the auxiliary electrode 127 so that the incident amount of ions can be controlled. By controlling the incidence of ions on the auxiliary electrode 127, it is also possible to control the reaction with active species in the plasma on the surface of the auxiliary electrode 127. Thereby, the same effect as when the above-described variable resistor (R1) is controlled can be obtained.
[0019]
As described above, the variable resistor (R1) and the variable capacitance capacitor (C1) may be individually controlled, or it is effective to control them in combination for more optimal control.
[0020]
According to the third embodiment, there is an effect that the plasma potential on the auxiliary electrode 127 can be controlled to suppress the occurrence of charging damage and improve the uniformity of etching by the scavenging action.
[0021]
Although the etching apparatus has been described in these embodiments, the present invention can be similarly applied to other plasma processing apparatuses that supply high-frequency power to the substrate electrode, such as an ashing apparatus and a plasma CVD apparatus.
[0022]
【The invention's effect】
According to the present invention, by making the plasma potential of the outer peripheral portion of the substrate electrode higher than the plasma potential on the material to be processed, the potential distribution in the plane of the material to be processed can be reduced, and the grounding of both opposing electrodes can be reduced. As the high-frequency current flows more to the opposing electrode than the inner wall of the processing chamber in the processing chamber, the current in the direction crossing the magnetic field decreases, and charging damage can be suppressed. It is possible to provide a plasma processing method and apparatus capable of increasing the yield and performing high-precision surface treatment.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a plasma processing apparatus according to a first embodiment of the present invention.
FIG. 2 is a diagram showing a potential control circuit of the device of FIG.
FIG. 3 is a diagram showing a plasma potential when the potential control circuit of FIG. 2 is used.
FIG. 4 is a longitudinal sectional view showing a plasma processing apparatus according to a second embodiment of the present invention.
FIG. 5 is a diagram showing a potential control circuit of a plasma processing apparatus according to a third embodiment of the present invention.
[Explanation of symbols]
Reference Signs List 101: vacuum container, 102: dielectric window, 103: antenna electrode, 104: processing container, 105: processing chamber, 106: vacuum exhaust port, 107: gas supply device, 108: high frequency power supply, 109, 113: filter, 110 ... matching device, 111 ... coaxial line, 112 ... antenna bias power supply, 114 ... magnetic field generating coil, 115 ... substrate electrode, 116 ... material to be processed, 117 ... substrate bias power supply, 118, 119 ... matching device, 120 ... electrostatic Chuck power supply, 121 antenna cover, 122 coaxial line, 125 phase controller, 126 potential control circuit, 127 auxiliary electrode, 128 control device.

Claims (3)

処理ガスが供給され内部が所定圧力に減圧排気された処理室内にプラズマを発生するとともに、前記処理室内に設けられた基板電極に基板バイアス電源から基板バイアス電圧を印加し、前記プラズマの発生とは独立に前記プラズマ中のイオンの被処理材への入射エネルギーを制御し、前記被処理材を処理するプラズマ処理方法において、
被処理材の外周部に設けた補助電極に補助電極から基板バイアス電源に向かう方向を順方向となるように接続したダイオードとコンデンサとを並列に接続した電位制御回路を介してバイアス電圧を印加し、
前記基板電極外周部のプラズマ電位を前記被処理材上のプラズマ電位よりも高くし、前記被処理材を処理することを特徴とするプラズマ処理方法。
With internal processing gas is supplied to generate a plasma in the processing chamber that is evacuated to a predetermined pressure, the treatment of the substrate bias voltage indicia is applied from bias power source to the substrate electrode provided on the chamber, and generation of the plasma Independently control the incident energy of the ions in the plasma to the material to be processed, and in the plasma processing method for processing the material to be processed,
A bias voltage is applied to an auxiliary electrode provided on the outer peripheral portion of the material to be processed through a potential control circuit in which a diode and a capacitor connected in such a manner that the direction from the auxiliary electrode toward the substrate bias power supply is a forward direction are connected in parallel. ,
A plasma processing method, wherein a plasma potential at an outer peripheral portion of the substrate electrode is higher than a plasma potential on the material to be processed, and the material to be processed is processed.
真空排気装置が接続され内部を減圧可能な処理室と、該処理室内へガスを供給するガス供給装置と、前記処理室内に設けられ被処理材を載置可能な基板電極と、前記処理室内に供給されたガスをプラズマ化する電磁波を前記処理室内に放射する第1の高周波電源と、前記基板電極へ接続され前記被処理材に基板バイアス電圧を印加する第2の高周波電源とを具備するプラズマ処理装置において、
前記基板電極のセルフバイアス電位より絶対値の小さいセルフバイアス電圧が発生する補助電極を前記被処理材の外周部に設け、
第2の高周波電源を、基板電極と、前記補助電極から第2の高周波電源に向かう方向を順方向となるように接続したダイオードとコンデンサとを並列接続した電位制御回路を介して補助電極に接続し、前記基板電極外周部のプラズマ電位を前記被処理材上のプラズマ電位よりも高くすることを特徴とするプラズマ処理装置。
A processing chamber to which a vacuum evacuation device is connected and the inside of which can be decompressed; a gas supply device for supplying gas into the processing chamber; a substrate electrode provided in the processing chamber and capable of mounting a material to be processed; A plasma comprising: a first high-frequency power supply for radiating an electromagnetic wave for converting a supplied gas into plasma into the processing chamber; and a second high-frequency power supply connected to the substrate electrode and applying a substrate bias voltage to the material to be processed. In the processing device,
An auxiliary electrode in which a self-bias voltage having an absolute value smaller than the self-bias potential of the substrate electrode is provided on an outer peripheral portion of the workpiece,
A second high-frequency power source, and the substrate electrode, wherein the auxiliary electrode in a second direction toward the high-frequency power supply is connected such that the forward diode and auxiliary electrodes via a voltage control circuit connected in parallel and a capacitor A plasma processing apparatus , wherein the plasma potential at the outer periphery of the substrate electrode is higher than the plasma potential on the workpiece .
請求項2記載のプラズマ処理装置において、上記処理室内に基板電極に対向しプラズマ発生用電磁波を発生するアンテナ電極を設け、該アンテナ電極に第3の高周波電源を接続し、上記基板電極へ接続された第2の高周波電源とアンテナ電極へ接続された第3の高周波電源とを同一周波数とし、第2と第3の高周波電源の位相を180°±30°の範囲で制御する手段を設けたプラズマ処理装置。3. The plasma processing apparatus according to claim 2, wherein an antenna electrode facing the substrate electrode and generating an electromagnetic wave for plasma generation is provided in the processing chamber, a third high-frequency power supply is connected to the antenna electrode, and the antenna electrode is connected to the substrate electrode. The second high-frequency power supply and the third high-frequency power supply connected to the antenna electrode have the same frequency, and a means for controlling the phase of the second and third high-frequency power supplies within a range of 180 ° ± 30 ° is provided. Processing equipment.
JP2001004371A 2001-01-12 2001-01-12 Plasma processing method and apparatus Expired - Fee Related JP3599670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001004371A JP3599670B2 (en) 2001-01-12 2001-01-12 Plasma processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001004371A JP3599670B2 (en) 2001-01-12 2001-01-12 Plasma processing method and apparatus

