JPH0357936A - Apparatus for measuring optical fiber preform - Google Patents

Apparatus for measuring optical fiber preform

Info

Publication number
JPH0357936A
JPH0357936A JP19523689A JP19523689A JPH0357936A JP H0357936 A JPH0357936 A JP H0357936A JP 19523689 A JP19523689 A JP 19523689A JP 19523689 A JP19523689 A JP 19523689A JP H0357936 A JPH0357936 A JP H0357936A
Authority
JP
Japan
Prior art keywords
optical system
frame
base material
notch
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19523689A
Other languages
Japanese (ja)
Inventor
Tomio Azebiru
富夫 畔蒜
Shinichi Nakayama
真一 中山
Ryozo Yamauchi
良三 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP19523689A priority Critical patent/JPH0357936A/en
Publication of JPH0357936A publication Critical patent/JPH0357936A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/412Index profiling of optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enable the measuring of a refractive index distribution with a preform at rest by a method wherein an optical system is arranged on a frame movable in a direction (x) on a xz surface from a light source to a photodetector and the incident side of the optical system is set on one side of the frame viewed from a notch provided on the front of the frame while the outgoing side the optical system on the other side thereof. CONSTITUTION:An optical system is arranged on a frame 36 movable in a direction (x) on an xz surface from a light source 20 to a photo detector 26. When the optical system is set, a notch 38 is provided on the front of the frame 36 and the incident side of the optical system is set on the one side 42 of the frame 36 viewed from the notch 38 while the outgoing thereof on the other side 44 thereof. When the size of the notch 38 is adjusted to be larger than the preform 12 properly, a refractive index can be measured at many points of the preform 12 by moving the optical system together with the frame 36.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、光ファイバ母材の屈折率分春を非破壊的に
測定する装置に関するものである.[従来の技術] 第4図において、12は光ファイ/九母材である. オイル槽l4内に入れたマッチングオイルl6内に、光
ファイバ〜材l2を、y方向(縦置きの状悪)に浸漬す
る(xyzの方向は矢印l3参照). オイル槽l4に透明ガラスの窓l8を設ける. 光源20から出た2方向の光を,レンズ22,窓1Bを
通して光ファイ/<ffl材l2に入射し、出射光をレ
ンズ24を介して受光器26で受け、出射光中に含まれ
る情報を解析して、屈折率分布を測定する. [発明が解決しようとする課題] 従来は、光軸の安定性を保つため、光源20から受光2
l26に至る光学系を固定し,母材l2をX方向に移動
させることで、屈折率分布の測定を行っていた. また、母材l2のy方向の違う位置の測定を行うときは
,母材l2をy方向に移動させていた. ところが最近、母材l2の大型化にともなって、多点同
時測定の必要性が重要になってきている. たとえば3点同時測定の場合は、第5図のように、光学
系を3段に設け、同時に測定する.しかしその場合、母
材l2を移動させる方式では,母材12を微小長さだけ
X方向に移動させた後、各点の受信信号がすべて安定化
するのを待って測定し、それからまた母材l2を微小長
さだけX方向に移動させる、という具合にしなければな
らない. 信号が安定化するまでの時間は、各段の光学系で異なる
から、鮎局一番遅い光学系に合せることになり、時間の
無駄が生じていた. この発明は、上記のような多点同時測定の場合でも、各
段の光学系が、それぞれ独立して(他の測定系の安定を
待たずに)測定できるようにしたものである. [課題を解決するためのf段] 第1a,lb図のように、 (1)xz面上を,X方向に移動可能な架台36上に、
前記光源20から受光器26に至る光学系を設置する、 (2)光学系を設置するに際しては、架台36の前面に
切欠き38を設け,当該切欠き38から見て前記架台3
6の一方の側42に前記光学系の入射側を、また他方の
側44に山射側をそれぞれ設置する、 という構成をとる. [作用] 以上の構成において,切欠き38のサイズを母材l2よ
りも適当に大きくすると、母材l2を固定しておき、架
台36ごと光学系を移動させて,屈折率分血を測定する
ことができるようになる.[3]実施例 [11装置の構成 第1a,lb図において、 30は測定装置の全体を示す. 3lは基板で、たとえば長方形で、前面から内側に入り
込む長方形の切欠き32を有する.34.34はレール
で、基板3l上のX方向に固定して設けられる. 36は架台で,レール34上に載っており、モータ39
(基板3l上に固定)とネジ40の作用で,X方向に移
動できるようになっている.この架台36も、たとえば
四角厚板状で、前面から内側に入り込む長刀形の大きな
切欠き38を右し、全体としてU字形になっている.架
台36上に、光源20〜受光器26の光学形を次のよう
に改置する. すなわち,U字形の架台36の底辺4lに光源20を,
また一方の側辺42に入射側のレンズ22を、さらに他
方の側辺44に出射側のレンズ24と受光器26を、そ
れぞれ設置する.また、ミラー21,23.25により
、光路を直角に曲げる. [2]装置の使用法. (1)  1点だけの測定の場合: 主として、第1a図とf52図(この図では架台36と
その上の光学系だけ示した)において、光源20から2
方向に出た光は、ミラー2lでX方向に向き、レンズ2
2を通り、ミラー23でまた2方向に向きを変えて母材
l2に入射する.母材12を出射した光は、ミラー25
でX方向に向きを変え、24を通って受光器26に入る
.母材l2を静止させておき、架台36を前進させる.
すると、ミラー23〜25間の光が,母材l2を端が端
までX方向に走査するので,母材l2の屈折率分市が測
定される. また、測定装W!130か母材l2のどちらかをy方向
に移動させれば,1台の測定装fi30により,母材1
2の多くの点の屈折率分春を測定できる. (2)多点同時測定の場合: たとえば3点1’i71 II Ill定の場合は、第
3図のように,3台の厠定装2130A,30B,30
Cを用いる. この場合は、母材12を動かすのでないから,各測定装
i30A−Cは、他の測定装置に影響されずに,それぞ
れ独立して測定を行うことができる. [他の実施態様] ミラーを使わないで,光源20から受光器26に至る光
学系の光路を直線状に保つようにしてもよい. [発明の効果I XZ面上をX方向に移動可能な架台上に、前記光源から
受光器に至る光学系を設置し,かつ前記架台の前面には
切欠きを設け、当該切欠きから見て前記架台の一方の側
に前記光学系の入射側を、また他方の側に出射側をそれ
ぞれ設置したので、 (1)母材l2を静止させたまま屈折率分布を測定する
ことができる. (2)特に多点回峙測定の場合は,上記のように、各段
ごとに独立して測定することができ、他の測定′A2F
の受信信号の安定を待つ必要がなくなって、時間的な無
駄がなくなる. 4.図而の筒Inな説明 第1a〜3図は本発明の実施例に関するもので,wSl
a図は平面図, 第1b図は側面図、 第2図は1点だけの測定の場合における使用法の説明図
、 第3図は多点同時測定の場合における使用法の説明図, 第4図は1点だけの測定の場合における従来技術の説明
図、 trS5図は多点同時測定の場合における従来技術の説
明図. l2:光ファイバ母材  l4:オイル槽l6:マッチ
ングオイル 18:窓 20:光源     21,23,25:22,24:
レンズ 26:受光器 30:測定装置   3l:基板 32 . 38 :!IQ欠き 34:レール36:架
台     4l:底辺 42 , 44 :側辺 ミラー 特許出舶人 蒔倉電線株式会社
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for non-destructively measuring the refractive index splitting of an optical fiber preform. [Prior Art] In Fig. 4, 12 is an optical fiber/nine base material. The optical fiber to the material l2 is immersed in the y direction (vertically placed) in the matching oil l6 placed in the oil tank l4 (see arrow l3 for the xyz direction). A transparent glass window l8 is provided in the oil tank l4. Light in two directions emitted from the light source 20 enters the optical fiber/<ffl material l2 through the lens 22 and the window 1B, and the emitted light is received by the light receiver 26 via the lens 24, and the information contained in the emitted light is received. Analyze and measure the refractive index distribution. [Problem to be solved by the invention] Conventionally, in order to maintain the stability of the optical axis, the light receiving unit 2 from the light source 20
The refractive index distribution was measured by fixing the optical system leading to l26 and moving the base material l2 in the X direction. Furthermore, when measuring a different position in the y direction of the base material l2, the base material l2 was moved in the y direction. However, recently, as the base material 12 has become larger, the need for simultaneous multi-point measurement has become important. For example, in the case of simultaneous measurement of three points, the optical system is installed in three stages as shown in Figure 5, and measurements are taken at the same time. However, in that case, in the method of moving the base material 12, after moving the base material 12 by a minute length in the It is necessary to move l2 by a minute length in the X direction. The time it takes for the signal to stabilize differs depending on the optical system at each stage, so we had to adjust to the slowest optical system at the sweetfish station, which was a waste of time. This invention enables the optical systems at each stage to perform measurements independently (without waiting for other measurement systems to stabilize) even in the case of simultaneous multi-point measurement as described above. [F stage to solve the problem] As shown in Figures 1a and lb, (1) On the xz plane, on the pedestal 36 movable in the X direction,
Installing an optical system from the light source 20 to the light receiver 26. (2) When installing the optical system, a notch 38 is provided in the front of the pedestal 36, and the pedestal 3 when viewed from the notch 38
The incident side of the optical system is installed on one side 42 of the optical system 6, and the incident side is installed on the other side 44 of the optical system. [Function] In the above configuration, if the size of the notch 38 is appropriately larger than the base material l2, the refractive index fraction can be measured by fixing the base material l2 and moving the optical system together with the mount 36. You will be able to do this. [3] Example [11 Configuration of Apparatus In Figures 1a and 1b, 30 indicates the entire measuring apparatus. 3l is a substrate, for example, rectangular, and has a rectangular notch 32 extending inward from the front surface. 34. 34 is a rail, which is fixedly provided in the X direction on the board 3l. Reference numeral 36 denotes a frame, which is placed on the rail 34 and is connected to the motor 39.
(fixed on the board 3l) and can be moved in the X direction by the action of the screw 40. This pedestal 36 is also shaped like a square thick plate, for example, and has a large long sword-shaped notch 38 that enters inward from the front, making it U-shaped as a whole. The optical configuration of the light source 20 to the light receiver 26 is rearranged on the pedestal 36 as follows. That is, the light source 20 is placed on the bottom side 4l of the U-shaped pedestal 36.
Further, an incident side lens 22 is installed on one side 42, and an output side lens 24 and a light receiver 26 are installed on the other side 44, respectively. Furthermore, the optical path is bent at right angles by mirrors 21, 23, and 25. [2] How to use the device. (1) In the case of measuring only one point: Mainly, in Figures 1a and 52 (only the pedestal 36 and the optical system thereon are shown),
The light emitted in the direction is directed to the X direction by the mirror 2l, and
2, changes its direction in two directions again by the mirror 23, and enters the base material l2. The light emitted from the base material 12 passes through the mirror 25
The beam changes direction in the X direction and passes through 24 and enters the light receiver 26. The base material 12 is kept stationary and the pedestal 36 is moved forward.
Then, the light between the mirrors 23 to 25 scans the base material l2 in the X direction from end to end, so that the refractive index separation of the base material l2 is measured. Also, measurement equipment W! If either the base material 130 or the base material l2 is moved in the y direction, one measuring device fi30 can move the base material 1
It is possible to measure the refractive index distribution at many points in 2. (2) In the case of simultaneous multi-point measurement: For example, in the case of three-point 1'i71 II Ill measurement, as shown in Fig.
Use C. In this case, since the base material 12 is not moved, each measuring device i30A-C can perform measurements independently without being influenced by other measuring devices. [Other Embodiments] The optical path of the optical system from the light source 20 to the light receiver 26 may be kept straight without using a mirror. [Effect of the invention I: The optical system from the light source to the light receiver is installed on a mount that can be moved in the X direction on the XZ plane, and a notch is provided in the front of the mount, and Since the entrance side of the optical system is installed on one side of the mount and the output side is installed on the other side, (1) the refractive index distribution can be measured while the base material l2 remains stationary. (2) Especially in the case of multi-point rotational measurement, as mentioned above, each stage can be measured independently, and other measurements 'A2F
There is no need to wait for the received signal to stabilize, eliminating wasted time. 4. 1a to 3 are related to embodiments of the present invention, and are illustrated in FIGS.
Figure a is a plan view, Figure 1b is a side view, Figure 2 is an explanatory diagram of how to use it when measuring only one point, Figure 3 is an explanatory diagram of how to use it when measuring multiple points simultaneously, and Figure 4 is an explanatory diagram of how to use it when measuring multiple points simultaneously. The figure is an explanatory diagram of the conventional technique in the case of measuring only one point, and the trS5 diagram is an explanatory diagram of the conventional technique in the case of simultaneous measurement of multiple points. l2: Optical fiber base material l4: Oil tank l6: Matching oil 18: Window 20: Light source 21, 23, 25: 22, 24:
Lens 26: Light receiver 30: Measuring device 3l: Substrate 32. 38:! IQ missing 34: Rail 36: Frame 4l: Base 42, 44: Side mirror Patent Shipper Makkura Electric Cable Co., Ltd.

Claims (1)

【特許請求の範囲】 y方向に置いた光ファイバ母材に、光源から出た光をz
方向から入射させ、光ファイバ母材から出射する光を受
光器で受ける光ファイバ母材の測定装置において、 xz面上をx方向に移動可能な架台上に、前記光源から
受光器に至る光学系を設置し、かつ前記架台の前面には
切欠きを設け、当該切欠きから見て前記架台の一方の側
に前記光学系の入射側を、また他方の側に出射側をそれ
ぞれ設置した、光ファイバ母材の測定装置。
[Claims] Light emitted from a light source is transmitted to an optical fiber base material placed in the y direction in the z direction.
In a measuring device for an optical fiber preform, the optical fiber preform receives light emitted from the optical fiber preform from a direction, and an optical system from the light source to the photoreceiver is mounted on a stand movable in the x direction on the xz plane. and a notch is provided in the front surface of the pedestal, and the entrance side of the optical system is installed on one side of the pedestal when viewed from the notch, and the output side of the optical system is placed on the other side. Fiber base material measuring device.
JP19523689A 1989-07-27 1989-07-27 Apparatus for measuring optical fiber preform Pending JPH0357936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19523689A JPH0357936A (en) 1989-07-27 1989-07-27 Apparatus for measuring optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19523689A JPH0357936A (en) 1989-07-27 1989-07-27 Apparatus for measuring optical fiber preform

Publications (1)

Publication Number Publication Date
JPH0357936A true JPH0357936A (en) 1991-03-13

Family

ID=16337750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19523689A Pending JPH0357936A (en) 1989-07-27 1989-07-27 Apparatus for measuring optical fiber preform

Country Status (1)

Country Link
JP (1) JPH0357936A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2700006A1 (en) * 1992-12-24 1994-07-01 France Telecom Index profile measuring apparatus of an optical fiber preform having an outer envelope and a heart.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2700006A1 (en) * 1992-12-24 1994-07-01 France Telecom Index profile measuring apparatus of an optical fiber preform having an outer envelope and a heart.
EP0605297A1 (en) * 1992-12-24 1994-07-06 France Telecom Device for the measurement of the index profile of a preform for an optical fibre comprising a core and an outer cladding

Similar Documents

Publication Publication Date Title
US7215418B2 (en) Inspection of transparent substrates for defects
SG50599A1 (en) Optical gap measuring apparatus and method
JPH0628612U (en) Multi-axis measuring instrument
DK1068498T3 (en) Arrangement and Method for Using Diffusion Wave Spectroscopy to Measure the Properties of Multiphase Systems and Changes Therein
Gisin et al. Optical fiber characterization by simultaneous measurement of the transmitted and refracted near field
US4770537A (en) Apparatus for optical measurement of the shape of oblong objects
JPH0357936A (en) Apparatus for measuring optical fiber preform
CN116086776A (en) Device and method for detecting divergence angle of collimated light beam
JPH0599659A (en) Method and device for measuring light-beam incident angle and usage of distance measuring equipment
JPS6239365B2 (en)
JP4171534B2 (en) Fiber orientation meter signal normalizer
JPS6423126A (en) Multiple light source polarization analyzing method
JP2950004B2 (en) Confocal laser microscope
KR100418711B1 (en) Apparatus for inspecting collimator property
JP3160103B2 (en) Optical glass thickness measurement method
JP2001264259A (en) Sheet inspecting device
JP3418234B2 (en) Length measuring device
JPH0526551Y2 (en)
SU1543308A1 (en) Device for measuring absolute coefficients of mirror reflection
JPS62159004A (en) Displacement measuring instrument by optical fiber
WO1992014115A1 (en) A method and apparatus for determining direction of displacement of an object surface
JPH02309228A (en) Measuring method and apparatus of distribution of index of refraction
SU1700510A1 (en) Medium transparency determining method
JP2000310509A (en) Stroke measuring device
JPS63311139A (en) Characteristic measuring apparatus for optical fiber