Publications (2)

Publication Number Publication Date
JP2002208587A JP2002208587A (en) 2002-07-26
JP3599670B2 true JP3599670B2 (en) 2004-12-08

Family

ID=18872570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001004371A Expired - Fee Related JP3599670B2 (en) 2001-01-12 2001-01-12 Plasma processing method and apparatus

Country Status (1)

Country Link
JP (1) JP3599670B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3776856B2 (en) * 2002-09-13 2006-05-17 株式会社日立ハイテクノロジーズ Plasma processing apparatus and plasma processing method
US7938931B2 (en) * 2006-05-24 2011-05-10 Lam Research Corporation Edge electrodes with variable power
JP5970268B2 (en) * 2012-07-06 2016-08-17 株式会社日立ハイテクノロジーズ Plasma processing apparatus and processing method
US10002744B2 (en) * 2013-12-17 2018-06-19 Tokyo Electron Limited System and method for controlling plasma density
KR102434050B1 (en) * 2016-12-02 2022-08-19 에이에스엠엘 네델란즈 비.브이. A method to change an etch parameter

Also Published As

Publication number Publication date
JP2002208587A (en) 2002-07-26

Similar Documents

Publication Publication Date Title
US6806201B2 (en) Plasma processing apparatus and method using active matching
JP5205378B2 (en) Method and system for controlling the uniformity of a ballistic electron beam by RF modulation
JP3776856B2 (en) Plasma processing apparatus and plasma processing method
KR100319664B1 (en) Plasma Treatment Equipment
US6777037B2 (en) Plasma processing method and apparatus
US6875366B2 (en) Plasma processing apparatus and method with controlled biasing functions
US7169255B2 (en) Plasma processing apparatus
JP4051209B2 (en) High frequency plasma processing apparatus and high frequency plasma processing method
JP3621900B2 (en) Plasma processing apparatus and method
JP3650332B2 (en) Low pressure inductively coupled high density plasma reactor
JP3599670B2 (en) Plasma processing method and apparatus
JPH08255782A (en) Plasma surface treating apparatus
JP4653395B2 (en) Plasma processing equipment
JP3563054B2 (en) Plasma processing apparatus and method
JP4238050B2 (en) Plasma processing apparatus and processing method
JP3687474B2 (en) Plasma processing equipment
JP4527833B2 (en) Plasma processing apparatus and method
JP2005203444A (en) Plasma processing apparatus
JP3898612B2 (en) Plasma processing apparatus and processing method
JP2012023098A (en) Plasma processing apparatus
WO2022049677A1 (en) Plasma treatment apparatus and plasma treatment method
JP2004165644A (en) Apparatus and method for plasma processing
TW202312640A (en) Method and apparatus for digital control of ion energy distribution in a plasma
JPH10312978A (en) Method and system for plasma processing and fabrication of semiconductor device
JPH11241189A (en) Inductive coupling discharge etching device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040914

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees